
MATHEMATICS OF COMPUTATION 
VOLUME 57, NUMBER 195 
JULY 1991, PAGES 73-108 

AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE 
STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. 

PART I: STABILITY AND ERROR ESTIMATES 

R. H. NOCHETTO, M. PAOLINI, AND C. VERDI 

ABSTRACT. A simple and efficient adaptive local mesh refinement algorithm is 
devised and analyzed for two-phase Stefan problems in 2D. A typical triangula- 
tion is coarse away from the discrete interface, where discretization parameters 
satisfy a parabolic relation, whereas it is locally refined in the vicinity of the dis- 
crete interface so that the relation becomes hyperbolic. Several numerical tests 
are performed on the computed temperature to extract information about its 
first and second derivatives as well as to predict discrete free boundary locations. 
Mesh selection is based upon equidistributing pointwise interpolation errors be- 
tween consecutive meshes and imposing that discrete interfaces belong to the 
so-called refined region. Consecutive meshes are not compatible in that they are 
not produced by enrichment or coarsening procedures but rather regenerated. 
A general theory for interpolation between noncompatible meshes is set up in 
Lp-based norms. The resulting scheme is stable in various Sobolev norms and 
necessitates fewer spatial degrees of freedom than previous practical methods 
on quasi-uniform meshes, namely O(T7 3/2) as opposed to O(T 2), to achieve 
the same global asymptotic accuracy; here z > 0 is the (uniform) time step. 
A rate of convergence of essentially o(T1/2) is derived in the natural energy 
spaces provided the total number of mesh changes is restricted to O(T7 1/2)I 
which in turn is compatible with the mesh selection procedure. An auxiliary 
quasi-optimal pointwise error estimate for the Laplace operator is proved as 
well. Numerical results illustrate the scheme's efficiency in approximating both 
solutions and interfaces. 

1. INTRODUCTION 

A common feature in dealing with degenerate parabolic equations is the in- 
trinsic lack of regularity of solutions across the interfaces (or free boundaries) 
which, in turn, are not known in advance. For the two-phase Stefan problem, 
for instance, the temperature 0 cannot be better than Lipschitz continuous and 
the enthalpy u (or energy density) typically exhibits a jump discontinuity across 
the interface. They satisfy the PDE 
(1.1) ut- div(k(6)VO) =f(0) in Q x (O, T), 
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subject to the strongly nonlinear constitutive relation 0 = fi(u), where /5 van- 
ishes on [0, 1]. The situation is more intricate when cusps and/or mushy regions 
develop. This lack of smoothness makes finite element approximations, defined 
on quasi-uniform meshes, perform worse than expected according to the inter- 
polation theory. In other words, the singularity located on the interface pollutes 
the numerical solution everywhere. Numerical experiments for the Stefan prob- 
lem indicate that the rate of convergence for temperature is never better than 
linear [17, 18]. Theoretical results are even more pessimistic [4, 8, 12, 13, 14, 
17, 24]. 

Methods studied so far are not completely satisfactory in that they do not 
take advantage of the fact that singularities are located in a small region com- 
pared with the entire domain Q2, at least whenever mushy regions do not occur. 
Consequently, a possible remedy is to be found in terms of a suitably designed 
adaptive algorithm. In fact, we would like to use a finer mesh near singularities 
in order to equidistribute interpolation errors but still preserve the number of 
degrees of freedom, and thus the computational complexity. We refer to [1, 
14] for an account of the state-of-the-art on this topic along with numerous 
references. 

In this light, the aim of this paper is to present and analyze an adaptive mesh 
refinement method for two-dimensional two-phase Stefan problems. We em- 
phasize that such problems are strongly nonlinear in that singularities do not 
smooth out as time evolves and, more notably, they may even develop. This is 
a striking contrast between degenerate and purely parabolic equations. There- 
fore, even though various adaptive algorithms have been recently introduced for 
standard parabolic equations [1, 5, 14], ours appears to be the first one with a 
rigorous mathematical foundation for Stefan problems. We refer to [15], where 
a summary of some preliminary results can be found. 

The finite element mesh cannot be modified in an arbitrary manner for the 
discrete scheme to be stable and convergent. Several tests are carried out on the 
computed temperature to extract information about its first and second deriva- 
tives as well as about the location of the discrete interface. Upon failure, the 
current mesh is discarded and a new one completely regenerated by an effi- 
cient automatic mesh generator [19]. Since the new mesh is not produced by 
enrichment or coarsening procedures, it happens to be noncompatible with the 
previous one. It is designed to be coarse away from the discrete free boundary, 
where the typical meshsize is o(Tr12), and locally refined near the interface for 
triangles to reach a size O(r); hereafter, T > 0 stands for the (uniform) time 
step. These relations, which come from elementary interpolation considera- 
tions, reflect the physical property that the Stefan problem behaves as parabolic 
away from the interface but possesses a first-order hyperbolic-like structure in its 
vicinity. On the other hand, even though the cost of generating a mesh at every 
single time step is asymptotically negligible compared to that of solving the as- 
sociated nonlinear algebraic systems, frequent remeshing should be avoided for 
practical purposes. In addition, the interpolation process used to transfer infor- 
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mation between consecutive meshes incorporates an error 0(z) that eventually 
accumulates in time. To prevent such an error from compromising accuracy, a 
restriction on the total number of admissible mesh changes is enforced, namely 
O(T 1/2) . As the current mesh is thus to be kept fixed for a prescribed number 
of time iterations and discrete interfaces are supposed to lie within the so-called 
refined region, a further refinement is required for our strategy to succeed. This 
is accomplished by predicting the "small" region to be occupied by the discrete 
interface between consecutive mesh changes, as well as checking that it actually 
remains there within safe limits. The resulting scheme is stable, convergent and 
necessitates fewer degrees of freedom than previous methods on fixed meshes, 
namely 0(T 3/2) instead of 0(T -2) for well-behaved interfaces, to achieve the 
same global asymptotic accuracy. Moreover, it exhibits a superior performance 
as expressed in terms of computing time for a desired accuracy. This improve- 
ment is even more dramatic when accuracy is measured in the maximum norm. 

The paper is organized as follows. In ?2 we formulate the continuous and 
discrete problems along with the corresponding assumptions. In ? 3 we comment 
on certain heuristic aspects of our local refinement strategy, which is fully dis- 
cussed in ?4. In ?5 and Supplement ?S1 we prove several La-based interpolation 
estimates for noncompatible meshes that account for mesh change effects and 
play a major role in our analysis. Discrete stability in various norms is then 
derived in ?6 and Supplement ?S2. As a result, in ?7 we demonstrate a rate 
of convergence of essentially o(T1 2) for both 0 and u in the natural energy 
norms, provided the total number of mesh changes is limited to 0(T 1/2) . This 
result agrees with previous ones [4, 17, 24] obtained for a fixed mesh under the 
stronger assumption that the meshsize is 0(r). We also prove, in Supplement 
?S3, an auxiliary quasi-optimal pointwise error estimate for the Laplace opera- 
tor, that may have some independent interest in that it extends the techniques 
in [21, 22, 23] to general meshes; it is based upon a new discrete Caccioppoli 
estimate. To simplify the presentation, we assume that conductivity k = 1 
and that mushy regions do not occur. These interesting situations are, how- 
ever, treated in some detail in Supplement ?S4 along with a modification of 
the local mesh refinement algorithm. We conclude in ?8 with several numerical 
experiments to illustrate the superior performance of the Adaptive Method in 
approximating both solutions and interfaces. Various computational issues are 
discussed in ?8 as well. 

Further numerical results and comparisons with the Fixed Mesh Method as 
well as implementation details will appear elsewhere [ 16]. They indicate a (prac- 
tical) linear rate of convergence, namely 0(r), which is much better than our 
theoretical prediction. This topic deserves further investigation. 

2. PROBLEM STATEMENT 

Let Q c R2 be a bounded domain with aQ E C and T > 0 be fixed. 
The case of polygonal domains will be considered in ?S4.4. Let /3: R -* R be 
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a continuous and nondecreasing function which satisfies 

(2.1) 0 <l f? '(s) < LfA < o, fl"(s)l < L, < oo, a.e. s E R\[0, 1], 

f(s)=0, VsE[0,l]; 

hence L. and L, are the Lipschitz constants of f8 and f6', respectively. A 

typical example is fl(s) := cs + c2(s - W)+, where c, < 0 < c2 are fixed; 
this corresponds to an ideal material with constant thermal properties. Let uo 
indicate the initial enthalpy. Let 00 := /(uo) denote the initial temperature 
and let Io {x E Q: 60(x) = 0} be the initial interface. They satisfy 

(2.2) 00 E W2 I??(n) nW2o00(Q\jo) 
(2.3) Io is a Lipschitz curve. 

Therefore, uo is of bounded variation, u0 E W2 '00(\Io) and it has a jump 
discontinuity across Io. In ?S4.2 we will allow the initial interface IO to de- 
generate into a mushy region. The source term f is also Lipschitz continuous, 
namely, 

(2.4) If(s1)-f(s2)I < LfIsl -S21 V sI, s2ER. 

For the moment, the conductivity k verifies k = 1; see ?S4.3 for the general 
case. The continuous problem then reads as follows: find 0 and u such that 

(2.5) 0 E L 2(0 , T ; Hol (n)), U E L 00(O , T; L?? (n)) n H'(0, T; H 1(Q)), 
(2.6) 0(x, t) = /3(u(x, t)), a.e. x E Q, t E (0, T), 

(2.7) u(., 0) = U0 

and for a.e. t E (0, T) and all (9 E H1I (n) the following equation holds: 

(2.8) (ut, (0) + (V0, Vo) = (fV(), ( ). 

Hereafter, (., *) stands for the inner product on L2 (n) . It is to be observed that 
the vanishing Dirichlet boundary condition on 0 is assumed only for simplicity 
and, in addition, that the interface I(t) := {x E ?Q: 6(x, t) = 0} does not 
include an. Existence and uniqueness for this problem are known as well as 
the following further regularity results [6, 8, 10]: 

(2.9) 0 E H(0 , T; L 2(Q))nL00(0, T; H1'(Q)) , AO E L (O, T; M(Q)), 

where M(Q) stands for the space of finite regular Baire measures. In the 
classical situation, the free boundary motion is governed by the so-called Stefan 
condition 

(2.10) [VO+(x, t) - V6 (x, t)] * .X = V(x), 

where x E I(t), 5vx is the unit vector normal to I(t) and V(x) is the nor- 
mal velocity of I(t), both at point x. Consequently, if V(x) $A 0, the flux 
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V0(x, t) presents a jump discontinuity at x E I(t) which prevents 0 from be- 
ing better than globally Lipschitz continuous. Equation (2.10) may fail to hold, 
though, whenever cusps develop. Let E.] denote the jump operator on I, that 
is [VO] := (VO+ - V )J1 . The interface I may also degenerate into a mushy 
region, in which case (2.10) is to be replaced by the more general expression 

(2.11) [VO(x, t)]vx = [u(x, t)] V(x), x e 0I(t) n Q. 

As already said, this interesting situation is treated in some detail in ?S4.2. For 
the moment, we suppose that mushy regions do not occur. 

We now introduce the finite element approximation. Denote by T := T/N 
the time step and by 5yn a partition of Q into triangles; 5yn is assumed to be 
weakly acute and regular uniformly in 1 < n < N. The first condition means 
that for any pair of adjacent triangles the sum of the opposite angles with respect 
to the common side does not exceed 7z . Given a triangle S E 5yn, hs stands for 
its size and verifies AT < hs < AT1/2 ( 0 < A, A fixed) whereas ps denotes the 
diameter of the biggest ball contained in S. The second condition above is then 
equivalent to requiring Ps > chs for all S E 5yn, where 0 < a < 1 is a fixed 
constant (independent of n and N!) [2, p. 132]. The discrete domain Q': 

USE5YnS does not coincide with Q. However, since the technical arguments 
to handle their discrepancy were introduced in [17], we omit them here by 
simply assuming Qn = Q. Nonetheless, the influence of the pollution effect 
due to corners will be examined in ?S4.4. Let V c Hl (Q) indicate the usual 
piecewise linear finite element space over 5yn and In: C0(Q) * Vn the usual 

njfl 
Lagrange interpolation operator [2, p. 94]. Finally, let {x }j-j=1 denote the 

nodes of 5Y' and {x}jn?y the canonical basis of Vn. The discrete initial 
0 11 

enthalpy U E V is defined at a generic node xl of 5? := 5Y' to be 

(2.12) U 0(x := uO( I), V 
I 

E Q\I0, U0(l := 1, V XI E Ion 

Hence, U? is easy to evaluate in practice. Set E)0 := III o (= H1[l (U0)]). 
Given Un' , eon-1 E yn- , the discrete scheme then reads as follows: for any 
1 < n < N select 5? and find U., On E V such that 

(2.13) E( =H11fl(Un), 

(2.14) U =HlU , fl :) 

(2o15) 
1 

(Un -n- , )n + (,7E9n v/ = 7Z 3-) )n VXEV, (2.1 5) T (U - 5 E V xEV 

where (., .)n is defined by 

(2.16) (go,)n x-I =f n(qpX)dx, V Co, X E C 0 

Note that the integral in (2.16) can be easily evaluated element-by-element 
via the vertex quadrature rule, which is exact for piecewise linear functions 
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[2, p. 182]. The discrete interface and refined region are then defined to be 
F n:={x E Q: e~n(x) = 0} and ?fln := uIs E yn hs = O(T)}, respectively. 

In view of (2.16), the equation (2.15) can also be written as follows: 

(2.17) TV_,n-1 )n + (VE3n 7x) = (f(f(Un)) X) V 

thus eliminating the definitions in (2.14). It is to be stressed that the nodes of 
yn are then used for the numerical integration of piecewise linear functions 
defined in Vn-l . The interpolation error so incurred may destroy convergence 
as well as stability. The mesh selection strategy of ?4 will account for such an 
effect. 

Observe that, if we first decompose the integral (V(o, VX) over all triangles 
of 5yn and next integrate by parts, we get 

(2.18) (V , Vx) = Z (([V(]Je *e X))e, V 9, X E V, 
evEn 

where en := {e: e is a side (or edge) of S in Q, S E Sn}, ((. .))e denotes the 
L 2-scalar product on e, ve is the unit vector normal to e and Hlie indicates 
the jump operator on e for all e E en . Let S n denote the interior of supp Xn 
for 1 < j < jn and set he := length(e) for e E en . Then (2.18) results in 

eCS (2.19) 2(V7(o V,,n) =EheVf v, V (9 EVn , V 1 < j < jn. 
e C SJn 

In view of (2.16) and (2.19), another useful relation equivalent to (2.15) reads 

Z he1VE3n]e * Ve 

(2.20) eCSJn 
= 2 meas(S)(f(eE (x )) - I (Un - f )( n) 

From now on, C > 0 will denote a constant independent of T but not 
necessarily the same at each occurrence. Moreover, C may depend on the 
given data as well as on the various constants to be introduced in ?4. The 
notation* = O(T7) will be often used instead of * < CT7. As usual, JxJ will 

2 stand for any norm of x E R 

3. HEURISTIC GUIDELINES 

We now give a heuristic motivation for the local refinement strategy of ?4. 
We first consider the following 1-D problem discretized only in time: 

(3.1) U-Tfl(U)XX =U0 in (-1, 1), 

where fl(s) := (s -1)+ -s, V := Y2 - Y1 > 0 and uO(x) := y2(eVX - 1)/V+ 1 
if x > 0, u0(x) := y,(eVX - 1)/V if x < 0. Since u(x, T) = u0(x + VTa), 
the interface I(t), initially at 0, reaches -VT at time T. Let a denote the 
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position of the discrete-time interface F. It is not difficult, but tedious, to see 
that (8e:= /3(U)) 

(3.2) 118 - u(T)11Lx((-1 1)) = 0(T) > V 2, 

(3.3) d5= -VT+O(T (32 ), 

(3.4) ex(6F) = EX(&+) = Y1 + O(T1/2) (smearing effect!), 

(3.5) OX(0) = Y2 + 0(T 12), 

(3.6) exx(X) = T I+ 0(1), V d < x < 0. 

On the other hand, suppose (-1, 1) is partitioned into equal intervals of size 
h . Then, in view of the shape of 0(z) f: (U(T)) and (3.6), the pointwise 
interpolation errors in space satisfy 

(3.7l 
J (T) - n l0(T) Lr ((- 

1,1)) 
< 

Vh/4 + 0(h 2), 

11 - n1ILoo(( 1, 1)) < h2T-1/8 + 0(h2). 

What we learn from this relevant example can be expressed as follows. Since 
we expect to deal with Lipschitz continuous temperatures, the local meshsize 

hs near F and interface velocity Vs should verify hs VST to balance the 
interpolation errors in space (3.7) with the truncation error in time (3.2). In 
addition, no condition similar to (2.10) is valid for the semidiscrete problem 
at F, even though the free boundary moves correctly. To retrieve the proper 
jump condition, however, we just have to move a distance d backwards along 
the normal to F because, by virtue of (3.4) and (3.5), 

(3.8) x(0) - Ex(6) = V + O(T 1/2) 

or, equivalently, V = f 8XX(S)ds + O(T112). Consequently, an overrefinement 
near the interface is extremely dangerous in that we may lose information on 
the interface velocity without gaining accuracy and, as a result, we might be in 
trouble to predict its future position. We thus realize that enforcing these two 
observations would require a stepwise control of the relation hs Z VES, where 
Vs could be determined by means of (3.8) with (5 being replaced by hs. On 
the other hand, there is an interval O(z)-long behind F, namely ((, 0), on 
which second derivatives are O(z 1). 

Away from the interface I, problem (1.1) is strictly parabolic, namely, 

(3.9) C(0)0t - AO = f(O) 

which is a mildly nonlinear heat equation; c(s) l/fl'(fi i(s)) for all S E 
R\[0, 1]. Hence the discretization parameters should verify the usual parabolic 
constraint h S= o(z 12). 

These two distinct behaviors, rephrased here in terms of local regularity, must 
be reflected in the local refinement algorithm, for instance, as illustrated in ?4. 
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Let us now explore some heuristic properties of the fully discrete 
scheme (2.15). Near the discrete interfaces, where the best we can say is 
l(U -U x)( I < C, (2.20) results in IZecsn hel VeI eV < CT1 meas (S7n). 

Hence, except for a very unlikely cancellation in the above summation, we can 
expect discrete second derivatives De to verify 

(3.10) De h- en l < Cr7 1h72 means (S)?< CT 

This is consistent with (3.6). Moreover, away from the discrete free boundaries, 
we can expect (U _ -U )(x7)< ? Cl(E& _e'-' )(xJ < CT, because of (2. 1), 
(2.13), (2.14) and the strict parabolicity of (3.9). Thus I Zecsn he[Ve~n]e * Vel < 

C meas (Sn). Therefore, arguing as before, we conclude that 

(3.11) De < Ch2 means )< C, 

for all e in the parabolic region. The heuristic observations (3.10) and (3.11) 
regarding De , as well as the smearing effect (3.4), were confirmed by 2-D nu- 
merical experimentation. It also revealed the validity of the following LI-type 
a priori estimate: 

(3.12) h 2D <C. 
ee 

e 

This property is a discrete analogue of (2.9), i.e., AO E L' (O, T; M(Q)). It 
is still in good agreement with numerical evidence. Indeed, actual computa- 
tions show the occurrence of a strip O(T)-wide behind the discrete interface 
Fn where De = 0(r 1), which in turn is consistent with (3.6) and (3.10). In 
this case, since the local meshsize near Fn should be he = 0(T), (3.12) imposes 
a severe regularity restriction on the interface, namely, 

(3.13) length(Fn) < h < C E hDe ? C. 
eEn :enFnF#0 eE n 

Such a condition is quite reasonable for practical purposes but is not known 
to hold in a general setting. We stress that without some kind of additional 
regularity it is probably hopeless to improve upon the Fixed Mesh Method [4, 
8, 12, 13, 17, 24]. In this light, (3.12) is always assumed at the mesh changes and 
used in ??6, 7, S4, though it constitutes a limitation of the Adaptive Method. It 
is however partially justified by Lemma 6.5 which, being implicitly guaranteed 
by the scheme, combines with (2.20) to yield 

jfln 

(3.14) hE[VE V1e ?2 n(lf(en-1)l+ -rlUn _-n-1) < C 
j=1 ecsjn 

for all time steps n between consecutive mesh changes. We then see that only a 
cancellation in the above summation could lead to a bound weaker than (3.12). 
This seems to be unlikely for locally smooth interfaces, as well as for cusps, 
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because of their local character. At the same time, Lemma 5.10 shows that 
(3.12) is preserved for e)n. This somehow explains the fact that (3.12) was 
never violated in our numerical experiments. Designing an algorithm for which 
(3.12) is implicitly guaranteed constitutes a challenging open problem, though. 
Note that mushy regions may occur as long as their boundaries are also well- 
behaved. On the other hand, regarding first derivatives, the following L -type 
a priori estimate is implicitly guaranteed (see (6.6)): 

(3.15) E h2?VEn 12 < C. 
SE5yn 

We finally comment upon the effect of interpolation between noncompatible 
meshes. Let 4: R -* R be sufficiently smooth and S E S'n be a generic element. 
Proceed then formally, as if eOn I were smooth, to deduce that 

I I ;(E9n-1 rlfn [C(E) n1 )] IIL??(S) 
(3.16) 2 2(enI)E- [(en - 11 2] (S) < Chs (D e IL-(S) + HIDenLf(9 

where D and D2 denote discrete first and second derivatives, respectively. In 
?5 we give proper justification for (3.16). Since we want this interpolation error 
to be O(r), the new local meshsize should satisfy 

(3.17) hS < Tr /2 min y, JID2en-1 - 1/2 IDen-1I- )) 

This in turn allows second derivatives to blow up without violating hs > 

AT as long as JID 2En- IIL?(S) < (Pu/A)2 r , which is consistent with (3.10). 
First derivatives may also degenerate without violating hs > At provided 

1DE)n- 11L-(S) < (j2/i)Tr1/2. Such a degeneracy is expected only whenever 
cusps develop, this being a local phenomenon. In addition, having control of 
quadrature errors introduced by (2.16) leads to restrictions on triangle diame- 
ters wherever JIDEfn 1 IILO(S) exceeds a certain tolerance; this is accomplished 
via (3.17) as well. 

On the other hand, for all S E 5nf 1 intersecting the discrete interface F n-1 
we have {x E S: 0 < Uni (x) < 1} $ 0. For sample problems having a nicely 
behaved continuous free boundary and verifying a nondegeneracy property, nu- 
merical experiments indicate that Uni may vary from 0 to 1 within one single 
element. Consequently, even a slight perturbation of triangles S traversed by 
Fn-l would produce an error I, Un-1 _HnUn-1 IILO(S) = 0(1) and a subsequent 

optimal lower bound Un- -,InUn- Un I (Q) > Cr, which could be attained pro- 

vided length (F l) = 0(1). This property of Fn-1 is not enough, however, 
to ensure the validity of another crucial interpolation estimate (Lemma 5.6), 

)n-i -Zn-i1 Cr2 )n ni1 
namely glV (E9n-1 E)9l)L'( < CT'2 ,unless VyE- is bounded on F - 

strong stability would thus break down too (Lemma 6.4). Since such a further 
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constraint on VEn-1 rules out the formation of cusps, we should not modify 
triangles crossed by Fn . For computational purposes, it is always prefer- 
able not to impose this constraint, which is feasible whenever the interface is 
"smooth"; see ?S4.1. 

4. LOCAL REFINEMENT STRATEGY 

The aim of this section is to describe the relation between two successive and 
noncompatible meshes, say 5Yn 1 and 5n , along with the necessary numerical 
tests to be performed on en1n1. The initial mesh 59 (= Yl) is constructed 
along the same lines with 00 in place of eon-1. Since no confusion is possible, 
for simplicity we remove the superscripts and use the following notation: 59 

n-1 , 9 := , := 8 n-1 8 gR8 := l H : 
Nn-1 I-In U := Un-1 n -1=HUy=e (= MB()) 

E := Hf3(U) and F := Fni for 2 < n <N. In ?4.1 we introduce three local 
parameters that represent the expected value of local meshsize. We discuss the 
mesh selection algorithm in ?4.2 and conclude with several comments in ?4.3. 

4.1. Local mesh parameters. Note that VOIS, VUJS E [P0(S)]2 for all S E 9. 
Set ds := IVElsl, Ds := JVUjsj, ds := hsds for all S E 5 and 

(4.1) a := Ivels -VEI2 I = 1[VEIj, De := 

where S1, S2 E 59 are so that e = S1 nS2; set e: {IS, S2}1. Note that these 
quantities are easy to evaluate in practice. We then introduce the following 
local parameters: 

T1/2 

(4.2) h 
ID 1/2 V e E8\?F e 

1/2 

(4.3) hs :=2 d I V S E Y\5'Y 

where 5yF := {S E 59: S n F $ 0}, XF := {e E 8 : e C AS, S E RF} 
and 'Y := USE .FS Here, Al1 92 > 0 are arbitrary constants which, in 
practice, result from computational considerations as well as specific proper- 
ties of the problem at hand; the same comment applies to A, A. The two 
local parameters above account for the effect of interpolation between non- 
compatible meshes, as motivated by (3.17). In case they violate the constraint 
he hS > At, we say that discrete derivatives are badly-behaved. This situation 
will require special care, even though it was never observed in practice. To this 
end, we setyB := {S E ?\YF mineE'\?F ecas(hs, he) < it ?B := {e E 

?\?F: e c AS, S E 5BB}, ' := USEYB S and < := 5Y\(YF U 5B), 80 

8'\(g8F U 8'B), I O := Q\(7 U Iq) - 

We now focus our attention on the local meshsize near F for problems 
without mushy regions. Inspired by (3.8) and subsequent heuristics hS VST 
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for each S E 59 crossed by the discrete interface F, we compute a discrete 
interface velocity Vs using a suitable discretization of condition (2. 1 0), namely, 

(4.4) Vs:= (V9lsI - V9Is2) v 

where Sl 2 E 9 belong to each phase, are displayed on the direction v 
(unit vector normal to F) and satisfy dist(Si, S) > hs (i = 1, 2). We next 
consider a cone Fs of axis Is, vertex at S, opening 7r/2 and height 3 VSTr1/2 
as being the region most likely to contain the evolution of Fs := S n F for at 
least 0(r 1/2) time steps. The local parameter associated with the interface is 
defined by 

(4.5) hFS := Tmin{max(A, VS), M}. 

The above two new constants Y3 and M are arbitrary at this stage. The same 
rules of selection as for the previous four constants apply; 83 may depend on 
n. 

The union of all cones FS constitutes the predicted refined region R whose 
width is o(Trl2). Note that R c 3 . The size of R enables discrete interfaces 
to remain within R for at least o(T- 12) time steps, as desired. 

4.2. Mesh selection algorithm. As already said, the initial mesh 591 is built with 
the required pointwise information extracted from 00 . Assuming now that we 
have a mesh 9, we would like to discuss the three tests to be performed on 
the computed solution 9 to either accept or discard 9. 

The first test consists of checking whether the discrete interface F is within 
the refined region R or not. In the event F escapes from A, we say that the 
test has failed. 

The second test ascertains that interpolation errors are still equidistributed 
correctly: 

(4.6) he <,Y her Ve E , hS<?2hs, VSE5'9; 

here jut, u* > 1 are suitable constants. This rules out the possibility of an 
excessive refinement induced by large discrete derivatives. However, the new 
local meshsize might be much smaller than the current one, if influenced by the 
new refined region 3 . The example in ?8.3, for instance, makes (4.6) fail; see 
also [16, ?7]. 

Sometimes the interface velocity may vary substantially during an 0(Tr12) 

period of time so as to make (4.5) inadequate. More specifically, the local 
truncation error (3.2) would not be properly reflected in the local meshsize and 
also, in case the current meshsize becomes too small, the computation of Vs 
via (4.4) might be inaccurate because of the smearing effect (3.4). In addition, 
the fact that triangles of 5?F are fixed and new nearby elements might have a 
much smaller size would create serious programming difficulties in specifying 
S. To prevent that from happening, a third test is enforced, namely, 

(4.7) , hF < hs h VSE 
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where y3 < 1 < y4 are suitable constants. A relevant example that makes 
(4.7) fail is that in [16, ?7.3]. 

If any one of the above tests fails, then the current mesh Y is rejected as 
well as the solution {9, U}, which is overwritten with the previously computed 

solution. A new graded mesh Y with the following properties is then generated. 
To preserve the constraint h? > A)T, we must keep 5B fixed because discrete 
derivatives are badly-behaved. In addition, in accord with the last heuristic 
observation of ?3, we must not modify 5F . Hence, 

(4.8) S E 5, V S E U R F' 

is the first restriction on Y. The second one reads 

(4.9) At < h? < min (AT1h2,hF,, he' hs) Vs E 
S/ ELF: FS, ns340 

SE5O6, eEg: SlnS#0, eCaS 

This accounts for both the equidistribution of pointwise interpolation errors 
(3.17) and the definition of refined region 3 . The effective implementation of 
(4.9) will be discussed in ?8.1; see also [16, ?6]. 

4.3. Further properties. The information about discrete derivatives could be 
extracted from U rather than 9 because, in view of (2.1) and (2.13), they are 
equivalent on .0 . In fact, for all e E X0 and S E 90', we have 

he IVUI-VUII <C(171D + Lam, 13 (d + d)) SE -e 
(4.10) 1 -VI21 ~f e /3/ S1 2 

Ds < Cl3 ds. 

Since Y was designed to be adequate for at least 0(N1 /2) time steps, the 
number of expected mesh changes is at most 0(N112). This goal was always 
achieved in practice. 

To avoid rejecting the computed solution {9, U} owing to failure of the first 
test, we always check if the discrete interface F has just reached the boundary 
of the refined region M, called RED ZONE, which in turn alerts that an imminent 
remeshing must be done; see Figures 9.1 and 9.2. On the other hand, to prevent 
the program from performing a useless time step owing to failure of either 
(4.6) or (4.7), these tests can be carried out with more stringent constants. In 
that case, their failure will only warn that 5? cannot be kept any longer. This 
trick actually succeeds because discrete derivatives may exhibit large oscillations 
solely near the discrete interface F, and thus within M where the current 
(local) meshsize is already O(r). Hence, remeshing is mostly dictated by the 
free boundary location, as observed in practice. 

In the subsequent analysis of ??6, 7, S4, we will assume the following struc- 
tural property which, in view of ?3, is partially justified by Lemma 6.5 and 
numerical evidence: 

(4.11) Zh2D <c. 
eE? 
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The definition of the sets R and M might be contradictory unless R c A, 

that is hs = O(T) for all S E 9B . Discrete derivatives De and ds are typically 
well-behaved outside A, because this is a parabolic region where De ds < 

C at the previous mesh change. Consequently, we do not expect any rapid 
variation of either De or ds on Q\M, which means R c M and also R c 
M'. The set _, though, was always empty in our numerical experiments. Note 
that 9 c M as well. 

For a well-behaved interface, (4.5) coincides asymptotically with the usual 
hyperbolic relation h = 0(z). This was proposed here as a means to balance 
interpolation errors and attenuate the smearing effect, rather than for stability 
purposes. Stability is always built into the scheme regardless of the number of 
mesh changes, as shown in ?6. Our algorithm is still a fixed domain method, even 
though we predict the region to be invaded by the discrete interface. Indeed, we 
do not use predicted interfaces to solve uncoupled (nonlinear) heat equations, 
as customary for front-tracking methods, but rather as a refinement indicator. 
The behavior of De and ds depend certainly upon regularity of the underlying 
problem. We may think of these quantities as being bounded uniformly in 
T away from F, where 0 is expected to be smooth; see (3.1 1). Expressions 
(4.2) and (4.3), combined with (4.9), then result in hS = O(z12 ), which is the 
usual parabolic relation. We finally observe that the assumption an E Cl'l 
avoids further refinements to alleviate the pollution effect produced by corner 
singularities; see ?S4.4. 

5. INTERPOLATION ESTIMATES FOR NONCOMPATIBLE MESHES 

Our goal now is to show that the above criteria for mesh selection guarantee 
a satisfactory error control. The results in ?5.1 are valid in general for regular 
and noncompatible meshes 51 and 9' and possess some intrinsic interest. 
They are next applied to the present setting in ??5.2, 5.3. We will stick with the 
notation of ?4. 

5.1. The basic estimates. Let us first introduce some further notation and a 
number of useful geometric properties. Given W c ., set 

51w := {S E 50': Sn W :0}, O 'w := {e e 0: efn W# f0}, W:= U S. 

Let B(x, r) indicate the ball of center x and radius r. The following facts 
are simple consequences of the regularity of 5Y: there exists 0 < a < 1 such 
that for all S E _90 

(5.1) pS>?ahs, VS 'E5', 
(5.2) dist(x, S) > ahS, V x E Qo\S, 
(5.3) card 5's card As = 0(l). 

It is then possible to introduce a smooth function h(x) which is locally com- 
parable with the meshsize (see Lemma 5.1 in Supplement ?S1). 
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In deriving the interpolation estimates below we shall distinguish between two 
opposite situations according to the relative size of triangles in both meshes Y 
and Y. It is worth noting that there is no assumption on the relative size or 
location of new and old triangles at this stage. Set 90 := 5\(59Fu59B) and 
define the derefinement case to be 

(5.4) givenSe 5', ahs <h- for allSE ^. 

By contrast, the refinement situation reads as follows 

(5.5) given S Y90, there exists ScE Y- such that ahs > h,. 0' ~~~~~~S 

These two cases are obviously mutually exclusive. In addition, for all S's 
satisfying (5.5) we have 

(5.6) S cS for some S E 95 
card 

XS, 
card 

9S = 0(1 

as results from (5.1), (5.2) and (5.3). Let 95 (resp. 2 ) indicate the set of all 
S's satisfying (5.4) (resp. (5.5)). Let V be a generic piecewise linear function 
defined on 5. Let C: R -, R be so that C' E W1'?(R). Let Lg and L, 
denote the Lipschitz constants of C and ;', respectively. Let 3s, ds b e and 
De indicate, for the moment, derivatives extracted from V. We now state, 
and then prove in Supplement ?S1, two crucial estimates, their difference lying 
essentially in their derivation and further application. The first one refers to the 
derejinement case and can be viewed as a discrete analogue of that in [2, p. 1 15]. 
It roughly asserts that regularity (of 5Y ) is the sole property that matters for 
a "discrete" interpolation estimate to hold. The second and more elementary 
estimate refers to the refinement case (5.5). 

Lemma 5.2. Let S E Y Then 

lFic(V) - I(V)1LP(^) + h-4jV[H4(V) -F(V)]flLP(^) 

l/p 2 l/p 
L g h e D| + LV. hs d s |,1 < p < x,) 

(5.7) ?Ch2 eE J S) J p9 

L max De + L, max ds p =ox. 
sS 
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Lemma 5.3. Let S E 52. Then 

llrj7(V) - rI(V)IILP(S) 

|CL :h, (I I + CLV th2 E ) 1< p< X~ 

(5.8) < < h 1 e ( )h E 

CL h-max e + CLV1 max5 p=c2, 
C 

SeEXS SEgS 

and 

||V[IH4(V) - IX(V)]|ILP(S) 

2/p p~1p /pj 
Ch L 2 I + Li E hd ) ] 5 1<p<0 

(5.9) < LYE XSj SE5'?j J 

CL, maxe + CLV m afx (h5ds) p = . 
SEY 

Remark 5.1. Consider the simplest case 4 = Identity; thus L; = 0. We 
point out that we need control on interpolation errors even for the refinement 
situation, simply because meshes 5 and 5 are not compatible. If they were, 
these errors would simply vanish. 

5.2. Error estimates. The first result, whose proof is given in Supplement ?S1, 
deals with the initial triangulation 51 and the choice (2.12) for the discrete 
initial enthalpy U0. 

Lemma 5.4. We have 

IuO - U0 IfH-1(n) < CT logT 

We now come to the subtle issue of changing the mesh. Our first task is to 
apply the two basic interpolation estimates to U. To this end, let V = U and 4 
be as in Lemmas 5.2 and 5.3. Note that the choice; = ft is allowed because, in 
view of (4.8), it is enough to deal with S E 5 . Recall that derivatives of U in 

no can be expressed in terms of quantities extracted from E, as stated in (4. 10). 
Hence, let 6s5, ds, 5e a and De denote from now on derivatives extracted from 
E). The following error estimates illustrate the connection between Lemmas 5.2 
and 5.3 and the mesh selection algorithm. 

Lemma 5.5. The following sharp pointwise error estimate holds: 

(5.10) jjFIC(U) - W(U)IIL'(Q) < CT. 

Proof. Let first S E 5 . On using (5.7) and (4.10), in conjunction with (4.2), 
(4.3) and (4.9), we easily obtain 

I;(U) - H4'(U) I Lo < c max(h4De) + C max(hsd ) < CT. 
S S 
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Likewise, let us take S e 92 and make use of (5.8) and (4.10), together with 
(4.2), (4.3), (4.6) and (4.9), to arrive at 

FI-(U) - <(U) L C( ? mCmax(hsheDe) + Cmax(hd2 + hhsd2) <CT. 

This concludes the proof because (5.10) is obviously sharp. 0 

Remark 5.2. Since meshes Y and Y are not compatible, we cannot expect 
a pointwise error estimate for VU to hold. To make this claim apparent, we 
consider, for instance, the refinement case (i.e., S E 925) and suppose that C 
Identity (i.e., L;, = 0). We can write (5.9) as follows: 

|| V( I I-U | < C max heDe UIL'(S) eE- e e'Xs 

from which we conclude that I1V(U - U),L() = 0(1) provided De = O(h) 

as is expected to happen near the interface F. In any event, setting h: 

mineEs he, we can rewrite (5.9) in the form 

h11(V(U - UL )< Ch maxeb < C max(he heDe) Cr, 
SS 

as results from (4.2) and (4.6). When h-= o(r 12), as happens away from F, 
we see that 

11'U ( U) IILO(S) - 

It is worth noting that the critical parameter is h- rather than h- (h- < hs!) . 
Similar conclusions hold also for the derefinement case. 

In spite of this negative result, we still have an error bound for V(U - U) 
in energy norm. Under the assumptions (4.11) and (3.15), the following lemma 
yields ||V[FII;(U) - FIC(U)]II2 ( < CTrI 

Lemma 5.6. The following sharp L -error estimate holds: 

(5.11) IIV[W( U) -r(U)]IlL2(n) < CT (L; E heDe + Lad E hsd5 
eE9O Se5O 

Proof. We proceed as in Lemma 5.5 by first examining the derefinement case, 
namely S E 9Y . By virtue of (4.2), (4.3), (4.9) and (4.10), together with (5.7), 
we easily obtain 

Z iV[n(u) - F;(U)]IQ2(5) ? E E (h4De)he De + 

Cr 
( E 

heDeZ 
+ E 

hsd" h eE97 SE Seo 
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Note that we could replace double summations by single ones because, as a 
consequence of (5.4), card{S E 1: e n S 0} =O(1) for all e E 0 . On the 
other hand, for all S E 52 (refinement case) the above properties, coupled now 
with (4.6) and (5.9), lead to 

S^ER2~~~~~ SR2 ea 2s2a2 

< C E (hs-heDe) +Ehsds) E 
rKM1SER2 ear - 

To proceed further, we need the following elementary inequalities: 

(5.12) E h <?Che, Ve E , E h <?Chs, V 5'E 9 

SE';ei SE Ss 

where Ye := {S E 52: e nf lS 0} for all e E X0 and 2 : {S E 52: SnS S$ 
0} for all S E 5Y . Indeed, this yields 

EheDe E hi < C E hDe E d, E < c E hsds 
eEho SE52 eE9O Se S se5"2 

whence 

E IV[W(U) - W(U)]HL2(S) < CT (S hIDe + E hsd5) 
SEY2 eE90 SEYO 

It only remains to demonstrate (5.12). The second estimate in (5.12) is obvious 
in view of (5.5), whereas the first one comes from the following consideration. 
Let Ye := {Sk}k=l be ordered on e, and let Xk, Xkl be the end points of 
the segment e n Sk . We would like to replace hk := h- by CIXk - Xkl -, but 
this may not be true for a triangle which is crossed by e near a vertex. We 
can however argue as follows to overcome the difficulty. The regularity of Y 
yields card)5k = O(l), where k {ij: SjfnB(xk, ahk) $ 0} for 1 < k < K. 
Hence, 

K K 

Jhk < Cj : 1, |j- X-11 < C>9Xk Xk-l < Che. 
k=1 k=1 jEJk k=1 

Since (5.1 1) is sharp according to the discrete regularity dealt with, the lemma 
is thus proved. E 

Remark 5.3. In view of the pointwise estimate (5.10) and the a priori discrete 
L1-bound (4.11), the energy error estimate (5.11) for 4 = Identity may be 
regarded as a 2-D interpolation result, say between L??(Q) and W 1(Q). 
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In ?5.3 we will need two trace estimates for the interpolation error 9 - 9 
that are stated in Lemmas 5.7 and 5.8 (see Supplement ?S1). They correspond 
to either the derefinement or the refinement situation. 

5.3. A priori estimates. In this subsection we state a priori estimates related 
to the crucial bound (4.11) as well as (3.15). Their proofs are reported in 
Supplement ?S1. We begin with (4.11) for the discrete initial temperature 
&? := 'llF[/(U0)] = F160. The symbol De stands here for second derivatives 
extracted from E0 

Lemma 5.9. We have 

IIV9 |ILoc) + E heD < C. 
eEY' 

We finally state, in Lemmas 5.10 and 5.1 1, that (4.1 1 ) and (3.15) are inherited 
by Y and 9. Let De denote the obvious analogue of (4.1) with e replaced 
by E. 

Lemma 5.10. The following discrete a priori W2 1-bound is valid: 

(5.13) EheDe < C (Lf hehDe + Lfi/ E hsd5). 
eEi' eE? SEYvo 

Observe that 2 ESE5 hSds < I EVIIL2 () <ESE hsds is valid as well 

as the obvious analogue with 9 and ds replaced by 9 and dS^ := IV701-1 
respectively. 

Lemma 5.11. The following discrete a priori H -bound holds: 

(5.14) EV) L2(Q) < (1 + CLfi,) V9L 2(,,) + CT E heDe2 
eE8, 

Note that the coefficient in front of JIV9 2 2(Q) becomes 1 whenever fi is 
piecewise linear, i.e., Lfi = 0. 

6. STABILITY 

Our present purpose is to show that the local refinement method (2.13)-(2.15) 
is stable in various Sobolev norms as soon as the refinement strategy proposed 
in ?4 is enforced. We start by recalling that 5n is weakly acute, i.e., the sum 
of the opposite angles with respect of the common side of any pair of faced 
triangles does not exceed 7i. As a consequence, we readily have the following 
form of the discrete maximum principle: let (0 E Vn attain its maximum at the 
internal node x n and let xjn E yn be the corresponding basis function; then 

(6.1) (V nVn) >O. 

This will serve to exploit monotonicity properties of the problem at hand which 
in turn compensate for the lack of regularity. Note once more the difference 
between our approach and that for purely parabolic problems [1, 5]. The first 
result, proved in Supplement ?S2, reads as follows. 
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Lemma 6.1. The following a priori maximum norm estimate holds: 

(6.2) max || U I ILO(Q) + 1m<an<N 11n IHL() < C. 

The following well-known result is also a consequence of (6.1) [3]. We include 
its proof in Supplement ?S2, just for the sake of completeness. 

Lemma 6.2. Let a E W1'?o(R) satisfy a(0) = 0 and 0 < a'(s) < L < oc for 
a.e. s E R. Then 

(6.3) iiH aVn ()I) 112(2 < L, (Vp, vH(n a()), V P E Vyl 

In proving the following lemmas, we shall extensively make use of the equiv- 
alence of continuous and discrete L -norms for discrete functions, namely 

IkoIIL2(Q) < Qp -o) < CIIPII122(n) V q' E Vyl 

Our next step is to demonstrate a weak a priori estimate in energy norm. The 
first term in (6.4) may be thought of as a discrete H112(0, T; L2(Q))-norm. 

Lemma 6.3. The following a priori estimate holds: 

N N 
(6.4) EIlu - 

u 

f1II +2 NL2(n) 
< C. 

n=1 n=1 

Proof. Take x = TUn E Vn as a test function in (2.15), and next add the 
resulting expression over n for 1 < n < m (< N). We have 

m m 
I + II := E(U - U ) (UV 

n=1 n=1 
m 

= Z r(f( -1), Un)n =: III. 
n=1 

Using (2.16) together with the elementary identity 

(6.5) 2a(a - b) = a2 - b2 + (a - b)2, V a, b E R, 

the first term can be further split as follows (HfI0 := H1): 
m 

2=E E rfn[(Un)2] _ n[(Un-1)2] + ?Hn[(Un _Un) ] 

n=l1 
m 

E | r[(Un)2I rin- (U n-1)2 

n=l1 

+ | 1 n[(Un -1)2] _ rln[(Un-1)2] 

n=2 

+ >Z fn[(Un _ Un-1)2] I + I2 + I3 
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We now evaluate these three terms separately. We first obtain 

I (UM, UM)M _ (U0, U0)1 > -C2(I)IU2II2(Q) 

and 
m m 

I = (Un_-Un-1 un - -n-I)n > E 11Un _ In-1112 
n=1 n=1 

The remaining term, which occurs only when the mesh is changed, can be han- 

dled by Lemma 5.5 with ;(s) = s2 . Indeed, since Un satisfies (6.2), C can be 

suitably modified outside the range of Un in such a way that C' E W1'??(R) . 

Hence I2 > -C Enm=2 T = -C. On the other hand, (2.13) in conjunction with 

(2.1) and Lemma 6.2 yields 

m 

E1 7lIV(n 11 22(Q) < L II. 
n=1 

For the remaining term III we make use of (6.2) to arrive at 

m 

IIIII < E T (Lf(o)I meas(Q)112 + LfI e' IIL2(f)) 11 U IIL2(Q) < C, 
n=l 

because enl = fln[f(Un-1)]. The proof is thus complete. O 

We now derive a strong a priori estimate in energy norms. To this end, we 

need the structural assumption (4.1 1). 

Lemma 6.4. Let (4.11) hold. Then 

N 
(6.6) LT 11ii3 - L 2(1 ) + max l |VEN IIL2(n) < C. 

n=1 

Proof. We argue by induction. Let 1 =: ni < n2 < ... < nK < N denote the 

indexes corresponding to the mesh changes; set nK+l := N + 1 . We want to 

prove the following inequality for all m between two successive mesh changes, 

say nk < m < nk+1: 

m 

n=1 

< C_ := exp(CLfl/mT) (C(Bk + 1)MT + I V& 112( ))2 

where Bk := maxl<i<k - heDe . Since this estimate is obviously valid 

for m = 0, assume, by induction, that it holds for all m < nk as well. 
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Take x = - _ -1 E yf as a test function in (2.15) and next add the 
resulting equality from n = nk to n = m (< nk+1). We end up with 

m 
II + - 1 (Unn nnn-1 ,n[g(Un) _(Un)]) 

n=nk 

m 
+ E(v n, V(En_ -e )) 

n=nk 

m 
- E -(f#-1) . En _ -n-1)n III 

n=nk 

The first term can be easily evaluated as follows: 

I = Tj n f Hn[(Un - Unl)(3(Un) - (Un-l))] 
n=nk 

m 
> Lf 1 ETf 1n[_(/ (Un) /_ (Un1 12 

n=nk 

Since e~nl = e~nl for all nk < n < nk+1, as a by-product of (6.5), the next 
term becomes 

m 

211 = |v | |L2(Q)-| | Ve9nk 12(Q) + - 
| |V(n - enl) I2(I). 

nnnk 

By virtue of the induction assumption we can use (5.14) to arrive at 

Ve k) El2(f) < (1 + CLlik) < nk <flI2(Q) + Ca bt hy Dk t 

< ( 1 + CL T) exp(CL2,(nk- 1)T)(C(Bk 1 + l)(nk- 1 ) 2 +|V9| L) 

+ C= - ((2Lf i) + Cr) j - I1 n (E E) I1 S2 
n=l1 

whence 

nk - 1 

| |Vn I IL2 (Q) + (C2Lf)1 n -j 1ri) C(Bn - n n 
0 

2 

n=1 

< exp(CLi/nkT) (C(Bk + 1)((nk- 1)T + IIV& 122(Q)) + CBkT, 

because 1 + CLfiT < exp(CL fr). It only remains to examine term III, for 
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which we have 

III1 ? <E (I (o) I meas(Q) l2 + Lf II- 1IIL2(n2) - _ I2(f1 ) 
n=nk 

< C(m - nk + 1)T + (2Lfi)1 T- 
- nl 2(l) 

n=nk 

because (6.2) yields iie9 -1 IIL2(Q) < CIIE 1IILOO(Q) < C . Collecting all partial 
results, we get the following estimate, for any nk < m < nk+1, 

A_ < exP(CLInk T)(C(Bk 1 + 1)(nk - 1)T+ IIV& II2(Q)) 

+ CBkT+ C(m-nk + 1)T 

< exp(CLImzT) (C(Bk + 1)MT + II yE HL2(Q)) = Cm. 

The induction argument is thus complete. Finally, the desired estimate follows 
from Lemma 5.9 and assumption (4.1 1). o 

Remark 6.1. As a by-product of the above argument, combined with (2.1), 
(2.13) and the fact that Fn1 , Fn cJn for all 1 < n < N we deduce 

N 

C yj f T [ (Un Un-1)2 jf(SUn? ( S)Un-1 )ds1 
n=1 

N 

>?l \'3~ R1] fn[U 
n=1 

whence 
N 

(6.7) ZT1iu U IL2(0\n) < C. 
n=1 

Our final estimate is a discrete analogue of (2.9): ut E L??(O, T; M(Q)). 

Lemma 6.5. Let (4.1 1) hold. Then 

(6.8) ~~~max Iu~Un I L' (fl)? CT. ( 6. 8 ) 1 - 
1<n<N 

Proof. It is enough to prove (6.8) for all steps between two successive mesh 
changes, say 1 < nk < m < nk+1 .Moreover, we can assume without loss of 
generality that f, is strictly increasing because the asymptotic constant in (6.8) 
is independent of the lower bound of f,'. As a result, B 1 is well defined and 
monotone increasing. Subtract now two consecutive discrete equations (2.15) 
for nk< n < nk+1 to arrive at 

(6.9) (k - , X) + T(Voea , VX) = T(af(e 1) x)k 
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where 0 zn = T-z1 (zn - zn- 1 ) and E1nk-2 : =E"k-1 . For notational convenience, 
we have used U~k1 to denote U kE- 7= l)k((1) E V'k fik to designate 
E) k-l ( Unk') E ynk and, finally, Uk-2 E yk to indicate the solution 
of the following auxiliary problem: 

nk1 nk2 x)nk + (vefnkl VX) = (f(Efnk1k) x)nk V nX EVfk 

By virtue of (2.15), (2.18) and (6.2), we readily have for all X E Vyk, IIXIILoo(n) 
< 1 , 

(a Unk nk I < I (f(enk 
- 

1) nk I + Z I((GIoEfnk- Iie *v X)) I 

eEmbnk 

< C (1+ E 2eD )k 
I 

Let WE E C??(R) be a monotone approximation of the function sgn such that 
WE(O) = 0, Iy',(s)I < 1 and vyi(s) - > sgn(s) as e 1 0 for all s E R\{0}. Set 

x := Hlnk[E6(OUnk 1)] in the above inequality and let e l 0. Since 6fnkl is 
either the initial discrete temperature or that corresponding to a mesh change, 
it satisfies either Lemma 5.9 or Lemma 5.10. We infer that 

(6.10) /Jnk IUnkI ?< C, 

because of (4.1 1) and (3.15). To proceed further, take x := I Ink[U(8en)] E y'k 

as a test function in (6.9) and next add the resulting expressions from nk to 
m < nk+ I' We obtain 

m 
I + II:= E (a(U - U ), nk[ ,(aeEn)])nk 

n=nk 

m 
+ E (V84n9, 711nk [a (aE6>n)]) 

n=nk 

m 
ET(8(9Etn1 18[ (a 9n) ])nk =II 

n=nk 

which is now examined in detail. By virtue of (6.3) we have II > 0. For III 
we make use of (6.6) to arrive at 

m-i 

11111 < C E TLfIIoII |nL2(Q) < C. 
n=nk 

For the remaining term I we reason as follows. We first observe that 

0 < OUn-l(xnk)y/ (aoen(xnk)) < 10Un(x k)l, 

for all nodes Xnk of 5,fink. Secondly, we take the limit as e 1 0 to obtain 

AUn 
x~k~y~e~oen(Xj k (x gk)) 

= aUn(x k) sgn(O Un(xnk)) = ,Un(xnk)I, 
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for all Xnk such that a Un (Xnk) :$ 0 or, equivalently, a On (Xnk) :$ 0. Note that 
it is precisely here where we need /3 to be strictly increasing. Therefore, term 
I becomes 

E / 171"&Unk I(UnI HnklaUn-1 - nnklOUmlf X nklaUnk-l. 
n=nk 

Collecting the previous estimates and making use of (6.10), combined with the 
fact that IIX IL (I) < f. Ink lXI for all X E Vnk , the assertion easily follows with 

an asymptotic constant independent of the lower bound of /3'. o 

7. ENERGY ERROR ESTIMATES 

In this section we derive error estimates in the natural energy spaces for our 
Adaptive Method. We also state a quasi-optimal error estimate in the maxi- 
mum norm for an auxiliary elliptic problem which may have some independent 
interest. Its proof is reported in Supplement ?S3. We stress once again that 
technical arguments to handle the discrepancy between continuous and discrete 
domains were introduced in full detail in [17] and are thus omitted here by 
simply assuming on = Q. 

We start by recalling a well-known interpolation estimate for the quadrature 
formula (2.16), namely, for all S E 5?" we have 

(7.1) j IXq -L (Xp)Idx < ChSIIXIIL2(s)IlIV91L2(s), V X, f' E V. 

Let G: H l (Q) Ho (Q) designate the Green's operator, that is, 

(7.2) (VGy , Vq) = (q#, ep), V E Ho(Q)* 

Since Q is smooth, the operator G is regular [2, p. 138]: 

(7.3) IIGv IIH 2(2) < CIIVIIL2(2) v V V E L (n). 

In addition, the norm in H- (Q) can be represented in terms of G as follows: 

(7.4) IIVIIH-1(Q) = IIVGVIIL2(2) = (V/ GqV)1 2 V V E He (L) 

The discrete Green's operator G : H- (Q) - Vn is defined by 

(7.5) (VGn, /x (v X), V X E V n 

and satisfies the following error estimates. Set hn := maxSEyn hs PM: 
minSE fn hs and recall that AT < Pn < hn < AT112, as results from (4.9). We 
have first 

(7.6) II(G -G G) /IIL2(Q) < Ch I21,IIL2(.), V V E L2 (Q) 

under the sole assumption of regularity of both 5"n and G [2]. If, in addition, 
h < CP with 0 < y < 1, we will prove in ? S3.2 the following quasi-optimal 
pointwise estimate; in the present case y = 1/2. 
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Lemma 7.1. There holds (G - G n f)MIIo(Q) < Ch 2Iloghf l7 V Lo(Q), for all 
MY E L`? (0) . 

Its proof is based on having suitable local energy estimates as in [21, 22, 23]. 
However, the novelty here is that 9,2n is not quasi-uniform nor does it have any 
a priori structure as in [22]. Such a new difficulty is responsible for the extra 
power of the logarithm. 

We now introduce the error equations. Integration of (2.8) on the interval 
In := (tn- , tn] results in 

(un _ u n- l ,) + Kj v0(t)dt, V5 ) 

(7.7) I 

= Kj~f(6(t))dt, V e H (Q)(), 1 < <N, 

where tn nz and un u(tn). At the same time, (2.15) can be written 
equivalently as 

(U- Un,1 p) + T(V&n, VX) 

(7.8) =(Un-Un-1 x)-(Un-U n- )n 
+ (U -& 1, f-% +( - _Un- 

(U@-l)) V (P E Hol (Q) 5 E V,1 <n <N. 

Subtraction of (7.8) from (7.7) yields the error equation 

(en- en- Is + Ki Ve6(t)dt, Vgo) +r(Ve9, V(n -x)) 

(7.9) = (U U- - x) - (Un - U , x)+ (U - , o-x) 

+ (U - & (P) + ( ;f (O(t))dt, up- 0 fidX 

for all (o E Hl (Q), E E V, where we have set, for any 1 < n < N 

eu(t) := u(t) -U , e6(t) := 0(t) _-en V t EIn and en:= e (tn). 

Theorem 7.1. Let (4.1 1) hold and the number of mesh changes be bounded above 
by O(z-1/2). Then 

(7.10) IleulIL (oT;H-1(Q)) + HleOHIL2(0 T;L2(n)) < CT |11 logTj /2. 

For the practical range of time steps T. the above rate is essentially 0(z1/2) 
The restriction on the number of mesh changes accounts for the accumulation 
of interpolation errors - Un l which, by Lemma 5.5, are 0(z). The 
mesh selection algorithm of ?4.2 is so designed as to make such a restriction 
and (4.1 1) acceptable constraints. The key issue in Theorem 7.1 is the underly- 
ing set of graded meshes {f-n},=1 for which it holds and constitutes the first 
rigorous result. In fact, similar rates of convergence have been obtained for 
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quasiuniform meshes [4, 8, 17, 24]. The improvement upon those results is 
thus to be expressed in terms of spatial degrees of freedom, as explained in ?8.2. 

Proof of Theorem 7.1. Take first (: Gen E Ho (Q) and x G eu E yf in 
(7.9), next add over n from 1 to m (< N) and use (7.2) and (7.5) to arrive at 

@(eu -eu , Geu) + n ( eo9(t)dt, eu) =: I +II 
n=1n= 

m 
- Z[ Un - - n1 Gnen)n _ (Un _ -n-1, Gn en)] 

n=1 

(7.11) + (& - U , (G - Gn)en) + - Unl Ge) 
n=1 n=1 

+ 
V ((f (6(t))dt, Ge? )-r(f (& , G e1)n) 

=:HIII + + VI. 

The rest of the proof consists simply of evaluating these six terms separately. 
In order to simplify notation, set 

Am := lmax lieU IIH1() 

By virtue of Lemma 5.4, (6.5) and (7.4), the first term yields 
m 

2I = lieu IIH-1(Q) - IIUO -U II>1(Q) + I IeU - eU IIH1(Q) ? leU IH-1(Q)-Cr. 
n=1 

In view of the constitutive relations (2.6) and (2.13), term II can be further split 
as follows: 

m 
IIl + II2 + 113 := n f(eo(t), u(tn) - u(t))dt 

+ E j (/3(u(t)) -_ (Un), u(t) -Un)dt 
n= 

+EJ n(fl(U) _rlng(Un 5 eu (t)) dt. 

We first make use of (2.5) and (6.4) to evaluate term II, as follows: 

|III < E I I|VeO(t)IIL2() j u,(s)ds dt < CT. 

We next recall an elementary interpolation estimate. Let a: R -+ R be a 
continuous and nondecreasing function; then 

(7.12) IPa(o) -fla(o) IILP(S) 

<Ch ) V S E S9,(o E V , 1 < p < o. 
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Applying this inequality with a = ft and p = 2, in conjunction with (6.4) and 
the constraint hS < Ax1/2 for all S E 5'n, we obtain 

m m 
1 le 2 EIf(n -Infl n1 2 

I2 (2L ) 2 HeO(t)|L2 ()dt - Lfi Ir Hf,(U ) H fB(U )HL2( ) 
n=l n=1 

> (2L,) leell6LH( ti;L2(Q))-Cx. 

The analysis of term II3 will be split according to the local meshsize near the 
discrete interface Fn and far from it. Consider first S E 9?Fn = {S E 9?n: 

Sn F n $ 0}, for which hS = 0(x). The inequality (7.12) just used, now with 
p = 1, leads also to 

Ifl(Un) - rHnf(Un)H L'(S) < CxIIVe IIL1(S). 

On the other hand, if S E 52F\5'F we can exploit the further regularity of /1, 

together with (4.10) and the constraint h5 < Ax1/2 for all S E ?n , to arrive 
at 

n) -n (Un)l1(s) < Ch2ID 2f(Un)HL1(S) 

? CLf IIxHVU IIL(S) ? CLI/fiVe II2(S) 

by virtue of a standard interpolation estimate. Hence, from (2.5), (6.2) and 
(6.4) we readily have 

III31 < E E lfl(Un) _ Hnf3(Un)IIL1(S) ) Ile u(t)IIL () 
n= 1 +Eyn J ? 

m 

< CT E_ T( , LQ II,,nII 2(Q)) < Cx. 
n=1 

In summary, for term II we have obtained the lower bound 

II > (2Lf) Ile,122(0 tm ;L2()) -Cx. 

The analysis of term III on the right-hand side of (7.11) will be also split ac- 
cording to what happens within the refined region 9Wn (defined in ?2) and 
out of it. More precisely, we decompose the integrals in III over all triangles 
Se5 : {S E S c g7} where h5 = 0(x), and S E R?f\$?R, where 

hs < Ax112. Inequality (7.1) then yields 

m 

IIIII < 1: E | I( & )G e _un[u _ n-)G enu 
n=1 SEn5S 

m 

? CE(xlUn - &n 1n l - + x1/211Un - & 1L2(n\-1 )) nV e nL2(Q). 

n=1 
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Hence, applying (7.4) and the property IIVG' lVI IL2(Q) < IIVG fIIL2(2), together 
with (6.4) and (6.7), we get 

IIIII < 1AM + C? T U - '1L2 + T 1-|IUn - IIL2(Q\n) 
n=l n=l 

< 1Am + Cj1 T 

where n > 0 is to be selected. The contribution due to IV can be handled by 
means of (2.5), (6.2), (6.8) and Lemma 7.1 as follows: 

m 

E 1Un _ &n-1 11 C1 IQ 11g (G- 7.IL(Q ivj ? iiu -U IIL1(?) II(G-G )eUIL (?)?Cjor 
n=1 

Term V is easy to evaluate in view of (5.10) and the fact that U U 1 

only whenever the mesh 5 1 changes. In fact, we have 

m 

<A1 n-1 -&n-1 L()???A~+CI- 
IVI < : ||U -& IIL 2 (Q2) 1euI-1Q 

n=1 
m 

<Am1 E 11un- _ 
-L 2(Q 

< CTl12Aml < ?jAM + Cjl T. 

n=l 

It only remains to estimate the contribution due to the source f. To evaluate 

VI, we decompose it further as follows: 

VI = E (j f(6(t))dt, (G - Gn)en) 

+ E ( jI[f (6(t)) - f(E )]dt, Gne) + r(f (&n) _ f (en- Gn n 

+ ~z((f(&'- ) Gnen) _ (f(-1), G- e ? ) =: VI1 + * + vI4. 
n=l 

We have first 

IVI ? Cllf(O)lL(0 TL2()) )jma<x II(G - G )elL2(2) < CT. 

as results from (2.4), (2.5), (6.2), and (7.6), as well as 

m 

?V 1eoI2(otm 2(jn2)) + CIIZI e In() 
IV21 < CT IE lleollL(I ;L ())lu IIH-'(Q) 

n=l 
m 

< 22l ol 2(0, tm; L2 (j) + C ' ET Ileu nH 112Q 
n=l 

We next use (6.6) together with (2.4) to obtain 

m 
iVI3i < CTz IIE& O IiL2(Q)iieUiiH-I(Q) < 1Am +CT. 

n=1 
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We then decompose VI4 further and apply (7.1) in conjunction with (5.14) to 
arrive at 

IVI4I < 4-n 1)r_- nlf(n-1) GI e) 
n=1 

+ E(If(n- 1) GIen ) - (IInf(en-1), Gne ) 

n=1 
m 

< T E Ve 1 L2(Q) eUIH-1(Q) < )Am + CT. 

n=1 

A proper choice of q finally allows terms Am and Ile012 2(O tmL2()) to be 
absorbed into the left-hand side of (7.11). Therefore, for all 1 < m < N, we 
have obtained the estimate 

m 
max IleUH-1(n ) + IleO12L2(0 tm;L2(n)) < CTlogTx + CETIle -1(). 

n=1 

The rightmost term can be removed after applying the discrete Gronwall lemma. 
The desired estimate then follows from the property u E H1(O, T; H1 (Q)) C 
C0' 1/2(0 , T; H 1(Q)), which can be used to replace maxl<n<m IleUnUIH-1(Q) by 

IeUIe IILo (o T; H-1(Q)). The theorem is thus proved. 0 

8. COMPUTATIONAL ISSUES 

To conclude this paper, we present several numerical experiments and com- 
pare the proposed Adaptive Method (AM) with the Fixed Mesh Method (FMM). 
We also comment on some crucial computational issues. Full implementation 
details as well as many other relevant numerical tests will appear in Part II [16]. 

8.1. Implementation. Let Mn := ((,n, ln)n) j and Kn := ((Vx7n, Vn)); j 

denote the mass matrix and the stiffness matrix, respectively. The equation 
(2.15) can then be written in matrix form as follows: 

(8. 1 ) Mn un +Tnn = n 
- 

n-1 + Tf(-en- 1)), (8.1) M T (U -ixfe )) 

where we have identified piecewise linear functions with the vector of their 
nodal values. Since eEn = fln[fl(Un)], the algebraic system (8.1) is (strongly) 
nonlinear. However, as Mn is diagonal, (8.1) can be easily and efficiently 
solved by a nonlinear SOR method that is known to converge; see [16, 17, 18]. 
Based on a linear majorant, an approximate optimal relaxation parameter can 
be determined in advance so as to accelerate the convergence of this iterative 
method [16]. 

In order to implement (4.9) efficiently, an auxiliary (or superposed) uniform 
square mesh d' of size p := 0(T1/2) is used. Such a mesh is created and kept 
fixed from the beginning in such a way that Q C UREf R. We associate with 
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each square R a value of desired meshsize, defined as the minimum of the local 
parameters of ?4.1 and ?S4.2. This leads to the following piecewise constant 
function: 

(8.2) hi := min (AT ,hFS,1 he S hs) V R E '. 

SE5f n eEGo: SnR$0, eCOS 

Such a function may be very oscillatory and thus not appropriate as a meshsize 
indicator. An efficient smoothing postprocess then constructs a piecewise con- 
stant function hn satisfying the following compatibility property for all R E d': 

(8.3) h IP >h IR, V P E : dist(P, R) < h IR 
This is achieved, for instance, by defining hn to be 

(8.4) h IR := min (max(hfip, dist(P, R) - p)), V R E A'. 
PEd' 

The function hn is then used by the automatic mesh generator of [ 19] to produce 
an admissible triangulation. In fact, by virtue of (8.3), we have AT < hs < 
hf(x) ? ATz12 for all S E en and x E S, which in turn implies (4.9). This 
topic is further discussed in [16]. 

Since several remeshing operations are to be performed during the solution 
process, mesh generator efficiency is a crucial issue. We used the mesh gener- 
ator ADVFRONT of [19], which produces weakly acute meshes for general pla- 
nar domains with quasi-optimal computational complexity O(Sn log Sn), where 

= card(5~). This is so because binary search techniques are employed 
on suitable quadtree structured data to update the advancing front. Similar 
ideas were applied to determine Ut 1 , the interpolant of Un I in 9n . More 
specifically, this crucial interpolation process requires a computational labor of 
0((S n- + jn) log jn) , which is also nearly optimal; recall that Jf is the num- 
ber of nodes of 5yn. Such techniques are essential for the Adaptive Method to 
be competitive. See [16] for more details. 

8.2. Degrees of freedom. Suppose that there is no discrete mushy region and 
any discrete interface Fn is a polygonal curve with finite length uniformly in 
T, which in turn is consistent with (3.13). Then the refined region R n is just a 
strip O(TI12)-wide around F . Since the local meshsize is O(T), the number of 
triangles within JR'n is 0(T: 3/2) . Except possibly for a small transition region, 
triangles outside of Rn are o(T1/2) . Consequently, the number of triangles 
outside of 3n becomes 0(Tz'); so the required computational labor in Mn 
dominates! Hence, the number of spatial degrees offreedom (DOF) for every 
mesh .? is 

(8.5) DOF = 0(T 3/2) 

for a global accuracy O(T1/2). This quantity compares quite favorably with 
similar ones for practical methods involving a single quasi-uniform mesh and is 
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reflected in Tables 8.1-8.3. In fact, in that case hs = O(T) for all S E 9' and 

so DOF = O(T 2) for the same global accuracy [4, 17, 24]. We also stressed 
that even with mushy regions, we need fewer DOF. A relevant example is fully 
discussed in [16]. 

Consider now the Fixed Mesh Method with preliminary regularization [8, 
12, 13, 17]. Assuming that a global nondegeneracy property is valid, a result 
similar to (8.5) can be obtained [17], but at the expense of a much worse local 
approximation quality, as numerical evidence indicates [16, 17, 18]. Such a 
local property is extremely important in determining interfaces and explains the 
much better resolution associated with the present method. We also underline 
that the example below does not satisfy a global nondegeneracy property. 

8.3. Numerical experiments. To illustrate the superior performance of our 
Adaptive Method with respect to fixed mesh techniques, we have chosen the 
severe test below. It is a classical two-phase Stefan problem with an interface 
that moves up and down. The exact temperature is given by the following 
expression: 

(8.6) 6(x~y, t) O.75(r 2- 1), r< 1, (8.6) 0(X'5 Y. t)={ (1. 5 - '(t)sin o)(r - 1), r > 1 

where r (x2 + (y - a(t))2)1/2 cx(t) := 0.5 + sin(1.25t), sin (o := (y - ce(t))lr 
2 := (0, 5) x (0, 5) and T:= / 1.25 . Dirichlet boundary conditions are im- 

posed at y = 0, y = 5 and x = 5, and a homogeneous Neumann condition 
is prescribed at x = 0. Since the exact interface I(t) is a circle with cen- 
ter (0, ca(t)) and radius 1, the velocity V(x, y, t) normal to I(t) at (x, y) 
exhibits a significant variation along the front, which makes this example an 
extremely difficult test for our numerical method. Moreover, since V(x, y, t) 
vanishes at both (x, y, T/2) and (1, a(t), t), and is thus very small nearby, 
this test constitutes a fair measure of robustness under degenerate situations. 

Several numerical experiments were performed with both our Adaptive 
Method (with and without fixed triangles as in ?4.2 and ?S4.1) and the Fixed 
Mesh Method [3, 4, 8, 12, 13, 17, 24]. For the latter, the constant of propor- 
tionality between T and the (uniform) meshsize was chosen so as to minimize 

Jle01HL2(Q) for a desired number of DOF, where Q := Q x (0, T) . The various 
constants introduced in ??4, S4, 8 are as follows: A = 1.5, A = 5, M = 5, 
p = 0. 7 5,/;,- , ul 2.2 2, 5 = 5.59 , average value of 83 0 1.2 , Al= u*2 = 3.5 5 

=0.5, 54 =2, C1 I=ID 2001LO(U) C2 = 
311HV'0LO(U), C3 = 2 length(I0), 

C4= C3A. 
Results are reported in Tables 8.1-8.3, where we have employed the follow- 

ing notation: N := number of (uniform) time steps, J := average number 
of nodes, SR := average number of triangles within the refined region, Sp := 
average number of triangles in the rest of Q, S := total number of trian- 
gles (uniform mesh), C := number of mesh changes (and number of com- 
puted solutions rejected, if any), CPU := CPU time in seconds (on a VAX 
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TABLE 8.1 
Adaptive method (with fixed triangles) 

N | J |SR SP C | 2 | 2 ES E7' CPU| 

40 319 496 148 4(1) 16.1 35.4 11.3 5.37 58 
60 593 957 233 4(1) 10.5 29.1 6.65 4.44 132 
80 875 1430 328 4 7.54 24.2 5.23 3.45 224 
120 1413 2320 510 5 5.34 22.7 3.93 2.60 546 
160 2089 3504 679 6(1) 4.07 19.6 3.14 2.08 1111 
240 3620 6201 - 1042 8(1) 2.82 17.7 2.41 1.65 2998 

TABLE 8.2 
Adaptive method (without fixed triangles) 

5R S~ C 2 2E7 ___ 
N _ S_ S C_ I E| ES EI" |__ CPU 

40 339 536 144 3 18.8 37.0 10.7 5.83 50 
60 592 957 231 4 11.3 28.8 7.42 5.01 126 
80 818 1306 334 5 7.59 26.1 5.17 3.26 235 
120 1406 2306 510 6 5.73 23.3 3.92 2.66 583 
160 2110 3563 662 6 4.60 20.8 3.44 2.32 1068 
240 3631 6245 1023 8 2.99 18.5 2.58 1.72 2916 

TABLE 8.3 
Fixed mesh method 

N J S E6 E2| E6, E7' CPU 

50 448 942 15.9 39.7 20.8 13.8 37 
75 1017 2104 10.5 30.4 15.3 9.40 113 
100 1812 3718 7.81 26.8 12.4 6.88 292 
150 4107 8356 5.57 22.3 7.78 5.65 919 
200 7361 14912 4.52 18.6 6.31 3.53 2264 

8530, VMS 4.6) and ES := IeL2(Q)X E := IleUL2(Q), ES = IleOL(Q)X 

Ec := maxl<f<N dist(I(nT) , F n), where the errors are scaled by 102 . More- 
over, IIOHL2(Q) ; 33.16, I L??(Q< t 13.38, HUHL2( 39.81, with an error of 
one unit in the fourth digit. 

In light of these (partial) results, we can certainly claim a superior perfor- 
mance of the Adaptive Method in that it requires less computational labor, 
say CPU, for a desired global accuracy. Moreover, the proposed local refine- 
ment strategies of ?4.2 and ?S4.1, with and without fixed triangles, perform 
quite similarly. The L -error for temperature ES behaves linearly in T, thus 
much better than predicted. We also have a (linear) pointwise error ES that 
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N-80 N-80 
mesh I mesh I 

Sp-3326 
(zoom) 

n-1 :12 

FIGURE 8.1 
AM, N = 80, 5'F U 5Y free: Mesh I and zoom of refined region 

is far from being theoretically explainable. The same happens with E2 and 
E7 . The improvement gained in Lo is clearly more pronounced than that in 

2 L . The free boundary is located within one single element, thus confirming 
the aforementioned local approximation quality. Therefore, we have a practical 
0(T)-rate of convergence in distance for interfaces, the best one can hope for. 
Since approximability and nondegeneracy are tied together [14], it is worth 
noting that the nondegeneracy property is not uniform in the present case. 

We finally conclude with several pictures corresponding to the case N = 80 
without fixed triangles. The first mesh together with the corresponding Refined 
Region is depicted in Figure 8.1. The boundary of the Refined Region, called 
RED ZONE, appears blackened in Figure 8. Ib, which also shows the first and 
last discrete interfaces computed with mesh I. Note that the last interface has 
escaped from the Refined Region and should thus be discarded as indicated in 
?4.2. To avoid rejecting a computed solution owing to failure of the free bound- 
ary location test, a more flexible strategy for the case without fixed triangles 
has been designed in [16]. The remaining meshes, generated automatically by 
ADVFRONT are illustrated in Figure 8.2. Observe the proper grading produced by 
ADVFRONT. We see how the refined region moves up and down accompanying 
the interface motion. Note that even in the upmost position, when the interface 
is motionless, the proposed strategy is successful. Figure 8.3 is a zoom of both 
the exact and discrete interfaces for a number of time steps. The agreement 
between these curves is quite remarkable as compared with the local meshsize. 
Part of the RED ZONE, blackened triangles, can be seen in the second zoom as 
well. The exact and discrete interfaces obtained with the FMM for N = 100 
are depicted in Figure 8.4. It is worth comparing this picture with Figure 8.3: 
the interface location is drastically improved by the AM. 
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N-80 N=80 

mesh II mesh III 

SR=1557 S'=1058 

Sp-299 Sp=339 

n=13:38 n=39:54 

N=8 0 N=80 

mesh IV mesh V 

Sft=1235 SR=1253 

S'=347 Sp=379 

n=55:65 n=66 :80 

FIGURE 8.2 
AM, N =80, JF UJB free: Consecutive meshes 

n-40 ~~~~~~~~~~~~~~~~mesh 11 

N-80 (zoom) 
interfaces 

(zoom) 

computed Interfaces 
n ---n=- - exact Interfaces 

FIGURE 8.3 
AM, N =80, < U Y.B free: Interfaces at n = 8k (O < k < 5); 

zoom of Mesh II 
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n=50 ~~~~~~~~~~~~~~~~~~~(zoom) 
(FMM)) 
N=1OO 
S=3718 :~ 
Interfaces 

(zoom) - 

computed Interfaces 
....exact interfaces 

FIGURE 8.4 
FMM, N 100: Interfacesat n= k (O k? 5) 

zoom of the mesh 
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