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A GLOBALLY UNIFORMLY CONVERGENT 
FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED 

ELLIPTIC PROBLEM IN TWO DIMENSIONS 

EUGENE O'RIORDAN AND MARTIN STYNES 

ABSTRACT. We analyze a new Galerkin finite element method for numerically 
solving a linear convection-dominated convection-diffusion problem in two di- 
mensions. The method is shown to be convergent, uniformly in the perturbation 
parameter, of order h1/2 in a global energy norm which is stronger than the 
L2 norm. This order is optimal in this norm for our choice of trial functions. 

1. INTRODUCTION 

In this paper, we will examine a finite element method for the numerical 
solution of the singularly perturbed linear elliptic boundary value problem 

(1.la) Lu _ -eAu+a' Vu+aou = f on Q _ (O, 1) x (O, 1), 

(1.lb) u=g onOQ, 

(1.C) a = (al, a2) > (O. O), ao> 0 on Q, 

where e is a small positive parameter. This problem is often viewed as a basic 
model of a steady-state convection-diffusion process. For small values of e, the 
solution u will in general vary rapidly in a layer region of width O(e ln( 1/c)) 
at the outflow boundary {(x, Y) E Q Ix = 1 or y = 1 } . 

When solving (1.1) numerically, the dual nature of the solution causes serious 
difficulties. When e is small, this elliptic problem is essentially hyperbolic in 
its behavior outside the layer region; however, in the numerical approximation 
of elliptic and hyperbolic problems, different approaches are normally adopted. 

For small values of e, it is well known that classical numerical methods for 
(1.1) produce wild oscillations throughout the whole domain. Various upwind 
methods have been proposed to eliminate these oscillations and produce a stable 
numerical solution. The literature on numerical methods for problem (1.1) is 
extensive, and we will not attempt to give a comprehensive survey here. 
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In the context of finite elements, the best-known approach is the streamline- 
diffusion method, which essentially upwinds along the streamlines. Mathe- 
matical analyses of different versions of the streamline-diffusion method have 
been performed by Johnson et al. [8, 9] and Niijima [11] for various classes 
of convection-diffusion problems. These results confirm the accuracy of the 
streamline-diffusion method in smooth regions (i.e., away from the layers). 
However, they do not yield good error estimates for the behavior of the method 
on the entire domain Q; the global bounds obtained depend on Sobolev norms 
of the solution u, which are large when e is small. 

We are interested in globally uniformly convergent (GUC) numerical meth- 
ods. These are methods which converge, uniformly in e, throughout all of Q. 
More precisely, we mean that if u is the solution of (1.1) and uh is an ap- 
proximation obtained using a GUC method, then we have an inequality of the 
form 

(1.2) u - uh11' < Chp 
where C > 0 and p > 0 are independent of e and of the mesh width h, 
and 11 11' is some appropriate norm, which measures the behavior on all of 
Q. Examples of such norms are the discrete and continuous L (Q) norms and 
the energy norm defined in (3.3) below. The estimates mentioned above for the 
streamline-diffusion method do not prove it to be a GUC method, as they are 
uniform in e only outside layer regions. It is desirable to have GUC methods, 
because for a given mesh, their accuracy is retained throughout Q irrespective 
of the value of e. 

In evaluating the performance of GUC methods, the choice of norm to use 
is not universally agreed. From an examination of one-dimensional difference 
schemes, one concludes that the L' norm is too weak for problems such as 
(1.1), as it does not adequately measure behavior in layers (see Hegarty et al. 
[6] for details). Thus, a stronger norm is desirable, and we will obtain our 
error estimates in an energy norm (defined in (3.3) below) and in the discrete 
L 2(Q) norm. Roos [14] has given necessary conditions for a numerical method 
to be GUC, measured in the discrete L' norm, when applied to (1.1). The 
streamline-diffusion schemes do not satisfy these conditions, but the method 
examined in this paper does. 

Most GUC methods have been obtained for singularly perturbed ordinary 
differential equations (see, e.g., Doolan, Miller, and Schilders [1], O'Riordan 
and Stynes [12], and Gartland [3]). The error analyses of these one-dimensional 
methods required detailed information about the local behavior of the exact so- 
lution. In two dimensions, this behavior can be considerably more complicated 
(see, e.g., Shih and Kellogg [15]). 

Finite difference schemes for problem (1.1) which are GUC have been exam- 
ined by Emel'janov [2], Hegarty [5], and others. These schemes are, in general, 
variations on Il'in's scheme [7], which is essentially O(h 1/2) in the discrete 
L' (Q) norm. However, theoretical finite difference convergence results have 
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been obtained only for schemes which satisfy a discrete maximum principle. In 
the present paper, a difference scheme is analyzed by finite element techniques 
and is not required to satisfy a discrete maximum principle. Numerically, our 
method appears to be only a slight improvement on Il'in's scheme (see Hegarty 
et al. [6]). However, by employing the same finite element framework as de- 
scribed in this paper, a family of difference schemes have been derived, of which 
some are significantly more accurate in numerical tests (see Hegarty et al. [6]) 
than Il'in's scheme. 

A conventional Lax-Milgram approach requires the bilinear form to be both 
coercive and continuous. Although it is easy to obtain coercivity uniformly in 
e (see Theorem 3.1), it does not seem possible to organize the relevant norms 
in such a way as to obtain a satisfactory upper bound for the bilinear form. 
Consequently, our analysis is considerably different from that of the standard 
finite element approach. A preliminary version of this analysis, which proved a 
weaker result, was given in [16]. 

Our finite element method is shown to be globally uniformly convergent, in 
an energy norm, when the coefficients a' in (1.1) are assumed to be bounded 
away from zero. To get sharp bounds on the solution u of (1.1) and on its 
derivatives, we also assume that the data is sufficiently smooth and satisfies cer- 
tain compatibility conditions (see ?2). This effectively eliminates the possibility 
of interior layers, but boundary layers may still appear at the outflow boundary. 
We believe that the insight gained in the analysis of (1.1) will be helpful in 
the study of elliptic problems whose solutions exhibit more complex behavior. 
We know of no other method for problem (1.1) which has been proven to be 
globally uniformly convergent in an energy norm. 

2. THE CONTINUOUS PROBLEM 

We begin with a definition of the set Ckia (Q). 

Definition. For each integer k > 0, a function w(x, y) is in the set C a(U), 
where U c 912, if w(x, y) E CO(U) and if on U all the derivatives of w (up 
to and including order k) satisfy a H6lder condition of order a E (0, 1), viz., 

max sup lDfw(x, y) - Dfw(x', Y') < M 
1fl_ k (X,y), (x' ,Y')EU ((X - X1)2 + (y _ y1)2)a/2 - 

for some constant M, where DA is the usual multi-index notation for deriva- 
tives. 

In order to guarantee that the solution of problem (t, 1) is sufficiently smooth 
for our purposes, we impose the following conditions on the data: 

(2.1) al, a2, a0, f E C0 a(Qi) nC2Oa(Q), 

(2.2a) g = 0, 

(2.2b) f0 0) = f(l, 0) = f(, 1) =f(l, 1) = 0. 
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Ladyzhenskaya and Ural'tseva [ 10, p. 11 1 ] show that the problem 

Lu=f onD, u=g on0D 

(where D is a region possessing a smooth boundary AD), has a solution in 
Cka (D) if the Poisson equation 

Au=f onD, u=g onOD, 

is solvable in Ck, (D). Volkov [17] gives necessary and sufficient conditions 
for the solution of 

Au=f one, u=g onaQ, 

to lie in Cka' (). Combining Ladyzhenskaya's continuation argument with 
Volkov's result, we obtain 

Theorem 2.1. If the data in (1.1) satisfies (2.1), (2.2a), and (2.2b), then there 
exists a unique solution u(x, y) to (1.1), and 

U E C2&-(Q) n C4'a42). 

Remark 2.2. There is no loss of generality in imposing homogeneous boundary 
conditions, since the general inhomogeneous case is easily reduced to this (see, 
e.g., Ladyzhenskaya and Ural'tseva [10, p. 111]). However, to do this, we need 
g to be C2, on the four sides of Q; furthermore, at the four corners, the 
compatibility conditions (2.2b) will involve g and some of its derivatives (see 
Volkov [17] for details). 

The problem satisfies a weak maximum principle: 

Lemma 2.3 (Gilbarg and Trudinger [4, Theorem 3.1]). For allfunctions w (x, y) 
E C2 (Q) n CO(), if w > 0 on ail and Lw > 0 on Q. then w > 0 on Q. 

For the sake of clarity, we will restrict our attention in this paper to the case 
where 

(2.3) ad is constant on Q. 

The case of variable a has been outlined in [13]. 

Note. Throughout this paper, we shall use C (sometimes subscripted) to denote 
a generic positive constant independent of e and of the mesh. We also assume 
that conditions (2.1), (2.2), and (2.3) are satisfied. We shall use u(, ) to 
denote the solution of (1. 1). 

Lemma 2.4. The following estimates hold: 
(a) Iu(x,y)?<C(l-e-2a(l-x)lg) on K2, 

(b) I u(x, y) I < Cx on Q. 
Proof. (a) Use the barrier function q(x, y) = C(1 - e-2a'(1-X)16) 

L(A ? u)(x, y) = 2a 2Ce-le-2al(l-X)/6 + Ca0(1 - e-2a1(l-)/X) f 

> 0 for C sufficiently large. 
Thus, lul ?< b by Lemma 2.3. 

(b) Use the barrier function q(x, y) = Cx. O 
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Note that this lemma implies that Ilulo_ < C. 

Corollary 2.5. We have 
(a) jux(l, Y)j < Ce-' for 0 < y < 1, 

(b) lux(0,y)l<Cfor 0<y <1. 

Proof. (a) Use 

lux(1, Y5 A 1im u(x, y) - u(1,5 y)| 

< lim C(l 
- 

e-2aj(l-x)/c) -1 

x 1- 1-x C 

(b) Similarly, 

jU X(05 A~ = |lim U(X, y) - 
U,(?, Y) < C. o 

Lemma 2.6. The following estimates hold: 
(a) Jux(x, Y)j ? C(1 +e-Ie-a1(1-x)le) on 
(b) luy(x, y)I ? C( + -Ie-a2(l -Y)/8) on 

Proof. (a) We have L(ux) = fx - (ao)xu, since a' is constant. Consider the 

barrier function b(x, y) = C(l + e le al(1 x)/e); then 

L( -? ux)(x y) =Cao(1 + 1e -a, (l-x)/e) ? (fx - (a0)xu) ? 0 

for C sufficiently large. Since u - 0 on OQ, ux(x, 0) = ux(x, 1) = 0 for 
0 < x < I. Using Corollary 2.5, we obtain (q$ ? ux)(x, y) > 0 on O Q. Now 
apply Lemma 2.3 to obtain Ijux < q on Q 

(b) follows similarly. o 

Lemma 2.7. There holds 

(a) - 6uxx + al UX < C on Q., 
(b) l-euYY +a2uyl<Con i?. 

Proof. (a) Let w - -eu~x + al I u. On the two sides y = 0 and y= 1 of Q. 
w-- 0. On the other sides x = 0 and x = 1 of Q. uYY = uY = u =0. Thus 
from Lu = f and Theorem 2.1, we get w = f on this pair of sides. Hence 

Iw I < C on OQ. From Theorem 2.1, w E C a(Q) n C2 
a (Q), so we can apply 

Lemma 2.3 to w. We have 

Lw= - eAw + aiwx + a2wY + a0w 

= - e(Lu)xx + a1 (Lu)x + e(ao)xxu + 2e(ao)xux - a, (ao)xu 

= - ef+ + alf+[(ao)xxu + 2(ao)xux] - al(ao)xu. 

Hence, ILw ? C, using Lemma 2.6 and jul < C. Use the barrier function 
0= C to finish (note that ao > 0). 
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(b) We have -euyy + a2uY = f + euXX - al UX . Using (a), we are done. 0 

Remark 2.8. For our main convergence result, Theorem 3.2, the only bounds 
we need from this section are 

Ilul100 ? C, 

j ux(x Y)Idx <C for ally, 

| uy(x , y)l dy < C for all x , 

I-UXX +alUxI<C inQ. 

I-euyy+a2uyl<C inQ. 

Thus, our arguments above may assume more differentiability of u(x, y) on 
Q than is necessary in practice. Further evidence of this has been supplied by 
numerical experiments; see Remark 3.3. 

3. DIsCRETIZATION OF THE CONTINUOUS PROBLEM 

A weak formulation of problem (1.1), with homogeneous boundary condi- 
tions, is: 

Find u E H~l (Q) such that 

B(u, v) (euX, vX) + (euy, vy) + (da Vu + aou, v) 

(3.1)~~ ~ ~ (of, v ) for all v E Hol (Q), 

where (., .) denotes the usual L 2(Q) inner product. 
We will discretize this weak form by means of a finite element method. Let 

N and M be two positive integers. Let h = I/(N+ 1), and set xi = ih for i = 
0, 1, ..., N+1. Let k = l/(M+l), andset yj =jk forj = 0, 1,..., M+1. 
We define a set of trial functions {I"i (x, y) :i = 1, ..., N; j = 1, ..., M}. 
The trial (test) space is the linear span of these trial (test) functions and will be 
denoted by S (T) . Let 

Uh (X, y) = EUt 
h 

'j(X, y) 
i, j 

be our finite element approximation to u(x, y). 
The nodal values {u h j} are determined from 

(3.2) B(u hz) =(f, v) for all V E T. 
where 

N M 

B(v, w) _ e(Vv Vw, 1) + (divx + d2vy , W) + hk E (aovw)i1 
i=1 j=1 

and al, a2, and f are piecewise constant approximations to al, a2, and f, 
respectively. Since we are interested in the case of constant a', we simply have 
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a, and a2 a2. We will use the notation zi z(xy), for various 
functions z(., .). 

We define the energy norm by 

(3.3) 1HvIHI2 8(VX x) + 8(Vy y)+hkE i (Q)C(Q). 
ij 

Theorem 3.1. For all v E Ho (Q) n Co(Q), we have B(v, v) > ClIIIvIII2 

Proof. Since a is constant, (a vX, v) = (al, (v /2)x) = 0. Thus, B(v, v) = 

e(VX, vX)+e(vy, vY)+hk ZE j(aov2)i j, and the result follows from ao > 0. 0 

Non-self-adjoint singularly perturbed problems such as (1.1) are usually 
solved using Petrov-Galerkin methods (i.e., one chooses S $ T). However, 
in this paper, we will examine a Galerkin method (i.e., S = T), where the trial 
(and test) functions are the tensor product of one-dimensional exponential trial 
functions. That is, for i = 1, ..., N and j = 1, ..., M, 

(3.4a) b' (x, y) = i(X)o (y), 

where each / (x) satisfies 

(3.4b) -8(0')xx + a, (0 i)X = ? on (0, l ) \{xl ..., 5XN}5 0i(X;) =ij X, 

and each qj (y) satisfies 

(3.4c) -e(bj)YY + a2(0b)y = 0 on (0, l)\{y1, ... YM}1 0bj(Y) =6ji 

Note that ffl q' i dx dy = hk for each (i, j) . 

Our Galerkin finite element approximation uh satisfies 

(3.5) W~(U 
h ii) = (T xi) for alloXJE S, 

where f is chosen so that If - 71 < C(h + k) in Q. From Theorem 3.1, it 

follows that uh is defined uniquely by (3.5). 

Remark. A possible choice for f is obtained by taking (f, qit') _ hkfi j. The 

finite difference scheme (3.5) for this choice of f is written out explicitly in 
Hegarty et al. [6]. Various choices for the piecewise constant functions al, a2 
(in the case of variable a), and f are also examined in [6]. When these piece- 
wise constant functions are specified, all the integrals in (3.5) can be evaluated 
exactly, so effectively we are specifying a quadrature rule. 

Let u1 = EZ' u(xi, yj)' 'j(x, y) be the function in S which interpolates 
to u at the nodes. From Theorem 3.1, 

(3.6) C "'"' I U- < B(u-u h, u-u ) B(u-u h, u-u1)+B(u-u, u1-u ) . 

In the next two sections we will show (Propositions 4.2 and 5.6) that 

(3.7) B(u - u, u - uh) < (Clhk/2) Z(u - u h)2 + C(h + k) 
i,j 
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and 
h h 2 

(3.8) B(u - u , u - us) < Ch + (C1/4)IIu - u II 
provided that C2 < k/h < C3. 

Combining (3.6), (3.7), and (3.8) shows that the Galerkin method described 
above is uniformly convergent in e in the energy norm I I*. More precisely, 
we have 

h h 2 
Theorem3.2. Let u beasin (3.5). If C2< k/h < C3, then IIIu-u 11? < Ch112. 

Remark 3.3. Combining Lemma 5.4 below with Theorem 3.2 shows that 

ju - u 1?L2(CI) < Ch 12. We have observed this rate of convergence in sev- 
eral numerical experiments. See Hegarty et al. [6] for details. This indicates 
that the above error estimate is sharp. The same rate of convergence has also 
been observed in many problems which do not satisfy condition (2.2b). 

Remark 3.4. Consider the one-dimensional problem -eu" + au'= f on [0, 1, 
where the functions a and f are constant and u(O) = u(l) = 0. Using the 
exponential elements (3.4b), it can be shown that, for the analogue of (3.5) 
applied to this problem, tIIu - uII1' = (f/a)e1/2(p cothp - 1)1/2, where II 111' 
is the one-dimensional analogue of III III and p _ ah/(2e). This implies 
that, uniformly in a, IIIu - u, II is 0(h1/2) but not 0(h') for any a > 1/2. 
Hence, the optimal order of accuracy attainable using the trial functions (3.4a) 
is achieved in Theorem 3.2. 

4. QUADRATURE ERROR 

In this section we will derive (3.7). We have 

B h 
u 

h 
-~, 

h -h h 
B(u-u, Us-u ) = B(u ,u-u)-B(u , u-u) 

h h h 
=B(u, us-u )-B(u, u1-u )+(f -f, U1-u 

(from Lu = f and (3.5)) 

=hk (aou(ui- u h))i h-(aOu a u u ) 
I 

I 

+(f -T, u-auuu 

Since (u)ij = (u1),j, we get 

B(u-u h,u -uh 

(4.1)~ ~ 1 
= (u - u h)i jfhk(aou)i - (a u , oisj) + (f - oi, ij)}. 

i=1 j=1 

The bounding of (4.1) is organized into the following two results. 
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Lemma 4.1. For each i and j, 

Ihk(aou)ij - (a0u, qi,") + (f - f, ki")l 
< Ch f uxj + Ck f uyI + Chk(h + k), 

where Qi ( j= - 1i-, Xi+l) X (Yj-1, Yj+b)* 

Proof. Since if -f1< C(h + k), we have 

I(f - f, Qb"')I < C(h + k)(1, q$"') = Chk(h + k). 

To bound the remaining terms, we will simply use integration by parts appro- 
priately. Let w(x, y) _ (aou)1 j - (aou)(x, y) . Note that w j = 0. Now, 

hk(a0u)1jj-(a0u, q'")=(w, 50') (since (1, q1"J)=hk) 

= f|i; {i~;~ 4w' dx + f;1+i'W dx} dy 

f: w(x x jy) _ q(t(y)dt 
xi- 

x~l ~lwx(x y) 
Y 0" 'i(t,5 y) dt dx 

+1 Wx(x Y) k (ty)dtdx} dy, 

using integration by parts. The first term in the above right-hand side is 

t 

{t 
~w(xj y)Oi'i(t 5 y) dy + w(xi, Y)0 (t, y)dy} dt 

t=xI_ i =Yj- i =YJ 

f:X_ {J- , WY(xi Y) q'j"(t,s)dsddy 
t=x_ I Y=Y,_ i s=Y_ 

+ W 
wy(xi )X 0 (t ,s) ds dy dt 

using w =O. Now Io" j <1. Hence, 

hk(aou)ij - (a0u, c' j))I <? Ch f wj + Ck ff jwy 

- Ch f J(aou)xj + Ck f (a0u)YI 

< Chk(h+k)+Chff Jux+ CkfJ uYj. 
1,] 1,] 
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Proposition 4.2. We have 

N M 

hB(u-u, u - )| < (Cihk/2)EE u-uh2 j+C(h+k), 
i=1 j=1 

where C1 is the constant appearing in Theorem 3.1. 

Proof. For each fixed y, let Qx (y) fXi+ I u (x, y) I dx . Then 

N1 
x ?(y) < 21 ux(x y)ldx < C 

i=l1x=0 

from Lemma 2.6. Analogously define Oy (x) . From (4.1) and Lemma 4.1, we 
have 

-B( -uh, u Uh 

< C u -uh li j {h f| 6x(y) dy + k | -i Oj (x) dx 
i, j Y=Yji =x1-x 

+ Chk(h +k)}. 

Using the arithmetic-geometric mean inequality, 

ZI u - uhli JYj+ 6x(y) dy 
i 'I~~~~~~~~~~~~~~ i, j Y=Y,- i 

h\2=YJ+1 o 

< (Clk/6) E lu - uh Jj' + ckf' (| i(Y) dy. 
i, j i,=j 

< y(C(kd6))1u-u ? h 

i, j 

+ Ck- 
I 

(|+ 1 2dy) (| (,i(Y))2 dy) 
i, j Y=Yj- =Y, I 

M y N1 
< (C k16) E I u - u hi2j + CE |O (i(y)) 2dy. 

i, j j=l Yl il 

Since Ox (Y) > O., we have j:N ,(oix(y)) 2 < (:N1 ox (Y)) 2 < C. Thus, 

h E U - U 
hi Yj+ 

(lx(y) dy) < (C hk16) E u - u h 2 
+ Ch . 

i, j Y=Y,_s i, j 

Dealing similarly with the other terms yields 

|B(u - u, ui - U)| < (Clhkl2) 1: ju -u h12j + C(h + k). 1 
i, j 
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Remark 4.3. The only properties of the trial functions needed to attain the 
bounds in this section are 

0 q(x, y) = 0q(x)0j(y), 

lo' (x)I ' 1, li(Y)i < 1 

kX+ dx=h and |j1; dy=k. 
x=xI_ I Y=Y,_ I 

5. INTERPOLATION ERROR 

In this section we will derive (3.8). We initially bound the error u - u1. 

Lemma 5.1. If the trialfunctions are chosen as in (3.4), then 

(a) I(u - u1)(x, yj)I < C(x - xi-1)(I - e-a,(xI-x)/e) on each line segment 
[x1 ,Xi] x{Yj, 

(b) I(u - u1)(xi, Y)I < C(y - y-11)(l - e-a2(Yj-Y)/) on each line segment 
{Xi} X [Yjx l 

Yja- 
(c) maxQ I(u - u1)(x, y)I < Ch(1 - eah/e) + Ck(1 - e a2k/e) 

Proof. Fix i and j. 
(a) We will confine ourselves to the line segment [xi-1, xi] x {yj}. Set M1 z 

-ezXX + aIzX . Then M1 satisfies a maximum principle on [xi-1, x] x {y1} . 
On (xi1 X, X1) xY 

Ml(u - u) = -8uXX + aIuX < C by Lemma 2.7. 

Use the barrier function b(x) = C(x - xi-1)(1 - e a, (X, x)/e) . Then 

M1 = Ca1(1 + e-al (Xl-X)/e) > IM1(u - UI)I 

for C sufficiently large. Hence, Iu - u1 < b on [xi-1, xJ] x {yj}. 
(b) is proven similarly. 
(c) We work on the square Qi1j = [xi_, 5xi] x [yj1, yj]. On the open square 

Qiji 5 

IL(u - u1) = If - a0uij < C. 

We employ the barrier function 

b(x, y) C, (x - x )(1 e-a (x -x)1") + C2(y - y ) )(1 - e-a2(YY -Y)/e) 

where C, and C2 are chosen sufficiently large. By (a) and (b) above, q > 
Iu- uI on 0Qi j . We also have 

Lo = ao0 + Ca1 (1 + e aj(X, x)/e) + C2a2(1 + e a2(Yj Y)/) 

> IL(u - uI)j. 

Since L satisfies a maximum principle, I u - u1I < q on Qi j .o 
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Theorem 5.2. If the trial functions are chosen as in (3.4), and C2 < k/h < C3, 

then 1jju - u,1jj < Ch112 

Proof. From Theorem 3.1, 

C111lu - U,1112 < B(u-uI, u- uj) 
=ce(V(u - uI) * V(u - uI), 1) + (d * V(u - u1), u - u1). 

Integrating by parts, 

C111lu - U,1112 < (-,eA(U - Uj) + a' * V(u - uj) , u - uj)^ 
1 N 

+ ]y | (u - uI)(xi , Y)9x ((uI)x)(y) dy 
Y=0 i=l 

1 M 

+ f Z (u - uj)(x, yj)5I ((u1)y)(x) dx, 

since u E C2(Q), where ^ denotes that integration is over Uij Qij (defined 
in the proof of Lemma 5.1) and 

Sx (w)(y) w(x, jy) - w(x-i, y), 

9y (w)(x) w(x, y<) - w(x, Yi). 

By our choice of trial functions, 

(-eA(u - u1) + ad V(u - u1), u - uj)fl 
= V(f -a0u, u - u )-, < CHu - u,1H0, 

< Ch (by Lemma 5.1, using C2 < k/h < C3). 

For (x,y) E (x i1, xi) x (O, 1) andall v eS, 

VX = (v(X , y) - 
v(Xi1, Y))qI j (x) 

Now, setting p1 = a1 h/c, 

J'TX u) X) (Y) I = I(u1(x i+1, y) - u1(xi Y))q$+ (X+ ) 

- (U,(xi, y) - uI(xi-1 5 Y))xX i )I 

= a1(1 - e'P)) '1 I(u,(xi+, jy) - u1(xi, y))e P' 

- (UI(Xi, y) - 
uI(xi-1 5 0))l 

i+1 + P since c/x (xi) =a e- /(1 - eP) and eo (x ) = a1/( - erP'), as can be 
computed from the definition of q'(x) . Hence, 

XIX ((u?)x)(y)I < a1(I - e- PI j(uI(xi+1 , y) - uI(xi Y)l 

+ IuI(xi, Y) - uI(xi-1 5 Y)D 
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Note also that for y E (yj_ I, Y;) 

u1(xi, y) = u1(xi, yj)qj(y) + u1(xi, Yj-1)qj- I (Y) 

= Ui 1jqj(Y) + u1 
j-1qj->1(Y) 

Thus, using I jI < 1 for all j, 

1N 

y 1 (U 
- 

U,- u i)(xi, Y)X,((u1)x)dy 

N+1 

< CIju - U,11jj(l - e pl)Y1 max E juij - ui- jI 

= C(l - e- 1 'Iu - u I0 max fux (x , yj) dx 

< C(l - ePl Iju - u1,II, maxf Iux(x, yj)I dx 

< C(l - e P'1 u - u1I (by Lemma 2.6) 

< Ch (by Lemma 5.1, since C2 < k/h < C3). 

It follows that CJ I I u - uII 12 < Ch. o 
Remark 5.3. In the classical case e = 1 , an inspection of the above proof shows 
that by writing 

(u1(xi+l , y) - u1(xi, y))e Pt - (uI(xi, y) - UI(xi1, y)) 

- -(u1(xi+l , y) - u1(xi, y))(l - e-') + 0(h2) 

we can improve the above result to 
2 ~~~~~~2 

IIIU - UIlll2 < CIJU - U,110 < Ch. 

We also require suitable bounds for u h(x, y) and its first derivatives. First 
we define the continuous and discrete L2 norms 

(5.1a) Ilvj12 = (v, v) for all v E L2(Q), 
N M 

(5. lb) lvII]V = hkZ~ 1 V2 for all v E S. 

i=1 j=1 

A useful relationship between these norms is given by 

Lemma 5.4. We have l1V ii < C1iV Iid for all v E S. 

Proof. Let v E S. Then =Eij Vijoaso 

||V || = E E | | [Vi- I j_, I + Vi-I jo 
+=1 1 1- 

+v111q$I"'' 
j 

I+ v11q$"']2dx dy. 
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Note that 0 < Y"j < 1 for all i and j and (a+b)2 < 2(a2+b2). Consequently, 

2 2 6 2~ 
||V|| < 16hkEvi j = 16||v|ld. 

i,j 

The next lemma relates the L1 and L2 norms of the derivatives of our trial 
functions. 

Lemma 5.5. If the trial functions are chosen as in (3.4), then 
I 1 

1121/ / 
j| j vIj dx dy < Ch"2(1 - e-')% 9 12v,1 for alv ES, 

where p1 = a1h/e. 

Proof. For (x, y) E (xi 1, Xd x (O, 1) and v E S, 

(5.2) vx (x, y) = (v(xj , y)- V(Xi, Y))Ox(X) 

We then have 

flo ;lx l dx dyv= E (f| lc+X ld) (fyOIv (xoy) - v(xii gY)IldY) 

= 

1 
1/2 (p(|(f 

IV(Xi ' Y) - V (X 

-)I 

d) 1/2 

{N+1 I / N1/12 / 

< ts,1) t Iy V (xi 5 Y) - 
V(Xi-l Y)I dy) 

(using the discrete Cauchy-Schwarz inequality) 

< h -1l/2 
( I lV (Xi 5 Y) 

- V (XtXy 
2 

dy) 

h-h/2(2e/a,)112(1 -e -p)1 2(1 +e P1) 

~ N+1 jxI($ ) d I vx, )-v x 1 ) d ) 1/2 
x (E| ((>x2dx| IV(Xi - V(Xi~~ 2dy) 

since for each i, 

| (OX) dx = (a1/2)(1 +e-P)(1 -e-'['. 

The result follows, using (5.2). 0 

We are now ready to derive (3.8). 

Proposition 5.6. If the trial and test functions are chosen as in (3.4), and C2 < 

k/h < C3, then 
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Proof. We have 
h h hi B(u-u , u-u) = (eV(u-u )*V(u-u), 1)+(aV(u-u ), u-u1). 

We will bound these two terms separately: 

(eV(u - u)h V(u - UI), 1) < ( 1/2IV(u - Uh) )(e /2IV(u - u)II) 

< Ch1/2(e61/2IIV(u - uh)II) (by Theorem 5.2) 

< Ch + (Cl/12)eIIV(u- )1|| 

Also, 

I(a(u - uh)x u - u) = I(a(u - u)xu - u) + (al(u1 - uh)x, U - U1)I 

= I(al(uI-Uh)X, U-U1)I 

? CI|u - UIIIjI (uI - Uh)xILl(Q) 

< Ch1/2(1 - e-PI)3/2e1/2 lV(U h IIVu -U )II 
(by Lemmas 5.1 and 5.5) 

< Ch 1/281/2IIV(u - Uh)II 

< Ch 1/e1/2(IIV(U - u)II + IIV(U - Uh)I) 

< Ch + (C1/12)81V(u - uh)II2, 

using Theorem 5.2 and the arithmetic-geometric mean inequality. 
The term (a2(u - u )y, u - u1) is bounded in a similar manner. 0 

This completes the proof of Theorem 3.2 
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