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A FINITE DIFFERENCE 
DOMAIN DECOMPOSITION ALGORITHM 

FOR NUMERICAL SOLUTION OF THE HEAT EQUATION 

CLINT N. DAWSON, QIANG DU, AND TODD F. DUPONT 

ABSTRACT. A domain decomposition algorithm for numerically solving the heat 
equation in one and two space dimensions is presented. In this procedure, 
interface values between subdomains are found by an explicit finite difference 
formula. Once these values are calculated, interior values are determined by 
backward differencing in time. A natural extension of this method allows for 
the use of different time steps in different subdomains. Maximum norm error 
estimates for these procedures are derived, which demonstrate that the error 
incurred at the interfaces is higher order in the discretization parameters. 

1. INTRODUCTION 

There are two motivations for the use of domain decomposition in the pro- 
cesses defined and analyzed here. First, domain decomposition is a natural way 
to develop methods for numerically approximating solutions to partial differen- 
tial equations on parallel computers. Second, even on sequential computers, it 
is useful to be able to use different time steps on different subdomains. 

A natural way to solve partial differential equations in parallel is to divide 
the domain over which the problem is defined into subdomains, and solve the 
subdomain problems in parallel. The major difficulties with such procedures 
involve defining values on the subdomain boundaries and piecing the solutions 
together into a reasonable approximation to the true solution. It is almost a 
side effect of dividing the problem into subproblems that one can approximate 
the parts of the solution with greater independence, and this leads naturally to 
methods that allow different time steps on different subdomains. 

Much of the work on domain decomposition has been directed at elliptic 
equations (see, for example, [1, 2, 4, 6] and the references therein). Such al- 
gorithms could quite easily be applied to parabolic equations, giving domain 
decomposition iterative methods for the solution of the equations at each time 
step. Another approach has been given in [5] and adapted in [7, 8]; these 
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methods use overlapping subdomains to approximately solve the implicit equa- 
tions arising from a standard finite difference discretization. 

In this paper, we present a finite difference method which utilizes domain 
decomposition to allow us to divide the work of solving the heat equation. The 
method differs from the methods mentioned above in that it uses nonoverlap- 
ping subdomains and is noniterative. Our purpose here is to introduce and 
analyze a fairly simple algorithm in one and two space dimensions. We restrict 
attention to intervals and squares, and derive maximum norm error estimates. 
In a separate article [3], two of the authors develop Galerkin formulations of 
analogous algorithms, and give energy-norm error estimates. 

The rest of this paper is organized as follows. In the next section, we define a 
domain decomposition process for a one-space-dimensional problem and prove 
a convergence result for it. An interesting aspect of the error bound is that 
the error associated with the interface between the subdomains is higher order 
in the discretization parameters; this reflects the fact that this truncation error 
is confined to a small set. In ?3, we give a straightforward generalization of 
the one-dimensional results to two space dimensions, state an error bound, and 
remark on further extensions. 

2. ONE-SPACE-DIMENSIONAL DOMAIN DECOMPOSITION 

Let u(x, t) be the solution of the heat equation 

(1) At - OU2 = X E (0, 1), tE (0, T], 

(2) U(X, 0) = u?(x), X E (0, 1), 

(3) u(0, t) = u(l, t) = O. t E (O. T]. 

2.1. Basic 1-d method. For simplicity, we will consider first a numerical method 
which involves decomposing (0, 1) into only two subdomains, (0, x-) and 
(X-, 1). 

For a positive integer N, let h = 1/N, and take xi = ih, i = O,...., N. 
Assume that x and N are such that T = XK > 0 for some integer K. A 
related parameter is H > 0, which is an integral multiple of h and does not 
exceed min(Y , 1 - T). Take At = T/M, where M is a positive integer, and 
let tn = nAt. For a function f(x, t) defined at mesh points (xi, tn), let 

= f(xi, tn). Define the difference operators 

(4) 
f 

f~t)= f(t)- - (t-At) 
(4) O~~~~t, At f(t) At 

and 

(5) 2 hf(X) - f(x - h) - 2f(x) + f(x + h) 

We will refer to points (xi, tn ) as boundary points if i = 0 or N, or if 
n = 0. Similarly, we refer to them as interface points if xi = x-and n > 0. 
Otherwise, they are interior points. 
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The numerical approximation U n to u' is defined by 

(6) U' = u7 at boundary points, 

(7) at At - _-X2 n-Hui = 0 at interface points, 

(8) at AtU7- ax2 h U =0 at interior points. 

This numerical approximation is given by an explicit forward difference formula 
on the interface, while in the interior of the subdomains it satisfies an implicit 
backward difference equation. One would expect that there will be a constraint 
of the form 

(9) At < IH2 

but that At will not be constrained by the size of h ; this turns out to be correct. 
Notice that in advancing the solution from time level t = tnl1 to t = tn one 
first computes the value of U at the interface. This step requires a small 
amount of information from each subdomain. After the interface value has 
been computed, there are two completely separate backward difference problems 
to solve, which can be done in parallel. 

The approximate solution U satisfies the following a priori error estimate: 

Theorem 1. Suppose that I 21 2U/0t2 I and ,14u/OX4I are bounded by CO on 2 1~~~~2 
[0, 1] x [0, T] . Suppose also that At < H2/2. Then 

(10) maxJu(xi, tn)U CO T(h +H' +?At). 

Since the difference operators used to define U are second-order-correct in 

space and first-order-correct in time, the result is perhaps surprising only because 

of the presence of the H3 term. 

Asymptotically one would expect to choose At, h, and H so as to balance the 
2 , 3 2) terms in (10); i.e., At hl H . If such choices are made, then At = o(H 

and (9) is automatically satisfied in the range of small errors. 
The proof of Theorem 1 relies on the following maximum principle. 

2n Lemma 1. Suppose that At < H /2 and that z7 satisfies the following relations: 

(11 l ) Z7 < 0 at boundary points, 

(12) at n AtZI 2 HZi ?<0 at interface points, 

(13) at At Zi- ax hZin < 0 at interior points. 

Then, for each i and n, 

(14) Z < 0. 

Proof of Lemma 1. Note that (14) holds for n = 0. Now suppose the conclusion 
holds up to some level n - 1 . Then the interface value ZK < 0; it is bounded 

above by an average of values of z7 l, and the weights in the average are 
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nonnegative because of the constraint on At. This observation is, of course, just 
the usual one used to prove the maximum principle for the explicit difference 
formula for the heat equation. 

Next, zi < 0 at interior points by the maximum principle for the backward 
difference equation applied to the two subdomains. Note that this does not 
require that At be constrained in any way based on the size of h. 0 

Proof of Theorem 1. Let ei = U7i - U[i . Then 

(15) en = 0 at boundary points, 

(16) OA~eln 2 n-I 2 (16) to ^ ein _ t3O Heil = K7n(At + H ) at interface points, 
n 2 n2 

(17) at Atei- ax, hei = K7n(At + h ) at interior points, 

where 

(18) IK7n1 < C0. 

Let 00 = ON = 0, and suppose that for 0 < i < N, 

(l 9) ax,h i h 1. 

Then 

(20) 60 = (x(1 - xi) 

and, in particular, 

(21) ? < Oi < 

Choose i i = 0, ...,N to satisfy f80 = f8N = 0 and 

(22) 2 0 <i<N, i5K, 

(23) Ax,=HfK 1. 

Then 

(24) Hi(-x-), X<xi<XK=l 

H(l - Xd)Y XK <Xi < 

hence, 

(25) 0 < fi < H/4. 

Let 

(26) Xi= Co[Oi(At+ h 2)+,6i(At+2H2)] 

and set 

(27) Zi = e-X. 

Since Zi satisfies the conditions of Lemma 1, we see that z7< 0; hence, 

(28) en <X. 
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n Similarly, by taking z' = -e' - X, we see that -e' is also bounded above by 
Xi. Hence we conclude that 

(29) le7 1 < Xi. 

Finally, by the construction of Xi we see that 

(3?<Xi < C0[(At+ h )?H(At + H2)] 

< ( Co(h2 + At + H3). D1 

Note that x can vary with N, since the exact value of x does not change 
the error bound. 

2.2. Spatially varying time and space steps. Now suppose that Ati > 0 is a time 
step associated with the interface and that AtL and AtR are obtained from Ati 
by dividing it by two, possibly different, positive integers, mL and mR. To 
advance the solution from (n - 1 )Ati to nAt1, first take an explicit step of the 
form (7) using Ati and H. Then on the left and right subdomains take mL 
and mR steps of the backward difference equation. The boundary values on 
the interface at intermediate times are obtained by linear interpolation of the 
interface values. 

We can use different h's on the left and right of x, but the H for the 
interface will be assumed to be an integral multiple of each. Denote by hL 
and hR the space steps in the left and right subdomains, respectively. If we 
let COL and COR be bounds for 1I02u/Ot2 I and 104U/OX4I on the left and 
right regions and let C1 be a similar bound for Ix - YI < H ,then we can get 
an error bound analogous to that in Theorem 1. 

Specifically, define 

(31) 4(X) = COL6L(X)(AtL + hL) + COROR(x)(AtR +hR) 

+C/fl(x)(At+H ), 

where OL is a continuously differentiable function, defined by OL(O) = 6L(1) = 

0 and 

(32) -0(x)={ 1, 0<X<X, 

OR is defined analogously, and /1(x) satisfies (24). Note that OL and OR are 
nonnegative functions whose sum is bounded by 2x(1 - x) < [ . Then, by an 
argument that is very similar to the proof of Theorem 1 we see that 

(33) 1 U7-u1 ? (I I L +R + AtR + AtL+HAt). 

One point in the proof of (33) that we found to be subtle is the way interface 
values at intermediate times are viewed. Computationally, the recipe was given 
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in the first paragraph of this section; advance the solution by At, and linearly 
interpolate. However, if one involves the interpolant in time of the true solution 
u in the analysis, there are problems with the truncation error at interior points 
next to the interface. The solution to this difficulty is very simple: one views 
the intermediate-time interface values as having been computed by a first-order- 
correct explicit scheme. The maximum principle used is stated as Lemma 2; its 
proof is very similar to that of Lemma 1. 

Lemma 2. Suppose that z is a grid function defined on the (hL, AtL) and 
(hR, AtR) grids of the left and right regions, respectively, including those grid 
points on the boundary and interface. Suppose that z < 0 at all boundary 
points, and that at tz - O2hZ < 0 at all interior points, with At = AtL or 
AtR and h = hL or hR, as appropriate. Also suppose that for t = nAt1 and 
1 <m <ML 

(34) z(Y, t + mAt L) -z( ) 
2Z( t) < 0; 

mAtLa- OHZ(~)O 

suppose the analogous inequality holds for mAtR as well. Then z < 0 at each 
grid point, provided At, < H2/2. 

Note that the approximate solution U satisfies (34), with inequality replaced 
by equality, when the linear interpolant is used to define values at t + mAtL , 

m= 1, ... , mL . 

2.3. Many subdomains. In ??2.1 and 2.2, we used only two subdomains; how- 
ever, the arguments employed are sufficiently simple that they can easily be 
extended to the case of multiple subdomains. Suppose that we use a single time 
step and a uniform mesh spacing h as in ?2.1. Suppose that 

(35) 0<H<TX <X2 < < Y < 1 - H 

are all multiples of h ; that is, x = jh = x for some j . Take Un to be defined 
as in ? 1 except that at each point x- we use an explicit difference formula for 
U at the advanced time level. It is clear that the analogue of Lemma 1 remains 
valid. This gives a bound very similar to that in Theorem 1. Specifically, with 
At < H 2/2 and CO as in Theorem 1, 

(36) maxJun -U1 C<0 [h + At+ 2JH(H +At)]. 

Unless JH is small, the interface error dominates this expression; but when 
only a few subdomains are used (that is, J is small), the interface error can be 
quite small. 
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3. TWO-SPACE-DIMENSIONAL DOMAIN DECOMPOSITION 

In this section, u(x, y, t) will be a solution of the heat equation on Q = 

(0, 1) x (0, 1). Specifically, u satisfies 

(37) at U-Au = O. (x, Y) E Q. t E (O. T], 
a t 

(38) u(x, O) = u 0(x), (x, Y) E Qo, 
(39) u(x, t) = 0, (x, y) E aQ. 

Here, Au = 02UftX2 +?02u/Dy2. 

3.1. A basic 2-d method. We start with a simple two-domain scheme. Take 

K21 = {(x, Y) E 0: x < x}, K22 = (x, Y) E Q: x < xI}. 

Let xi = ih just as in ?2, and let yj = jh, j =0 ...., N. Suppose that x and 
H are integral multiples of h , that 0 < x < 1 , and that 0 < H < min(Y, 1 -x) . 
In analogy with ?2 we will call a point (xi, y1, t') a boundary point if n = 0 or 
if (xi, yj) E OQ. Such a point with xi = x will be an interface point if it is not 
a boundary point. The remaining points (xi, y1, tn) are in (0, U 2) x (0, T] 
and are interior points. 

The values UC will approximate un7 - U(Xi, y1, tn). With the natural ex- 
tj i 

tension of the notation of (4) and (5), we define UC by the following relations: 

Un n 
(40) Utj = uj at boundary points, 

(41) OttUn - 92 HUn1 - O2 hUI'j = 0 at interface points, 

(42) Ot J _ -9 hUl' - O2hUi =0 at interior points. 

Notice that the computation of U along the interface x = x requires the 
solution of a tridiagonal set of equations; this is a small amount of work when 
compared to the work to solve the subdomain problems (42). The two subdo- 
main problems (42) are entirely separate, once the values on the interface have 
been computed. If we use the techniques of the proof of Theorem 1, we can 
derive an error estimate of the following form. 

Theorem 2. Suppose that 

12 u/Ot921, 10ult9tax2j and 2[10 u/Ox 1+10 u/Dy 1] 
12 

are bounded by CO. Suppose also that At < H 2/2. Then 

(4)nax 
un.Un. 

< CO [h2+ At + 2H(2At + H 2)]. 
(43) ma . 

U.- 

A proof of this theorem uses the analogue of Lemma I and even uses exactly 
the same one-dimensional functions 0 and fl as in ?2.1. The cross-derivative 
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term comes into the error bound because the spatial operator on the interface 
is evaluated at two different time levels. 

3.2. Spatially varying time steps. In this subsection, we consider the effect of 
using different time steps on the interface and the left and right subdomains. 
We do not discuss the changes that come about from changing the spatial mesh. 

Take At,, AtL, and AtR as in ?2.2; that is, for positive integers mL and mR , 
o < AtI = mLAtL = MRAtR. To advance the solution from (n - 1 )At1 to nAt1, 
first compute the interface values at the new time by solving the tridiagonal 
system (41), and interpolate linearly in time to obtain the interface values at 
the intermediate times. These interface values then decouple the subdomain 
problems; using them, one takes mL or mR steps to advance the solution at 
the interior points. 

Under the hypotheses of Theorem 2, one can prove the following error bound: 

(44) max U-u =(h2 +H+ AtL +AtR + HAtI). 

Here, as in ?2.2, the way that the intermediate-time interface points are 
viewed is important. The analogue of (34) in this context is (with At = mAtL, 

y=Ijh, t=nAt, O<m<mL) 

(45) atAtZ(Y, Y, t + At) - aX HZ(X, Y, t) - ay, hZm(X Y) ? 0, 

where 

(46) mM(Y5 y) = z(x, y, t) + L(Z(X, Y, t + At) - Z(X, y, t)). 

Note that U(x, y, t) satisfies (45) with equality instead of inequality, and u 
satisfies (45) up to a truncation error which is 6,(At + H2 + h 2). 

In ?2.2, the relation (34) made it immediately clear that if all the z's at 
time level t = nAt1 were nonpositive, then all the interface values at times 
t + mAtL were also nonpositive. However, (45) does not have the property that 
it gives z(x, Vy, t + At) as a nonnegatively weighted average of the other values 
involved. A way to see that z(x, y, t + At) < 0, provided z < 0 at t = nAt1 
and appropriate boundary conditions hold, is to extrapolate the change in z 
out to t + At1 and look at the difference equation satisfied by the extrapolated 
function. One can conclude that even after extrapolation the function is still 
nonpositive, and that implies that z(T, y, t + At) is nonpositive. Specifically, 
(46) and (45) give 

(47)Y)- ( 5 5t 2 2 
(47) m( Y) ('Y)- xHZ(X, Y5 t)O-yhZm(X, Y) < O. 

Since this relation gives an upper bound for 2m (T, y) that is a nonnegatively 
weighted average of the other values involved, it is easy to see that 2m(T5 Y) 
< 0, provided that z(x, jy, t) < 0 and the boundary values 2m(Y 5 0) and 
2m (Y 1) are nonpositive. To assure that the boundary values are nonpositive, 
we need more than the fact that z < 0 at boundary points. In our application of 
the maximum principle, z = -4 ? (u - U), a function which is both nonpositive 
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on the boundary and independent of time at each boundary point. Thus, we 
conclude that 2m(Y, y) <0 and in particular, this holds for m = mL, which 
gives the desired result. 

3.3. Remarks on extensions. It is straightforward to extend the two-dimensional 
results to allow for many subdomains, at least if one restricts attention to the 
case of dividing the square into vertical strips. The error estimate is very similar 
to that discussed in ?2.3, but it needs to be modified just as Theorem 1 was 
modified to get Theorem 2. 

The procedure and the error estimate of ?3.1 is clearly generalizable to n- 
dimensional space. The interface problem now involves the solution of an "el- 
liptic" equation on an (n - l)-dimensional domain. 
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