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CONVERGENCE OF FINITE DIFFERENCE SCHEMES 
FOR CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS: 

THE CORRECTED ANTIDIFFUSIVE FLUX APPROACH 

FR1D?IRIC COQUEL AND PHILIPPE LE FLOCH 

ABSTRACT. In this paper, we apply the general method we have presented else- 
where and prove the convergence of a class of explicit and high-order accurate 
finite difference schemes for scalar nonlinear hyperbolic conservation laws in sev- 
eral space dimensions. We consider schemes constructed-from an E-scheme- 
by the corrected antidiffusive flux approach. We derive "sharp" entropy inequal- 
ities satisfied by both E-schemes and the high-order accurate schemes under 
consideration. These inequalities yield uniform estimates of the discrete space 
derivatives of the approximate solutions, which are weaker than the so-called BV 
(i.e., bounded variation) estimates but sufficient to apply our previous theory. 

1. INTRODUCTION 

In this work, we are concerned with the Cauchy problem for nonlinear hy- 
perbolic scalar conservation laws with several space variables: 

( 1.v1) atU+i9J(u)+ +0g(u) = O. U(t, x, Y) eRD, t E (O. T), (x, Y) E R2, 

and 

(1.2) u(O, x, y) = u0(x, y), (x, y) ER 2 

where f and g: R -* JR are Lipschitz continuous functions and the initial data 
u0 is a given function in L (JR 2) n L`?(]R2). As is well known, this problem 
in general does not admit smooth solutions, so that weak solutions in the sense 
of distributions must be considered. Moreover, an entropy condition must be 
added to ensure uniqueness in the class of weak solutions (Lax [27]). Recall also 
that Volpert [51] has proved the existence and uniqueness of such an entropy 
weak solution in the class of bounded functions of bounded variation, and 
Kruzkov [22] has extended the result of Volpert to the more general class of 
bounded functions. 

This paper treats the approximation of the entropy weak solution to prob- 
lem (1.1), (1.2) by high-order accurate and explicit finite difference schemes. A 
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previous work (Coquel and Le Floch [7]) has presented a general theory to prove 
convergence of finite difference schemes for equations in several space dimen- 
sions. In the present work, we apply the method of [7] to get the convergence of 
the schemes constructed by the so-called corrected antidiffusive flux approach. 

Let us first recall that the classical approach used to show convergence of finite 
difference schemes for scalar conservation laws is based on the Lax-Wendroff 
Theorem [28, 29]. This requires both a uniform L?-bound and strong LI- 
convergence of the family of approximate solutions. On the other hand, as is 
well known, in the case that a uniform estimate of the total variation of the 
approximate solutions, i.e., a BV-estimate, is available, the compactness theo- 
rem of Helly gives strong Ll-convergence of the approximate solutions. Actu- 
ally, this argument yields convergence of some high-order accurate difference 
schemes in the case of equations in only one space dimension, but convergence 
of only first-order accurate schemes for equations with several space variables. 
Concerning the techniques of derivation of BV-estimates, we refer among oth- 
ers to the works of Crandall and Majda [8], Harten [21], Leroux [30, 31], Osher 
[35], Osher and Chakravarthy [36], Sanders [37], Shu [39], Sweby [42], and 
Tadmor [45]. 

In contrast with this approach, the theory of Coquel and Le Floch [7] allows 
one to prove convergence of finite difference schemes without using a uniform 
BV-estimate. The method of proof is based on a uniqueness result in the class of 
entropy measure-valued solutions, due to Di Perna [1 5]. In [7], a certain "weak 
estimate" of the space derivatives of the approximate solutions is introduced, 
but this estimate indeed turns out to be weaker than the usual BV-estimate. 
General convergence theorems which generalize the Lax-Wendroff Theorem are 
proved in [7] in the setting of measure-valued solutions. These theorems of 
convergence, combined with the uniqueness theorem of Di Perna, yield strong 
LI-convergence of the sequence of approximate solutions. 

This paper is devoted to the application of this theory to a class of finite 
difference schemes. To be specific, we focus on the high-order accurate schemes 
which are constructed from an E-scheme (Osher [35]) by the corrected antidif- 
fusive flux approach and, for the sake of simplicity, we restrict ourselves to the 
schemes defined on regular Cartesian meshes. Actually, the method of proof 
presented here is very general and could be applied to the case of irregular 
meshes or to implicit schemes, as well as finite volume schemes. Moreover, we 
present our results for an equation with two space variables, but the extension 
to an arbitrary number of space variables is immediate. 

The results of convergence known for the schemes with corrected antidiffusive 
flux concern only equations in one space dimension: for instance, Cahouet and 
Coquel [3], Leroux and Quesseveur [32], and Vila [50]. The main result of this 
paper is a generalization of these results of convergence to the case of equations 
with several space variables. Moreover, even in the case of equations with one 
space variable, our method turns out to improve existing results. 

In order to apply the method of proof of [7], the main difficulty is to derive 
a "weak estimate" of the space derivatives of the approximate solutions. Recall 
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that this estimate replaces the usual BV-estimate and is weaker than this latter 
(see [7]). For this purpose, we obtain in this paper "sharp" entropy inequalities 
(in a sense specified in ?3 below) satisfied by the schemes under consideration, 
i.e., both E-schemes and the high-order schemes with corrected antidiffusive 
flux. We emphasize that the above inequality is derived from a sharp evaluation 
of the entropy dissipation of the schemes, and the required uniform estimate of 
the space derivatives is precisely provided by the term of entropy dissipation 
([7, ?2] and ?4 below). 

An outline of the paper is as follows. Section 2 recalls the general method of 
proof. The derivation of the sharp entropy inequalities satisfied by certain first- 
order schemes is done in ?3. Finally, ?4 generalizes the inequalities obtained in 
?3 to the high-order accurate schemes with corrected antidiffusive flux and gives 
the proof of convergence. Throughout the paper, C denotes a positive constant 
independent of the increments of the discretization and is not necessarily the 
same at each occurrence. 

2. SURVEY OF THE GENERAL THEORY 

This section gives the main results of [7] which will be needed in this paper. 
We refer to [7] for the details and the proofs. The main tool used in our 
approach is the concept of measure-valued solutions. Instead of functions in 
L??((O, T) x R2), we consider Young measures on (0, T) x R 2, that is, weak- 
star bounded applications v: (0, T) x R 2-- Prob(IR), where Prob(R) is the 
space of all measures of probability on IR, i.e., nonnegative measures with unit 
total mass. As in [15] and [7], all the Young measures will be tacitly assumed 
to be supported in a compact set K of R. We recall from Di Perna [15] that a 
Young measure v: (0, T) x R -2, Prob(]R) is a measure-valued solution to the 
conservation law (1.1) if it satisfies 

(2.1) at(V 5 id) + ax(v, f) + ay(v, g) = 0 

in the sense of distributions. This definition indeed generalizes the usual notion 
of weak L?-solutions in the sense of distributions (see [15]). Moreover, for 
the sake of uniqueness, it is necessary to add an entropy condition (Lax [27]). 
Recall that a Lipschitz continuous function (U, F, G): R --+ R3 is said to be 
an entropy for equation (1.1) if U is a convex function and F and G satisfy 
the following compatibility relations: 

(2.2) U'(v)f'(v) = F'(v), U'(v)g'(v) = G'(v), a.e. v E JR. 

Such a function (U, F, G) corresponds to an additional conservation law sat- 
isfied by each smooth solution of (1.1). A Young measure v is consistent with 
the entropy inequality associated with (U, F, G) if it satisfies 

(2.3) at(v, U) + av , F) + ay(v, G) < O 
in the sense of distributions. A measure-valued solution v is an entropy 
measure-valued solution if it satisfies (2.3) for all entropies (U, F, G). 
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In the class of entropy measure-valued solutions, Di Perna has proved the 
following generalization of the Kruzkov uniqueness theorem [22]. 

Theorem 2.1 (Di Perna [15]). Let the initial data uO be in L (IR 2) n LO (IR . 
Assume that v: (0, T) x R2 -, Prob(IR) is a Young measure which satisfies the 
following properties: 

(1) v is a measure-valued solution to equation (1.1), 
(2) v is consistent with all entropy inequalities (2.3), 
(3) v assumes its initial data uO in the following sense: 

(2.4) thefunction (t, x, y) -+ x , lidl) belongs to L?0((O, T), L1(R 2)), 

and 

(2.5) lim 
l (VSXTy X lid - uo(x, Y)) dx dy ds = O. 

t>o 

Then, if u in L' ((O, T) x R 2) denotes the unique entropy weak L?-solution 
to problem ( 1. 1), ( 1.2), we have 

(2.6) Vt,x, y = Ju (t,x, y) a ae. (t, x, Y) E R2 

We now consider approximate solutions to (1.1), (1.2) constructed by gen- 
eral explicit finite difference schemes, and we recall several general convergence 
theorems proved in [7] which are useful to apply Theorem 2.1 in the context 
of finite difference schemes. Let us first introduce some notation. Let h, hx, 
and hy be the time, x-space, and y-space increments of the discretization, 
respectively. The mesh ratios 

(2.7) = h A = h 

will be kept constant and should satisfy a Courant-Friedrichs-Levy (CFL) sta- 
bility condition. We define a regular grid by setting 

(2.8) t = nh (neN), x =ihX, yj= jhy (i, je Zori,ieZ+2). 

We consider approximate solutions uh: : + XR 2 -D R to problem (1.1), (1.2) 
which are piecewise constant, i.e., for t E [ta, tn+l) 

(2.9) u (t, x, y) = u7, X E [Xi-l/2 / xi+1/2)' Y E [yj-1/2 yj+1/2) 

For t = to = 0, (u1 )11ja is defined from the initial data uO by projection, 

o fXi+12 (Yj+1/2 
(2.10) uij = hh ] ] uo(x, y) dx dy, i, E Z. 

Then for each integer n, the sequence (uin+1 ) jI g is given by the following 
(2k + l)-point explicit difference scheme: for any i, i E Z 

(2.11) u7ij = i, i u x (I+ 1/2, j-7i-1/2 j )-Ay (g i j+ 1 /2- g j-1/2) 
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where 41/2 and gi 1+1/2 are defined from two given numerical flux functions 

f and g: R2k - Rby 

(2.12) g 12, = g(u7 u12 i-k+ljj 5 -k+2j , Ui+k), j , I e 
* ~~~n = Un n un EZ 

gi, j+ 12 g i,j-k+l 5 Ui,j-k+2, ** ,i,j+k), IJE5 

As usual, the functions f and g are assumed to be consistent with the exact 
flux functions f and g, i.e., they are Lipschitz continuous and satisfy 

(2.13) f(v, v, ..., v) = f(v), g(v, v, ..., v)= g(v), V ER. 

Assuming that the family of approximate solutions {u } defined by (2.9)-(2.12) 
is uniformly bounded in L -norm, 

(2.14) Iluh IILo((oT)xR2) < C, 

one can construct a Young measure v to represent all the L -weak-star com- 
posite limits of u h when h (or a subsequence) tends to zero. In other words, 
we have 

a(u) (v, a), weak-star in L((O, T) x R12), 

for each continuous function a: IR -+ IR (Tartar [47, 48]; see also Ball [1] and 
Dacorogna [9]). The following result proved in Coquel and Le Floch [7] is an 
extension of the Lax-Wendroff Theorem [28, 29]. 

Theorem 2.2. Assume that the numerical flux functions f and g are consistent 
with equation (1.1) and the family of approximate solutions {uh } defined by the 
difference scheme (2.9)-(2.12) satisfies the following properties: 

(1) the uniform L?-estimate (2.14), 
(2) there exists fi in [0, 1) such that 

(2~~~~~~~~~~~ 15 hAE Elu~ -u l lyl-jgjh h h <C5 (2.15) 
hh h 

+ 
x yh 

h 
nEN iEZ h h x y 

nh<T 

where the constant C is independent of h (with Ax = h/hX and A = h/hy kept 

constant). Then the Young measure v associated with {uh} is a measure-valued 
solution to (1.1). 

Assumption (2.15) is a uniform estimate of the discrete space derivatives 
of {uh } that will be called the weak estimate of the space derivatives. For 
/? E (0, 1), estimate (2.15) is indeed weaker than a BV-estimate because of the 
weight hO. Several comments concerning (2.15) can be found in [7]. 

Let (U, F, G) be an entropy for equation (1.1); a function (U, F, G) is a 
numerical entropy consistent with the (exact) entropy (U, F, G) if the func- 
tions F and G are Lipschitz-continuous functions defined from R2k into R 
and satisfy 

F(v, v, ...,v) = F(v), G(v, v, , v) = G(v), v ER. 
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For simplicity, we set 

I Ul U(uij), 

i+ 1/2 =Fu (-k+l, j ' ui+kj) 

G71+/2G(U7n n..u7~) nEN, i,jEZ. i j+112 = ~i,j_ k+l, f Ui, j+k) ' nEA ,jE2 

The following theorem is proved in [7]. 

Theorem 2.3. Assume that the hypotheses (2.13)-(2.15) of Theorem 2.2 are sat- 
isfied. Let (U, F, G) be a numerical entropy consistent with an exact entropy 
(U, F, G) for equation (1.1). Suppose that the family of approximate solutions 
{uh} satisfies the following inequality (n E N, i, i E Z): 

1 Un+1 n 1 n _ n 1 nfl 
(2.16) h(UInj -Ut j)+T-(Fi+ 1/2 1-F?/2 j) I j+ R11,2 

where the term R7n tends to zero in the following weak sense: 

(2.17) E (tn, xi , 5y)R. jhxhyh O. when h -O. 
nEN ijEZ 

nh<T 

for every function Ao: (0, T) x R2 R+ of class C I with compact support 
(Ax = h/hx and Ay = h/hy are kept constant). Then the measure-valued solution 
v associated with {uh} is consistent with the entropy (U, F, G). Moreover, if 
{uh } satisfies (2.16), (2.17) for all entropy (U, F, G), then v is an entropy 
measure-valued solution to (1.1). 

Concerning the initial condition (1.2), one has [7]: 

Theorem 2.4. Let the initial data u0 be in L1 (R2) n Loo(R2). Assume that the 
sequence of approximate solutions {uh} satisfies (2.14), (2.15) and the following 
uniform Ll-estimate: 

(2.18) H h(t5 , *)IILI(R2) < C, a.e. t > O. 

Suppose moreover that, for one given strictly convex entropy U satisfying U(O) = 

0, the discrete entropy inequality (2.16) holds with 

(2.19) him n Z IRnI jlhxhyh -0 astgoesto0. 
h>O nEN i~jE7Z 

nh<T 

Then the Young measure v associated with the family {u } satisfies the initial 
condition (1.2) in the sense (2.4), (2.5). 

Theorems 2.2, 2.3, and 2.4 show that the Young measure v associated with 
the family of approximate solutions {uh } is an entropy measure-valued solution 
to (1.1) which satisfies the initial condition (1.2) in the strong sense. Thus, by 
Theorem 2.1, v is a Dirac mass, i.e., (2.6) holds. In that case, we can conclude 
that uh converges strongly in L1 to the unique entropy weak L?-solution to 
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problem (1.1), (1.2). This method of proof will be applied in ?4 of this paper 
to show convergence of the schemes constructed by the corrected antidiffusive 
flux approach. Recall also that the above method generalizes to finite difference 
schemes a result of Szepessy [43, 44] which concerns the streamline diffusion 
finite element method. 

3. A SHARP ENTROPY INEQUALITY SATISFIED BY E-SCHEMES 

3.1. Introduction. In this section, we derive a sharp entropy inequality for (first- 
order accurate) E-schemes applied to an equation with one space variable. This 
inequality is fundamental for the proofs of convergence of the next section and, 
in particular, will be generalized there to equations with several space variables 
and to high-order accurate schemes constructed from E-schemes. 

Entropy inequalities for, say, first-order accurate schemes like E-schemes 
have already been obtained in the literature (see, for instance, Crandall and 
Majda [8], Osher [35], Tadmor [45],... ). But in the present work, we are 
interested in a stronger version of these inequalities, that we call "sharp" entropy 
inequalities. They are of interest since they yield an estimate of the discrete 
space derivatives of the approximate solutions, i.e., precisely an estimate of the 
form (2.15). About such sharp entropy inequalities, only partial results have 
been obtained in the literature, mainly by authors concerned with applications 
of the method of compensated compactness. Some ideas of the proofs below 
come from the work of Di Perna [13]; we also mention Lax [26], Ding, Chen, 
and Luo [12], and Wang, Li, and Huang [52]. On the other hand, we emphasize 
that our results below give the precise CFL-like stability conditions and probably 
better estimates of that sort. In particular, we point out a substantial difference 
between the Godunov scheme and the modified Lax-Friedrichs scheme [45]: the 
rate of entropy dissipation (see below) turns out to be cubic for the former and 
quadratic for the latter. 

Here is an outline of this section. We first consider in ?3.2 the Godunov 
scheme and then in ?3.3 the modified Lax-Friedrichs scheme. The extension to 
a general E-scheme is obtained in ?3.4 by writing it as a convex combination 
of the Godunov scheme and the modified Lax-Friedrichs scheme. Finally, ?3.5 
is concerned with the class of schemes whose numerical viscosity coefficient is 
bounded below by a positive constant. 

In this section, since we consider an equation with only one space variable, we 
use the notation introduced in ?2 except that the letters y, j, etc. are omitted. 
The given flux function f is assumed to be of C2 class and uniformly convex 
(several remarks concerning the case of a not necessarily convex function are 
also given in this section). Our estimates will depend explicitly on the convexity 
modulus of the function f given by 

(3.1) 3 = inff "(u), U 

the infimum being taken over all u under consideration. The sonic point u* is 
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defined by 

(3.2) f/(U*) = O. 

For the sake of simplicity in the presentation (it is not a restriction for our 
purpose, and the extension to a general entropy is immediate), we shall use 
throughout this section the entropy (U, F) defined by 

(3.3) U(u) = 2 F(u) fJvf'(v) dv, Vu elR. 

3.2. A cubic estimate of the entropy dissipation in the Godunov scheme. For 
any UL and UR in IR, let I - w( ,; uL UR) denote the unique entropy weak 
solution to the Riemann problem 

atu + af(u) = O, t>O, xElR, 

and 

(O0 U) UL for x < O, 
URfor x >0. 

Since the function f is strictly convex, w (.; UL, UR) is composed of either a 
shock wave (if UL > UR) or a rarefaction wave (if UL < UR) (see Lax [27]). 
Then, the Godunov scheme is defined by its numerical flux function fG given 
by 

(3.4) fG(UL I UR) = f(w(O; UL I UR)) UL UR E IR. 

We assume that the CFL stability restriction on Ax 

(3.5) Ax sup If (u)l < I 
U 

is satisfied (the supremum is taken over all u under consideration) and will use 
an averaged form of the Godunov scheme introduced by Tadmor [45]. Follow- 
ing the notation of ?2, the sequence (u7 )nEN ine constructed by the Godunov 
scheme can be redefined by 

(3.6a) un+1 =l(un+7 
R 

+ un+,?L), n EN, iEZ, 

where we have set 

(3.6b) U1i j2 - hA W ( ; u , Un) dx, n EN, i E Z, 

and 

(3.6c) -+1 
f/ w (h;ui, Ui+1) dx, nEN, iEZ. 

This decomposition of the Godunov scheme is helpful to derive the entropy 
inequalities below. Recall also that the function 

(3.7) FG(UL, UR) = F(w(O+; UL, UR)), UL, UR E D{ 
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is a numerical entropy-flux for the Godunov scheme associated with the given 
(quadratic) entropy (3.3). As is usual, we set 

FG i+1/2 =FG(u u+l), nEN, iEZ. 

Then, following an idea introduced by Di Perna in [13], we are able to give 
a closed formula for the dissipation of entropy in each subcell of the form 
[nh, (n + l)h) x [(i + 1/2)hx, (i + l)hx) or [nh, (n + 1)h) x [ihx, (i + 1/2)hx) 
(nEN, iEZ). 

Lemma 3.1 (Godunov scheme). Consider the Godunov scheme (3.6) under the 
CFL condition (3.5). Then, for each n in N and each i in 2, we have 

U(U7I/2R) )-U(u7+1) + 2Ax(F(u+1)n - 

(3.8a) n R hx/2 W (x n n\ n+1,R 
2 

2- ,+12- h- wh yb i u1 Ui1?i ~Ui1/2 dx 

and 

U(ui+ l/2 - U(U7 - 2)-X(F(U - -F i+1/2) 

(3.8b) nL if0 Ix n n\ n+1,L 2 

- 2JX~1I2-h//2h h,;~ u1, 1? -u1/,2 dx 

where the terms jn, /2 and J4' 2 equal zero except when the Riemann solution 

W(.; un, U7n1) contains a shock wave with speed ni+1/2 and, in this latter case, 

they are given by 

( F(un71) - F(un) _ an (U(Un 1) - U(Un)), if an > 0 
i+1/2 {0, otherwise , 

and 

(3.9b) jn L = F(U+ 1) -F(un) - a 1/2 (U(u _ - U(un)), ifa7l 2 <0n ji+ 1/2 {0, otherwise. 

Remark 3.1. In the case that the Riemann solution w(.; u7, u7+ ) consists of 
a shock wave with zero speed (a1i+1/2 = 0), then by definition the term +'/2 
equals the amount of entropy dissipation associated with this stationary shock 
wave, i.e., 

J-n'l= F(ui+7) - F(u7) ($ 0 in general), 

while we have Jn'1'2 = 0. This is due to the definition (3.7) of the numerical 
entropy-flux function. 

Proof of Lemma 3.1. We only prove formula (3.8a); the proof of (3.8b) is sim- 
ilar. In any zone of smoothness of the function w(.; un, un 1), we have the 
conservation law of entropy 

&~tU(w(.; ui, UI+1)) + &xF(w(.; U7i , Ui+)) = 0. 
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Thus, by integration over each domain of regularity of the subcell (0, h) x 
(0, hX/2) and under the CFL condition (3.5), we obtain 

thX12U( (X; an an )) dhxU(Un n 

+ h{F(Un71) - F(w (0+; ui, u ))} = U 

with the jump term defined by (3.9a). We then observe that 

U(W(; un un )) - U(Un+l1 
R 

un+lR(W(; n 
n n 

Un+lR 
U iw( 

I 
U7, Uu+ 1/2 ) i- u1/12 (w( 

I 
U> ~ u7)-u+11'2) 

1 W(.; un n un+j;R 2 
2 i S Ui+l) i+ 1/2 1 

since U(u) = u2 /2. Hence, by (3.6b) we have 

2 fhX/2 U(W(.; Ul un))d U(Un+lR) 

(3.11) 1 jh /2 Iw( ; 
Un 

u7?))u(UE+I2 dx, 

= h |O Iw( hi Ui+l) Ui+1/2 I dx, 
which, used in (3.10), yields the required equality (3.8a). 0 

It is easy to verify that the terms of the right-hand sides of formulae (3.8) 
are nonpositive. Therefore, adding (3.8a) and (3.8b) and using (3.6a) and the 
property of convexity of the function U, we obtain 

(3.12) ) iX(FGi+ /2 FGi-1/2)- nEN, iEZ. 

Inequality (3.12) is the so-called entropy inequality satisfied by the Godunov 
scheme (see also, for instance, Crandall and Majda [8]). 

In this work, we are interested in a stronger version of this type of inequality. 
Namely, we want to estimate carefully the right-hand sides of (3.8) in order to 
derive a "sharp" entropy inequality. For this purpose, we notice that Lemma 
3.1 shows that both the shock waves of the solutions of Riemann problems and 
the L 2-type projections used in the Godunov method generate some entropy 
dissipation. We expect to estimate these terms of entropy dissipation in terms 
of the wave magnitude Iun1 - u7 | of each Riemann problem. For each n in 
N and i in Z, we shall distinguish between two cases, depending on whether 
w(.; un, un 1) is a shock wave or a rarefaction wave (d below is defined by 
(3.1)). 

Lemma 3.2 (Entropy dissipation of a shock wave in the Godunov scheme). Con- 
sider the Godunov scheme under the CFL condition (3.5). Suppose that, for some 
n in N and i in Z, the Riemann solution w(.; U7n, u7n 1) consists of a shock 
wave (i.e., un > u7n~) whose speed is denoted by n7"+12. Then we have 

U(ui+,/'2 ) -U(ui+1) + 2Ax(F(Ui+ FG,i+1/2) 

( 3. 13a) < -A a ( n _ nl3 + ffn 1,n (U --i al I 22)la+ 
<xi+ 1/2 { Iu7+1 - ui i+a12(1 - 2Ax i+ 1/2)iu+ I I 

< 0 
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and 

U(Un4~l,~L) _ U(Un) + ( n~/ -FUn)) U i+ l1/2 ) ( i + 2AX (FG i+ l1/2-F ( ui)) 

(3.13b) <-ix~l-Sln+ 12) +6 1+1 2 I - } 

-ari+1/2( 1 + 2AX ori+112)lui+l -P ul 
. < ?, 

where s + l/2 is defined by 

i+1/2~~~~~~~~~+1/ 
(3.14) s71'2{o O.if a7+112><0O 

Remark 3.2. Under the assumptions of Lemma 3.2, suppose that the sonic point 
u* lies between u7n~ and Un and that 

f(Un 1) - f(Un) = 0, 

i.e., Un and U7n~ are connected by a stationary shock; then we have 

on -0 s - 0. i+1/2 = ? i+1/2 

Thus, in that case, inequalities (3.13) become 

U(n+1 R UUnn n 

U(ui++11 )1 - U(Ui7l) + 2 i+(F(u7+1) Fi+ 1/2) < 0 

and 

U(n+ 1 L) _3(n ( nU) _ Jjn n 3 
U(i+1l/2 ) (i )+ 2x (FG, E+1l/2 -F(u ) ) -x6 | i+ 1-u Z 

Moreover, formulae (3.8) prove in fact that the above inequalities are equalities. 
This shows that the local entropy dissipation of the Godunov scheme may admit 
a uniform cubic estimate of the form CIu7 l - u7 13i, but not a quadratic one. 
This is actually related to the property that the numerical viscosity coefficient 
of the scheme under consideration vanishes in the "neighborhood" of the sonic 
point (?3.5 treats precisely the schemes whose viscosity coefficient is uniformly 
bounded below; for these schemes, a quadratic rate is obtained). 

Proof of Lemma 3.2. We only demonstrate (3.1 3a); the proof of (3.1 3b) is sim- 
ilar. By Lemma 3.1 we have to estimate each term of the right-hand side of 
(3.8a). Note that the term jRnR defined in (3.9a) is zero when afl is non- 

i+ 1/2 i+ 1/2 
positive, i.e., when Sn7+1/2 = 0. Otherwise, we can write 

nR = | vf'(v) A - a. . ((un - (un)2) ji'/2 = 
Vn i+ 1/22i+ 1) 

And with the Rankine-Hugoniot relation, 

nI~l/2(ui~- ) = f(u71) -f(un), 
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we obtain 

n+R= 1+ vf'(v) d -(f(un) - f(un)) ) (un 7 + un) 

By integration by parts it is easy to deduce from the above formula that 

(3.15) j+l 1/2 = fu? (Ui-V )(V - U+)f "(v)d v. +/2 2 Jn1 

Hence, 3 being given by (3.1), we get 

(3.16) j+/2 < 2 (Ui-V)(V-u7+ )dv = -- 1 _ ui3 

since u7 > U~n~. We next turn to the second term of the the right-hand side of 
(3.8a). Since w(.; U7n, U7n) contains a shock wave of speed an l/2, which can 

be positive or not, we set n = max(O, n112) and get 

+ 12 +/ = ma i+ 1un+ 2 | dx 
_X/ ,a X, 1 2xil2+ n _ n+l,R 2 

- xal/2 +(U7i Iu7 2 )i + (1 2 (u7~ u7~j)2) 

On the other hand, (3.6b) yields 

ui?R = 2An7 n+12 Ru + (1-2Axa+1/2, +)u7+1; 

thus, 

( 3.1 8a) u7 i-U i+?/ = (1 -2A f1+ 12 + )(2 U i -U 11) 

and 
n1 1+2R n nn+/2 = 2 i+11-u+). 

Using (3.18) in (3.17), we finally find 

(3.19) h f |w (ih; u7 , u7il) -u7~l2R| dx 

= ixi+l/2 +(-2Axai1/2 +)(Ui - u+71) 

The conclusion follows immediately from (3.8a), (3.16), and (3.19). o 

Our second result treats rarefaction waves (u* below is the sonic point defined 
by (3.2)). 

Lemma 3.3 (Entropy dissipation of a rarefaction wave in the Godunov scheme). 
Consider the Godunov scheme under the CFL condition (3.5). Suppose that, for 
some n in N and i in ZZ, the Riemann solution w(.; u7, u7n~1) consists of a 
rarefaction wave (i.e., u7 <u7+). Then, setting 

(3.20) n, f/(f)I n =f(ui1)f(un i nR = f (f2l\ 

~~~+l/2 W -;+l/2 = ui+i - ui12 l+/dx11 
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we have 

U(u7i?R)' -U(u7+1) + 2A,(F( U71) _-~ <-AE I 2 {A(i Si+ 1 - i+ 1/2u) 

( 3.2 1 a) x -xi+1l/2 {1 20 ( ( 1-s /2 ) i u+ -u l+ s.+l/2 i + - i|)} 

A S n, R ISn, L syn, L - 2, an )2 
- /Y+l/2{Si+l/2ai+l/2(1 - 2a71/2)2 

+ 2Ax(1 - 2Ax nR2)(an 112)2}U1+1 - uI2 < 0, 

and 

n+1 L nnn 
U(ui+ 1/2 )-U(ui) + 2Ax (FG i+ /2F(u 

<-Ax ( - Si+1l /2)JI{Si+ 1/21 U -u7 + (1- +1/2) U + - u7 } 
(3.2 i b) - A 1(112 s ++2){(l + 

-x0 1-Si+112){ 1 
+2ai+112)2Ax(ai+ 1/2) 

-(1 - ni+ 1/2) iJ 1/2 ( + 2Ax ia+ 1/2 )2} ui+1 - u i 

where s nL and Sn, R are defined by (a = L or R) 

(3.22) s {0O if ,+1/2><O 

Remark 3.3. Under the assumption of Lemma 3.3, if u* lies between un and 

u7.+ and the relation f(u _ 1)-f(un) = 0 holds, then 

n,L 0 SnR 1 a n 
? 0, /2i+1/2 - i+ 1/2- 

Thus, in that case, inequalities (3.21) become 

U(n+1 R _UUUn n - 03n 3 

(3.23a)~~ i+ 1/ i+ R U ) + 2Ax (F( i'+ )FG, i+ 1 /2 )- x-ul 1 2* 

and 

u(nIL) ( n U) _A n 3 
(3.23b) U(u+1/2 -U(ui) + 2AX(FG i+1/2-F(ui)) ? x 12 U-u i I 

This shows again that no uniform quadratic estimate can be obtained in that 

case, but only a cubic estimate. 

Proof of Lemma 3.3. We give the proof of (3.21a). By Lemma 3.1, the en- 

tropy dissipation in that case is only due to the error in the L2 projection 
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step (see (3.6b), (3.6c)). Setting qi+fl12 + = max(O, ilL/2) and i+l/2 + 

max(O, an~l 1, we have 

(3.2) 1/2)(1 
+ -!-2 X n n n+l,R 2 

W (; Ui ' ui+h -ui+/2 + dx 

The first two terms of the right-hand side of (3.24), denoted by R1, can be 
estimated as follows. By (3.6b), we have 

(3.25) =2 nnR X11RnL n nRn 

(3.25)2+(Ui h fh+; (h; u7, ui+i) dx. 

Since w(.; u7n, u7n~1) iS a rarefaction wave, we have 

(3.26) w(4; u7, u7+l) = (f') (4) for~ e [f'(u7 ), f'(u7~1)].s 

Hence, by a change of variables, we can get 

hj : _uIW (h; u7i, u7i+2) dx = / 

where by convention we set 

<+ = max(u*,u, j e, 

u* being given by (3.2). Thus, we have after an easy computation 

2 nha 1 R R n n 1- A n 

hX j::1nli2 W (I ; 2 , u=2a ) dx 

= 2A {u7+ 1 +~f'(u71 +) )-i u +f (u2 +) )-f(u7 1 +) + 

that is 

(3.25) ha na' 2~~~ ~~ 1/2, R x n n x 

(3.27) hX JhaL:n~ w (h; un u7i-) dx n 

2,8~~~~~~i 1/2, U -C+'l2+i-~ l,)+(Z, 

Using (3.27) in (3.25), we find the formula 

(3.28) u~i?/ = u, -2A1(f(u+1 +)-f(u7 +)), 
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from which we deduce 

(3.29a) (ui -ui+1/2 ) = (uI -ui+7) + 2Ax(f(ui+ i +)) 

and 

(3.29b) (u7l1 -ui+1/2 ) = 2)x(f(Uj+ 4+)-f(uj7+)). 

Finally, with obvious notation, the first two terms in the right-hand side of 

(3.24) become, because of (3.29), 

n~~~~n ~~~(1 - n+1R2n, R. -=2x A l /2 + Ui n+lu2R)2 i+2 12, +) (u7n n+l,R 2 

= f (Un +) (- (U +) f(Un +)U 

( +)) ( i+1-Ui 

But since 
f(U 

n 
1 +)-_f(Un +) n R ) ful)f(Un ) 

n- n - i+ 1/2 un nu 
Ui+1 Ui -1+1 1Ui 

we obtain the estimate 

R xjn, 
L an,L -2xn 

)2 

(3.30) R> ? A{ s+2 a1+/2( (1-/2 

+Snj22Ax(1 - 2Ax 
n, 

R(a7n11)2}( u7 - un)2. + i+ 1/2 2i -A l+ l/2 ) ( C+1l/2 ) +1 lUi ) 

On the other hand, the last term, denoted by R2, of the right-hand side of 

(3.24) is estimated as follows. Similarly as above, we can verify that 

1 f^han2, X n n n+l,R 2 

2 nX JhanL WK(h; UtUi+l)Ui+l/2dx 
WX 1?1'l/2, ? 

U1+1'+ n+1 R 2" 
A 1 v ' I-+ 12f (v) d . 

n n 
Since U ? < Ui+1 +, we have 

R > JA IV-Un+1 R 12A J f( n n+1, 
3 n+1 R 3 

2 x i+ I 2dv = X{(U+1/2 U ) (Ui,+ i+ )1 } 

c being given by (3.1), so that 

__X n n+,R 3 n -Un n n+1 R 3 
R2 > 3 j(ui+1 I+-U1 +1/2 ) + 

((Uin, -in )-+ n~l 
l R 

3i1 

Since for each z0 > 0, 

0min (z3 + (z0- Z)3) =z/4, 
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it is easy to deduce from the above inequality that 

0, if Un < Un~ < u* if- <+ ?u 

(3.31) R A > I Un .U*13, if Un < ? u7+ , 
R2>{x 12iu+i-uJ- 

* 
5ui+1~ 

A +1-Un Un, if u < Un < Un 

The required inequality (3.21a) follows immediately from (3.24), (3.30), and 
(3.31). o 

From the results of Lemmas 3.2 and 3.3, and Remarks 3.2 and 3.3, we can 
make the following observation concerning the Godunov scheme. The entropy 
dissipation of the Godunov scheme is composed of two terms. One is propor- 
tional to the modulus of convexity of the function f and, roughly speaking, 
corresponds to the dissipation of entropy inside a shock wave or inside a rar- 
efaction wave. This term yields below a cubic uniform estimate. The second one 
is generated (essentially) by the L2 projection error. It is proportional to the 

speed of the waves (,[1n2 or a n+'L2 'n which can vanish in the "neigh- 
borhood" of the sonic point u* . This is the reason why a quadratic uniform 
estimate of the local entropy dissipation does not hold true for the Godunov 
scheme. 

Hence, the "better" estimate of the entropy dissipation of the Godunov 
scheme is given by the following theorem. 

Theorem 3.1 (A sharp entropy inequality for the Godunov scheme). Under the 
CFL condition (3.5), the Godunov scheme (3.6) satisfies for each integer n in N 

(3.32) EU(un+1 )hx- E U(un )hx + Ax 
J 

E jun -n13 h < ?. 
iEZ iEZ iEZ 

Remarks 3.4. (1) Inequality (3.32) indeed yields a uniform estimate in L 2-norm 
and a weak estimate of the space derivative of the form (2.15) (see ?4; the initial 
data will be assumed there to have compact support). 

(2) Theorem 3.1 (and actually all the results of this section) could be gen- 
eralized to arbitrary strictly convex entropies U; the only modification is that 
3 should be replaced by 3 min U" . But we emphasize that an inequality as- 
sociated with an arbitrary entropy provides the same estimate for the space 
derivatives as is provided by (3.32). 

(3) If the flux function f is not assumed to be convex, the above derivation 
cannot provide an estimate of the space derivatives. However, if Jf is a posi- 
tive function (resp. a negative function), a uniform quadratic estimate is easily 
deduced from results of Lemmas 3.2 and 3.3. 

Proof of Theorem 3.1. By (3.6a), we have for n in N and i in Z, 

u(Un ) < (U(un- j2 ) + U(un+ 11 )). 
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Using (3.13) and (3.21) and summing with respect to i, we obtain with obvious 
notation 

E{U(u71 )-U(u ) +~ x(FG i+1/2 -FG i-1/2)} 
iEZ 

< -5-1/2 12 2i - u )_1 
(i-1/2) shock 

-iX S 1/224{( -10 S1/2)lU1 -U | + - 1/2 ui - 11 } 
(i-1/2) rarefaction 

-x i+ 115~/2) 
- 

I ui+ 1 -Ui -~~~~~~ z ~ ~ ~ 
(i+1/2) shock 

Ai (1 S nL 
j2)4Sn+ R1 UnjI 

(i+1/2) rarefaction 

+ (1 - 5+1/2) U+l -U } 

where we have only kept the cubic terms. So, we have 

EU(7 I) U(Un) 
iEZ iEZ 

12 + u7 -ui7K 
(3.33) (i+1/2) shock 

L5 611 nL)n5R Un3 +jn 3 
,a24 

. E {(1 - 1;12)s1+;12(Iu* i I + ui - u*j )} 
(i+1/2) rarefaction 

+ISn5L nR s7 n)( L-nR jn,_Uj +{(n1/2 in1/2 + (1 -_- 1+ 1/2)) )Ui+ ui7} 

We shall denote below by D7n112 the term within curled parentheses in the 
second sum of the right-hand side of (3.33). When w(.; ui+, uj) for some i 
in Z contains a rarefaction wave with a sonic point, that is, SnL2 = 0 and 

Sn,7R =1, we estimate D7 1n2 by 

+2= I*-i3 + lui7+ -U*1 > ? lUj+u - U73 

since u7n ? u* ? u1i+1 . Thus, (3.33) is equivalent to 

EU(un1)-EU(Un) < -A A |u7+n-u I1 

(3.34) iEZ iEZ (i+1/2) shock 

X96 i+ I 
(i+1/2) rarefaction 

which gives the conclusion. o 

3.3. A quadratic estimate of the entropy dissipation in the modified Lax-Friedrichs 

scheme. We turn to the derivation of the sharp entropy inequality satisfied by 
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the modified Lax-Friedrichs scheme. By using the same techniques as before, 
we get here a uniform quadratic estimate (instead of only a cubic one for the 
Godunov scheme) of the rate of entropy dissipation in this scheme. The for- 
mulae below are very close to, but actually different from, the ones derived in 
?3.2. However, the proofs are similar and are therefore omitted. With the same 
notation as before, the modified Lax-Friedrichs scheme admits the following 
decomposition (Tadmor [45]): 

(3.35) Un = 2(U_1/2 + Un+1/ ) n E N, i E Z, 

where we set 

n+1 fhx/2 lX n n (3.36) Uin+1/2 = I w (; Ui U+) dx, n EN, iEZ. 

This scheme can thus be viewed as a two-cell averaging of two (noninteracting) 
Riemann problems. We assume here that the CFL stability condition (3.5) is 
satisfied. 

Let us define the numerical entropy flux of the modified Lax-Friedrichs 
scheme, FM' associated with the pair (U, F), by 

FM(UL 5 UR) = -(F(UL) + F(UR)) 
(3.37) 1 

x _ V UUR) -U(UL)) A UL5 UR E R. 

The following result gives an exact formula for the entropy dissipation generated 
by the scheme. 

Lemma 3.4 (Modified Lax-Friedrichs scheme). Under the CFL stability condi- 
tion (3.5), the sequence (un)N ie constructed by the modified Lax-Friedrichs 
scheme (3.35), (3.36) satisfies for n in N and i in Z 

U(un+12) -1 (U(n) + U(u7n~)) + Ax(F(uni) -F(un)) 

(3.38) n 1i hx/2 lxflfl\ n+1 2 

- x 1+1/2 2hx h/2kh; U+lJ +2 dx+ 

In (3.38), the term Jl112 equals zero except when w(.; U7n, U7n) contains a 
shock wave with speed a n~2; in this latter case we have 

(3.39) j-'+1/2 = F(ui+))--F( i+12(U(ui+)-U(ui)). 

Remark 3.5. The left-hand side of (3.38) can be expressed from the numerical 
flux FM in two different manners: 

U(Un+7 )-i(U(un) + U(Un 1)) + AX (F(uni ) - F(un)) 

(3.40) 
_ 

U(u+iI2) - U(u) + 2A (FM n+n/2-F(u7)) 

= U(u2+/2) - U(ui+7) + 2Ax(F(ui+l) -F 



CONVERGENCE OF FINITE DIFFERENCE SCHEMES 187 

In particular, (3.40) is helpful to verify from (3.38) that the modified Lax- 
Friedrichs scheme satisfies the entropy inequality 

(3.41) U(un+l )- U(Un) +Ax(Ff i+l/2A-F i- l/2) , ' n E N, i e Z. 

Of course, as before, we want to derive from (3.38) a stronger inequality. 
In order to derive a sharp entropy inequality satisfied by the modified Lax- 
Friedrichs scheme, we first treat the case of a shock wave. 

Lemma 3.5 (Entropy dissipation of a shock wave in the modified Lax-Friedrichs 
scheme). Consider the modified Lax-Friedrichs scheme (3.35), (3.36) under the 
CFL condition (3.5). Suppose that, for some n in N and i in Z, the Riemann 
solution w(.; un, un 1) consists of a shock wave with speed n +l/2 Then we 
have 

U(u+1 /2) (U(un) + U(u~ 1)) + Ax(F(un?1) - F(un)) 
(3.42) 3(i12 n31 n2 n n 

(3.42) ~~ <-Ax( u 12U~-H l -1 
1 (1 -4(A a 

n 
/2),u )| lus n1 < O. 

Remark 3.6. Inequality (3.42) can be compared with (3.13). Here, the quadratic 
term in the right-hand side of (3.42) never vanishes and indeed can be bounded 
below uniformly provided that the CFL stability (3.5) is enforced, i.e., 

A sup If'(U) I < (1 - 6), 
U 

with some 0, E (O. 1) . 

Lemma 3.6 (Entropy dissipation of a rarefaction wave in the modified Lax- 
Friedrichs scheme). Consider the modified Lax-Friedrichs scheme (3.35), (3.36) 
under the CFL condition (3.5). Suppose that, for some n in N and i in Z, the 
Riemann solution w(.; u7, u+in) consists of a rarefaction wave. Then setting 

n,L E fn) in = (f)(_n i , ___ nR f(Un) 
i+l i (3.43) ori+i/2 = 1(Ui4) ' l1 /2 un? un "i+1/2 = i+' 

we have 

U(un+1 1 (U(un) + U(un 1)) + Ax-(F( un )-F(un)) 
i+/)- 2(Uiu7 xk i+l 

(3.44) - ix24 u+1 i- l u 

- +2A{( ? 22 7+ 7/2)(l -2Ax r+1/2) 

+ ( + 1)(l + 2Aa7+12) }Iui+1-ui < 0. 

Remark 3.7. Comparing (3.44) with (3.21), we notice again that the quadratic 
term in the right-hand side of (3.44) does not vanish in the neighborhood of the 
sonic point, provided that the enforced CFL condition of Remark 3.6 is met. 

Finally, from Lemmas 3.5 and 3.6, we can deduce a sharp evaluation of the 
entropy dissipation. 
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Theorem 3.2 (A sharp entropy inequality for the modified Lax-Friedrichs 
scheme). Let 0 belong to the interval [0, 1) (6 can be equal to zero). Then, 
under the CFL stability condition 

(3.45) AXsup f'(u)I < ( -60) 
u~~~~ U 

(the supremum being taken over all u under consideration), the sequence (un)iZ 
constructed by the modified Lax-Friedrichs scheme (3.35), (3.36) satisfies the 
following entropy inequality for each integer n in N: 

EU(n+1 )hx- U(un )hx 

(3.46) iEZ iEZ 

(3.46) ~+ A x 4a i j' Uj 3hX + 
0 

E l~ Un.l-' 12 h < 
? 

iEZ iEZ 

If 0 = 0 in Theorem 3.2, then (3.46) reduces to the sharp entropy inequality 
found for the Godunov scheme. But here, in contrast with the result found 
for the Godunov scheme, the modified Lax-Friedrichs scheme has a uniform 
quadratic rate of entropy dissipation provided that the CFL condition is en- 
forced by (3.45). Moreover, this quadratic term, ju Zil nu71 - uh 2hx, is 

independent of both the function f and the mesh ratio Ax. 

Remarks 3.8. (1) Theorem 3.2 could be generalized to arbitrary strictly convex 
entropies U (see Remark 3.4(2)). 

(2) If the flux function f is not assumed to be convex, then it is clear from 
Lemmas 3.4 to 3.6 and their proofs that (3.46) still holds true, but with 3 = 0. 
In particular, under the CFL condition (3.45) with 0 4 0, a uniform estimate 
of the space derivatives is obtained in that case. 

3.4. Entropy dissipation in the E-schemes. The previous results are now gen- 
eralized to a general E-scheme. By definition, the numerical flux p of an 
E-scheme satisfies the following inequality (Osher [35]): 

{ (I lVo)(p(V-k+l, * **,v o, VI, ..., vk)-f(w)) < 0 
for all vk+l1 ... , Vk in 1R and for every w between v0 and VI. 

Let us also recall that an E-scheme admits the following viscous formulation 

[17, 21]: 

un+1 = an - AX (f(un I _-f(un I)) 

(3.47) + -={Qin 1-2(un - un)_ - (u - 

neN, iEZ, 

where the numerical viscosity coefficient is defined by 

f(u(.I) + f(u)n - 2p7EI E 
(3.48) - ,+/ n EN, iEZ. 



CONVERGENCE OF FINITE DIFFERENCE SCHEMES 189 

Under the CFL condition (3.5), one can prove that 

(3 49) ~~QG, i+ 1/2 < QE, i+ 1/2 < QM, i+ 1/2 2 ,i52 

where QG, i+ 1/2 and QM, i+ /2 denote the numerical viscosity coefficients of the 
Godunov and modified Lax-Friedrichs schemes, respectively. 

Following Tadmor [45], we rewrite (3.47) in the following form (n E N, i E 
Z) : 

(3.50) u ~n+1 1Un+1 
R n+1 ,L\ (3.50) u1~l = 2(UEi' 1/2 + UE i+l/2) 

with 

(3. 5 1 ) E+ i- 1 /2 = i-x((i )-(i-l )-E,iE_112 (i -ui_ l) 

and 

(3.52) UEni+l/2 = Ui -Ax(f(Un f(Un)) + Qn (u 
n 

) 

From Theorems 3.1 and 3.2, we can deduce an estimate of the amount of 
entropy dissipation in an E-scheme. 

Theorem 3.3 (A sharp entropy inequality for E-schemes). Under the CFL sta- 
bility condition (3.5), the sequence (u7)n ) constructed by the E-scheme (3.47), 
(3.48) satisfies for each integer n in N the following entropy inequality: 

(3.53) EU(n+1 )hx-E U(un )hx + Ax 
J 6 I Un Un 13 h < ? 

iEZ iEZ iEZ 

Proof. Because of inequalities (3.49), for each integer n in N and i in Z, 
there exists n in the interval [0, 1] such that 

(3.54) 
n 

= + (1 - (3 54) ~~QE, i+l1/2 =- Xi+1+/2 QG, i+ 1/2 + (1 Xi+ 1/2) QM, i+1/2 

On the other hand, we can introduce (n E N, i E Z) 
(3.55) n+1 I ( n+1, R +n+ ,L\ 

UG, i (UG, i-1/2 + UG, i+l/2) 

respectively 

(3.56) nM, i = 2(u~M i-1/2 +M i+l/2) 

where un+IR and Un+IL (resp. Un+I,R and Un+L are definedbythe G, i 1/2 G, i+1/2 Ure M ,i- 1/2 UM i+1/2) aedfndb h 

Godunov scheme (resp. modified Lax-Friedrichs scheme) similarly as in (3.6) 
(resp. (3.36)). In fact, it is easy to verify from the decomposition (3.51), (3.52) 
that, for instance, 

UG, i-1/2 = ui - (f(u) ) - )-G, i-1/2 (ui - ui-1) 

and 
n+l,R n n n n n 

UM,i- 1/2 Ui 'x~u I f~i_ 1) M, i- 1/2( i Ui-1 

so that by (3.54) we have 

(3.57a) Ui-1/2=i-n+/,R 
n 

n+(,R +1 
n 
n n+1, R (3.5 7a) ~~~~~~~~~~UEi- /2 =Xi- /2 UGi- /2 + X-12 M 

' 
/ 
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In the same fashion, we get 

n+1,L _n n+1,L -n Un+1 L 
(3.57b) UE, i+l1/2 =i+ 1 /2UG, i+l1/2 + i 1%z1/2 M, i+l1/2 

Then, (3.57) leads to the following equivalent form of the E-scheme (3.50)- 
(3.52): 

1n+l 1 n n+l,R n n+l, R 

(3.58) +i (%i-1/2 G, i-1/2 + ( i-1/2J UM, i-1/2 

+Xi+1/2 UG, i+ 1/2 + (1Xi+1/2 )M~, i+ 1/2) 

By the convexity of U(u) = u 2/2, (3.58) implies 

n+1 1(fl Un+l,R n n+lR 
U(U1 ) < 2%i- 1/2Uu G i- 1/2) + (1 - Xi-1/2)U(UM,i-1/2) 

+,n u(Un~l + (1 - UU~, + i+1/2 (G, i+l1/2) + O1-%1+/2)~M, i+l1/2) 

Summing with respect to i in Z and using Lemmas 3.2, 3.3, 3.5, and 3.6, we 
obtain 

U(71 )-EU(Un) 

iEz iEZ 

< ~n n 45 jn n 13 
X - a Xi- 1/25i- 1/2 12i - Ui- 

(i-1/2) shock 

-ix ~~( 1 n n n 3 

(i-1/2) shock 

n Sn,R 35 ~ -S -, ~n U 
x i 1/2 i-1/2 24 { ( 1/2) i 

(i- 1/2) rarefaction 

+S,L Ln n13~ 
+5-1/21ui Ui- }II 

- AX (1 _ n 
1/) lu U 

n n3 

(i- 1/2) rarefaction 

X x7+1/2(l -s+1/2) A2 1u7+1-uI 
(i+1/2) shock 

- Awx E 
n 

j 
|n 

n 13 -X l-xi+1 2)-Iu71 - u~i 
(i+ 1 /2) shock 

- A X n12 x7 _Sn(l-s2)A4{ fS> 21u*-UnI 
(i+ l /2) rarefaction 

+ (1 -Si+ 1/2)IUI+- uiI} 

5 (l_ 1/2) I|ui 1-uIn13 
(i+ 1/2) rarefaction 
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the notation used here being that introduced previously. Thus, we have 

EU(unl) - U(Un ) 
Ez i~ iEZ iEZ 

< x E (x7+11/2 + -x+1/2))ui+ I-ui 
(i+1/2) shock 

x 96 E (%i+1/2 + i+-1+/2)) ui+ 
- ui 

(i+ /2) rarefaction 

? -Ax 6 E lu 
n 

-H |n13 
iEZ 

This completes the proof of the theorem. o 

3.5. A generalization. We derive now a uniform quadratic estimate of the en- 
tropy dissipation generated by the difference schemes whose viscosity coefficient 
is bounded below by a positive constant. This result is motivated by Theo- 
rem 3.2, which gives such a quadratic estimate for the modified Lax-Friedrichs 
scheme, while, as we have shown in ?3.2 (Theorem 3.1), only a cubic one is 
possible for the Godunov scheme. This is precisely due to the fact that the nu- 
merical viscosity coefficient of the modified Lax-Friedrichs scheme is constant 
(equal to 1/2) while the one of the Godunov scheme can vanish near the sonic 
point. 

We consider here 3-point difference schemes, characterized by their numerical 
flux function f: R 2 -* Rt which admit the following incremental form (n E 
N, i E Z) 

n+1 n Cn (n u nnf u n) (3.59) u1 = u1 - C /2(u1 -u11) + Dn+112(u1+1- 
with as usual 

(3.60) = C(un 1, u7), C 5+12 = D (u7, u7+1), i1/2 +12=D iI 

where the Lipschitz continuous functions C and D: 1R2 -* 1R are given by 

C(u, v) =A f(v) - f(u, v) 

(3.61) D(uv)=A>f(u) f (Pu v) , v E R. 

The numerical viscosity coefficient Q: 1R2 - 1R is defined from C and D by 

(3.62) Q(u . v) = Qu , v) + D(u , v) , U, v ER. 

Then we prove: 

Theorem 3.4 (A sharp entropy inequality for a class of difference schemes). Con- 
sider the difference scheme in incremental form (3.59). 

Let 0 be given in the interval (O, 1) and assume that 

(3.63) 0 < Q0C(uV), 0 < D(u, v), u, v E R, 
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where Ko is a given positive constant. Then the scheme satisfies the following 
inequality (n E N): 

(3.64) EU(n+l )h,- U(n )hx + 2 E ul. -u7 I2hx < 
iEZ iEZ iEZ 

where the constant K depends on Ko Ax, c, 0, and supi,njuI and is given 
explicitly by 

(3.65) K = Ko - Ix sup(If"(ui) i7)-2(1-6) 3 i,n 

Remarks 3.9. (1) Notice that, when Ko is different from I (1 - 0), the constant 
K is positive for Ax small enough. 

(2) The convexity of the function f is not needed in Theorem 3.4. 

Proof of Theorem 3.4. For n in N and i in Z, we can write 

U(un+l) =U(un) + (un+1 _ un)un + IuUn+l -u12 

= U(un) - Ax ( Il/2n - f1n2)u + IC7112(C7112 +D?+1 2)I - un n 12 

+ 'D (C +D )u ~ 2'~ D ~ Ui1-n1 2 i+l/2 (Cn-l/2 i+l/2) i+l -iI 2 -l/2 i+/ 2ui+l -Il 

Thus, after summation with respect to i, we find 

EU(u i1) = U(un)-_AX (41n2-fn 12)un 
iEZ iEZ iEZ 

+ 1 (Cn7112 + D7+12){Cn 12un - un 
(3.66) iEz 

+ D7?1n 21u7+1-uI2} 

-2 ZC7_ i1/2Di+1/2 |ui7+1-u 112 
iEZ 

On the one hand, we notice that 

EV,2 _- fi-12 )Ui7 = - Z(u7+ - ui)+ 1/2 = - E f f(ui, ui+l) dv, 
iEZ iEZ iEZ U1 

thus, 

(3.67) Z(f/!2 -n nt2)u =-> f (f(u, u+l)- f(v)) dv. 
iEZ iEZ U1 

And with the help of the formula 

gb b 
gv dv = (b - a)ga + gs ) + (vX - a)( - bs g(v A,1/\ 
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with a = u>, b = u7'1, and g(v) =f(u7, u7n1) - f(v), (3.67) becomes 

AX Eil-J;.n = E 1(C2i+1/2 + Di+ 1/2)9iu+ -Iu2 
iEZ iEZ 

(3.68) a 
_ 

1+ 
lV 1) B *, + AX jn Uv-iuU)(v -i+u)f'(v) dv. 

iEZ U1 

Hence, using (3.63), we obtain from (3.68) 

X E(i+1l/2 - f1-112)ui < - 2 1ui+l l2 

(3.69) iEZ iEZ 

+ AX Un/U)| 13UilHi|. 

iEZ 

On the other hand, we write 

1 -,n +n )jCn ln un 2 +n ln Un 2 
2 i(C -1/2 + Di+ 1/2 i-112Iu - ui 1 2 I+ Di+112Iul - 

(3.70) in ? 

-2 ECl /Din+1/2 uin+1 - Uil I< -( 0)2 E UinlUin 12 . 
iEZ iEZ 

Finally, combining (3.60), (3.70), and (3.66), we find 

EU(n+ )- _ U(Un) 
iEZ iEZ 

Ko A p1~1 (n Un n, 1 6)2 IUn7 n 
<E {jsuplf(uI IL - n + (l -S i U-.i U7I2, 

which completes the proof. 0 

4. THE CORRECTED ANTIDIFFUSIVE FLUX APPROACH 

4.1. Introduction. We now consider the class of high-order accurate explicit 
finite difference schemes which are constructed from a given E-scheme by the 
corrected antidiffusive flux method. As is well known, an E-scheme is at most 
first-order accurate (Osher [35]), and the antidiffusive flux is chosen in order to 
ensure both the high-order accuracy and certain formal properties of stability 
(e.g., Davis [10] and Sweby [42]). The results of convergence known for such 
schemes only concern equations with one space variable (e.g., Cahouet and 
Coquel [3], Leroux [30], Leroux and Quesseveur [32], Majda and Osher [33], 
Tadmor [46], and Vila [50]). In this section, based on the results obtained in 
?3, we prove the convergence of these schemes with corrected antidiffusive flux 
applied to an equation with an arbitrary number of space variables (Theorem 
4.3 below). Moreover, even for the case of one space variable, we emphasize 
that our result of convergence improves the existing results in this domain (see 
Theorems 4.1-4.3 and Corollaries 4.1-4.2). 
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We use the notation introduced in ?2. Let p (respectively q) be a numerical 
E-flux consistent with the exact flux function f (resp. g). That is, p: 2k -- R 

and q: 12k -* k are Lipschitz-continuous functions satisfying (Osher [35]) 

(41) |{ (vl v0)(p(vk+l, I ...IVOIVl,... ,v k)-f(w)) < 0 
(4.1) for all v-k+l, ... Vk in 1k and for every w between v0 and vl, 

and 

(4.2) { ( vo)(q(V-k+l * V0w V, . ... Vk)- 9M) < 0 
for all vk+l, ... , Vk in Il and for every w between v0 and v . 

We consider the conservative difference schemes (n E N) 
(4)n+1 n n nn n 

(4.3) us j = ui j-Ax(Ji+I12j J-i-I12,j)-Ay(9i j+I12 
- 

9i j- 1/2) i, 5 ie Z.5 

where the numerical fluxes are given in the following form: 

12 12 1 12 

(4*4) Ji+ 1/2, Pi+ 1/2, j+ TAi 1/2, j ' i, 5 E Za, 

and 

(4.5) 9i, j+ 1/2 qij+ 12+ 1b ij+1/2 i, jEZ. 

In (4.4) and (4.5), we set 

Pi+112, j p(i-k+l, j '*e 'Ui+k, j) n ENA, i, jE Z, 

and 

il, j+ 1/2 = ' qUjk+I, * i, j+k) 5 ,i 

It is known that the antidiffusive fluxes an12 and bin can be chosen i12j i,?j 1/2cabehon 
in such a way that this scheme is high-order accurate in space in the zones of 
smoothness of the solution (see an example in ?4.2 constructed from the notion 
of flux limiter). On the other hand, without loss of accuracy we can assume, as 
is usual, that these antidiffusive fluxes vanish with the mesh size in the following 
sense: there exist al and fi in the interval (0, 1) and a constant C > 0 such 
that 

(4.6) la7i+ 12, I< Ch5, lbi7j+1121 < ChO, nEN, ijEZ. 

For motivations and comments concerning these conditions, we refer to Lapidus 
[24], Leroux [30], Majda and Osher [33], and Vila [50] (see also Tadmor [46]). 
Condition (4.6) is active only in the neighborhood of the points of discontinuity 
of the solution, and roughly speaking is expected to be sufficient to prevent the 
appearance of large oscillations near the discontinuities. In all that follows, 
the scheme is always assumed to be consistent with equation (1.1) and the 
initial data to be a bounded function with compact support. The results of 
convergence known for these schemes concern equations in one space variable 
and are based on an estimate of the total variation of the approximate solutions. 
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See for instance Harten [21 ] and Sweby [42] concerning the TVD (total variation 
diminishing) schemes; and Cahouet and Coquel [3], Leroux [30], and Shu [39] 
for the TVB (total variation bounded) approach. But as far as the authors 
know, there is no result in the literature on the convergence of these high-order 
schemes in the case of an equation with several space variables. 

In this section, we prove convergence of the scheme with antidiffusion (4.3)- 
(4.5) in the case of several space variables provided that the usual condition 
(4.6) is satisfied. Our proof is completely different from the one known for an 
equation in one space dimension: it is not based on the so-called BV-estimate, 
but instead makes essential use of the theory of measure-valued solutions and 
the uniqueness theorem due to Di Perna recalled in ?2. Actually, the results of 
this section are also based on the sharp discrete entropy inequality for an E- 
scheme derived in the previous section. The L' stability estimate is derived 
in ?4.3. A complete proof of convergence of the scheme (4.3)-(4.5) is given in 
?4.4 in the particular case of an equation in one space dimension. Finally, ?4.5 
treats the general case. 

4.2. An example: the flux limiter approach. Following an approach due to Sweby 
[42] and Davis [ 10], we present in this subsection a particular class of antidiffu- 
sive fluxes: these antidiffusive fluxes will be constructed from a given function 
called a flux limiter. Define the local Courant numbers by (n E N, i, j E Z) 

n _ un A, j) - 

n 
g(Ui )-g(un7) 

ail/2, X U+l j-rJ+l/2 v u1 j+1 i j 

and consider the ratios of two consecutive discrete gradients given by (n E 
N, ijEZ) 

r f(un )-f(u7 ) ifna7~12 , 
au7? ) -nf(u, j) i+1/2,j 

ij+l/2 = g(un7 2-g(un l/) 

g~u7]+2 - ~u7~1) otherwise. 

Let us fix two arbitrary functions fo and y/: 1D R, the so-called flux limiter 
functions, and define the antidiffusive fluxes by (n E N, 1, 1 E Z) 

anf= 2Ion fl/2,II(l -IaT?12 1I)'(r7?1121)(U7?1 - 

and~~~~~~~~~~~~~~~~~~~~~~ 

(4.7)2 = 2ITij~l/2I(1 -IT jg- u1n2j) g(s71 i+ (u11 I 

A number of choices of the functions (0 and iR have been proposed in the 
literature. The choice 

LW LW 

functions,~ ~ ~ ( an dein th aniifsv flxe by -1EN EZ 
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corresponds to the Lax-Wendroff scheme [29], which is second-order accurate 
in space and time but produces spurious oscillations in the neighborhood of 
points of discontinuity of the solution. On the other hand, a function like the 
Van Leer flux limiter [49] 

YVL(r) = VVL(r) =Ir |I+r for r in R, 

yields a scheme which roughly speaking does not produce oscillations but is 
second-order accurate except at the local extrema of the solution where it is only 
first-order accurate. In the case of an equation with only one space variable, 
these schemes are convergent (e.g., Cahouet and Coquel [3]) to the entropy 
weak solution of the problem (1.1), (1.2) for a large class of flux limiters, for 
instance for Van Leer's one, provided that condition (4.6) is enforced by a slight 
modification of (4.7) (see (4.8a) below). We refer to [3] and [42] for the precise 
conditions on the flux limiter which ensure that the scheme is stable in the L ?- 
and BV-norms (in one space dimension). 

The general results of this section apply to these schemes with flux limiter and 
show their convergence in the multidimensional case. For the sake of definite- 
ness, let us now focus for instance on the example of the Van Leer flux limiter. 
Following Shu [39] and Cahouet and Coquel [3], we can introduce an improved 
version of the scheme which is second-order accurate at any point of regularity 
of the solution (i.e., including the extrema). The idea consists of replacing the 
Van Leer flux limiter by the Lax-Wendroff one in the neighborhood of the ex- 
trema of the solution. To be precise, the uniformly accurate version of the Van 
Leer scheme is defined as the scheme (4.3)-(4.5), where the antidiffusive fluxes 
are given by the formulas 

nn1n a 
4 8 aln = sgn(C7 +1/2 j)min( 7i+112 1 I, Ml h' ), 

(4.8a) b7i112j = sgn(b711119min(Ib7n+12I, N1h~'), 

and 
_n ~~~LW, n vL, n a LW n 

(4) al j= minmod(aZ~12 j, a+12 + M2h2sgn(aLw 1)) 
(4.8b)i 

12 i12, i12j 2i12 
- n ~LWn vL n /2JLW n 

bi j+112 = minmod(bi ]41/2, bi j41/2 + N2h2sgn(bl j'l2)). 

The constants Mi, Ni and ai / 3li are fixed and satisfy the conditions 

(4.8c) Ml, M2, N, N2 > 0, a1, f, E (0, 1), a2, fl2 E [1, 2]. 

In (4.8b), minmod(., *) is the function defined for u and v in R by 

- sgn(v) * min(lv I, w I), if sgnv = sgnw, 
minmo~v, W1 - { 0, otherwise. 

Morove, aLW, n LW,' Lnan VL, n Moreover, alL+j2ni and b1 j+12 (respectively a+ 1j2 j and b j+; 1/2) denote the 
LW VL) antidiffusive fluxes defined by (4.7) with (0 = = (p (resp. p = V = ) . 

One may show that this scheme is second-order accurate in any region, including 
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the extrema, where the solution is smooth. Furthermore, in the case of only one 
space variable, it is shown in [3] that the scheme is stable in BV-norm and 
converges to the unique entropy weak solution of the problem provided that 
the conditions a1I E (0, 1) and a2 = 2 are fulfilled. But in the more general 
case where a2 is any number in the interval [1, 2), (4.8b) can be viewed as a 
very slight correction of the Lax-Wendroff scheme and no BV-estimate is known 
in that case, even for an equation with only one space variable. 

Our results of convergence below establish the convergence of the scheme 
with the antidiffusion (4.8) for an equation with an arbitrary number of space 
variables provided that a, ,f1 E (23, 1) and a2 fi2 E [1, 2]. We point out 
that for any a1, Bf1 < 1 and in a zone of smoothness of the solution we have 

li+l, j< h', |i,j+1/21 < Njhl', nENX, ij E Z 

provided that M1 and N1 are large enough, so that (4.8a) gives 

l+ 1/2, j=ai+,12,j b,ij+112 =bi, j+1/2 nEN, i, jEZ. 

Thus, (4.8a) is active only in the neighborhood of discontinuity points of the 
solution. 

4.3. The uniform L??-estimate. The following result gives a sufficient condition 
to ensure that the scheme (4.3)-(4.5) is stable in L?-norm. 

Theorem 4.1 (Uniform L?-estimate). Assume that the scheme (4.3)-(4.5) ad- 
mits an incremental decomposition of the form 

n+1 n Cnnnn u1 =u i-C 1/2 j(uin - U_ L ) +D7+1/2 1(u7+1 U-. 7) 

-E n U n -Uan + Fn n -U n + Kn 

nEN, i, jiZ, 

whose coefficients satisfy the conditions 

Cj~n2 > 0, Dn > 
(4.9a) En1/2j 

- i 
> n E A+ i, j E Z, 

i, + /2- i, j?1/2 -' nNijZ 

the CFL-like stability condition 

(4.9b) Cn121 + D7 12n + El. /2 + F.j~l12 < 1, n E N, , cE Z, 

and 

(4.9c) K2n -I < Ch', n e N, i, j e Z, with y E [1, oc). 

Then the scheme (4.3)-(4.5) is L?-stable, i.e., there exists a constant C > 0 
independent of h, hx, and hY such that 

(4.10) 1u7n,1<C5 nEN, i,jEZ. 
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Proof. The incremental decomposition of the scheme can be rewritten in the 
form 

n+1 n-, n+, ij 12-n )Un 
tll = ( 1-Cl- -/2, j -L Fi 

uin D i( C1- 1/2- j+l D i 7+ , j- 1/2u j+/2 +, l 

+ cl l/ u~ll jl + En xiuil 

+ F2,j+112Ui,2j+ + Ki, 

so that, using (4.9a)-(4.9c), we get 

Taking the supremum, we find 

sup lu7?jsuplu71jl+ChY, neN, 

i i,j i-Z2 i+ 2 ij j ij /) ij 

and by induction 

+En U~_ ~ njI n hN. 
sup~ ~~~ junj u ui ji + Cnh', n E N . 

i, jEZ i, ijEZ 

Because of n h < T and (4.9c), the result follows. E 

Theorem 4.1 yields the L?-stability of the scheme (4.3)-(4.5) for the usual 
choices of antidiffusive fluxes. For the sake of definiteness, we tacitly assume 

from now on that the scheme under consideration admits an incremental decom- 

position of the form indicated in Theorem 4.1 in such a way that the scheme is 

stable in L?-norm. In particular, in the case of the scheme with the flux limiter 

(4.8), a direct application of Theorem 4.1 leads to the following result whose 

proof is immediate. Actually, the same result of stability can be obtained for 

the general flux limiter schemes. We omit the proof. 

Corollary 4.1 (L??-estimate for a scheme with flux limiter). The uniformly ac- 
curate version of the Van Leerflux limiter (see (4.8)) for an equation with several 
space variables is stable in L -norm, provided that Ax and A Y satisfy the CFL 
condition 

(4.11) A sup If'(u)I < A Aysup g'(u)l < 4 
U U 

the supremum being taken over all u under consideration. 

4.4. Convergence for an equation in one space dimension. In this subsection, we 

consider the case of an equation with only one space variable. In fact, when 

the initial data of problem ( 1. 1), ( 1.2) does not depend on the variable y, then 

both the exact solution u to problem ( 1.1), ( 1.2) and the approximate solution 

uh defined by (2.9) and (4.3)-(4.5) do not depend on y. As a consequence, 
we can use exactly the same notation as above just omitting the index j. In 

particular, (4.3) and (4.4) become 

n+1 n n i 
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and 

(4.13) f n/2i=p7+i2+1 an+ii2 neN, ieEZ. 
x 

The approximate solutions will be denoted interchangeably by {uh} or (un). 
To apply the general method of ?2, we need to obtain the weak estimate of the 
discrete space derivatives of the approximate solutions. For this purpose, fol- 
lowing the ideas developed in ?3, we begin with an evaluation of the amount of 
entropy production generated by the scheme. The following lemma is a general- 
ization of Theorem 3.3 to the high-order accurate schemes under consideration. 
Recall again that for simplicity the initial data uo is assumed to be a measurable 
and bounded function with compact support. 

Lemma 4.1 (A sharp approximate entropy inequality). Suppose that the CFL 
condition 

(4.14) AX)suplf' (u)l < ? 
u~~~~ U 

holds true (the supremum is taken over all u under consideration) and the an- 
tidiffusiveflux in (4.13) satisfies the condition 

(4.15) jai+7121 < Mh nEN, iEZ, withM>OandaE (2 , 1). 

Then the scheme (4.12), (4.13) satisfies the following sharp entropy inequality 
(n E N with nh < T): 

(4.16) E 2(Un+)2h x 2(U)2 h +K Axj -u7n I 3h <?K2h3a/2, 
iEZ iEZ iEZ 

where the constants K, and K2 are positive and independent of h, Ax, and uo 
(but can depend on T and f). 

Remark 4.1. We notice that in fact no property of L' uniform stability is used 
to derive inequality (4.16). 

Proof of Lemma 4.1. We introduce the notation 
-n+ 1 n n (4.17) Uni Un Ax; (Pi+ 

_ 
/2 - i ) n E , i EZ, 

and observe that (4.12) can be rewritten in the form 
n+1 _n+1 n n 

(4.18) ui =Ui -(ai+l12-ai-1/2)a n E N, i E Z. 

We thus get 
(4.19) 2 (u7 )I = 2 (Uin+1)2 + I (an 1 an 2 

n+1 n nnN cZ 
-u9i (ai+ 1/2 -ai- 1/2) i n E a,5 i E Z, 

which leads us to set 

(4.20) R = ? ' (a - n E N, 
iEZ iEZ 
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so that we have 
i 
(Uin+1 )2 hx- 2 (Uin)2 h 

(4.2 1 ) iEZ iEZ 

( 2 ( )+l)2 h 2 (Ufn)2h +Rfn n E N. 
iEZ iEZ 

By using Theorem 3.3 of ?3, equality (4.21) implies 

1 (Un+1 )2hx -E 2 (Un)2hx 
(4.22) iEZ iEZ 

< -K , Ax IUn Unl3 hX + Rn, n E N. 
iEZ 

In order to estimate the term R , we recall that under the CFL restriction (4.14) 
the E-scheme (4.18) satisfies the TVD property 

z 
Un+l an+1,1:Jn 1_un, Eli+1 -i ll i+ - i' . 

iEZ iEZ 

From (4.20) we then deduce 

JR Rn < 1: 2 max(l la n 12 
n lain 

12 
2)hx + Elain_12 ,,n++l -a in+1 hX E~~max~a7+ 112~2 a7112)h i-1n+1+1- 

(4.23) iEZ iEZ 

< ? 2 max(l a7n+ , lan 192)hx + max lan 2n E lun+ - unIhx . 
iEZ iEZ 

But using now the condition (4.15), and since the initial data has compact 
support and the numerical flux is assumed to be consistent, we necessarily have 
aln~2 = 0 for i large enough. We thus find the estimate 

(4.24) IRn I< Ch2a + Mh Z : Ju+nin - hx, n E N. 
iEZ 

Then (4.22) and (4.24) yield the following inequality (K > 0 is given by The- 
orem 3.4 and M > 0 by (4.15)): 

Z (un+1 )2h -E 2 (Un)2h 
(4.25) i2 iEZ 

< -K 
E 

AxlUin lUin3 h + Mh 
a 

E Juin lUin hx + Ch 2at 
iEZ iEZ 

We finally remark that 

ZMh u7+ -u7Iha < 2 (Mh a)3+2 Z E Jun n13h 
iEZ 3K3IEZ 

so that (4.25) gives 

(Un+ 2 E 1 n2 
Z ju7Y ) hX- E (Ui) hx 

(4.26) iEZ iEZ (4.26) 
<-~~~~~~K 1~nn 3h 3a/2 

< :x~ _2 ilil-nlhx + Ch~t2 
-3 

L~~~xI~i+l i x 

iEZ 

This completes the proof of the lemma. 5 
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From Lemma 4.1, we deduce: 

Lemma 4.2 (Uniform estimate of the discrete space derivative). Under the CFL 
stability condition (4.14) and the condition (4.15) on the antidiffusive flux, the 
scheme (4.12), (4.13) satisfies the uniform estimate (Ax = h/hx kept constant) 

(4.27) h2/3 E | +h , hhx < C, 
nEN iEZ hx 

nh<T 

where C is a constant independent of h (but dependent in general on Ax, u0, T, 
and f). 

Proof. By summation of (4.16), we have 

Z (Un+71)2hx - 2 (Ui0)2hx 
iEz iEZ 

(4.28) n 
+ C Z xZIui - uM13h <Ch3a/2 

m=O iEZ 

for every n E N with n * h < T; thus, 

(4.29) j Zu7i-u nj3h < C. 
nee it nEN iEZ 

nh<T 

If [r, s] denotes a set containing the support of the initial data (u )Z, 

then, for each n, the support of the sequence (U)in is included in the set 
[r-nhx, s+nh ]. Thus, using this remark and the Holder inequality, we deduce 
from (4.29) that 

E iu+l- iJhxh < (LxT)1 i+ E I Il-a Ihxh) 

nEN iEZ nEN iEZ 
nh<T nh<T 

< Cyhx 5 

where Lx denotes a bound independent of h of the length of the support of 

u , hence 

(4.30) h 13 I Z un+UnIh < C. 
nEN iEZ 

nh<T 

Since Ax is kept constant, (4.27) is a consequence of (4.30). E 

Using the uniform estimate given by Lemma 4.2, we now derive discrete 
entropy inequalities satisfied by the scheme (for the notation below, see ?2, 
Theorem 2.3). The idea of the proof below is to get these entropy inequalities 
by perturbation of the entropy inequality satisfied by the underlying E-scheme. 
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Condition (4.15) turns out to be essential here. This idea was already used in 
another context by Leroux [30], Leroux and Quesseveur [32], and Vila [50]; but 
let us recall that these authors needed a BV-estimate, which is not necessary in 
the present approach. 

Lemma 4.3 (Approximate entropy inequalities). Suppose that the conditions 
(4.14) and (4.15) are satisfied. Let U: R --+ R be a convex function of class 
C 2, and F be a numerical entropy flux associated with the given numerical 
E-flux p: 2k ,-+ R. Assume moreover that the family of approximate solutions 
remains uniformly bounded in L?-norm (cf Theorem 4.1). Then the scheme 
satisfies an inequality of the form 

(4.31) (U+1-U) + h(Fn+112-Fi112) ? Rn, n E N, i E Z, 
h 

~~~~~ 
x 

where the term R7n tends to zero in the following sense: 

(4.32) E Zp(tnxi)R hxh -+0, when h -+0, 
nEN iEZ 

nh<T 

for every C1 function p: (0, T) x R - R+ with compact support. 

Proof. It is well known that an E-scheme satisfies an exact entropy inequality 
in each cell (Osher [35]). So, using the notation introduced in the proof of 
Lemma 4.1 (see (4.17) and (4.18)), we have 

U (-al) _ 
)U (Al) + AX(Fn l 2Fn 1/n n E A, i E Z . 

We thus obtain 

U(Un+1) _-U(an) +A(F /- l/2) ?U(Un+, )-U(2+1 ), n e N. i e E, 

i.e., dividing by h, 

1 
(Un+ -lEn) + n n n 

< , n ER, iE A 
x 

which is exactly (4.31) if we set 

Rn 1 (U(un+) _ U(_Un+)), nEN, iEZ. 

Formula (4.18) and the convexity of the function U give 

R ? u(Un1)(Un1 -n 1, ui(+1 
Rf < T- UT(/f+1Il+1 -12+ -U (u I )(ai+,12 - a- 1/2)' 

Introducing a positive test function (0 and setting (07 = (0 (tn, xi), we deduce 
from the above inequality that 

n n n ui (Un+ I~~n n Z E Z i X- Rihxh < E+i = (ai+ /2 - an )h 
nEN iEZ x nEN iEZ 

nh<T nh<T 
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We thus get 

(4.33) E p 7Ri h~h < C1 + C2, 
nEN iEZ 

nh<T 

where we have set 

Cl(h) = + E E +/2 i+ ) i+- ()h 
x nEN iEZ 

nh<T 

and 
C2(h) = + E Za7+121 )h(U'(u71) -. 

X nEN iEZ 
nh<T 

To estimate the term C1 (h), we use the condition (4.15) on the antidiffusive 
flux and the L?-estimate and obtain 

C1(h) < Cht a k7i+l-(i | h h 
n.N iEZ hX 

nh<T 

so 

(4.34) C1(h) < Cjj X11LLh a_ 0. 

On the other hand, estimate (4.27) of Lemma 4.2 allows us to bound C2(h) as 
follows: 

C2(h) < Ch allLU(h)L 
n+1 h, 

nENd iEZ 
nh<T 

thus, 

(4.35) C2(h) < C110 L-h 2/3 -+ 0, 

since a > 2 by (4.15). Finally, (4.32) follows from (4.33)-(4.35). E 

We can now apply the method of proof of ?2. In view of the uniform L?- 
estimate (4.10) obtained in Theorem 4.1, we construct from the family {u } 
a Young measure denoted by v: (0, T) x R -+ Prob(IR) which represents all 

h the weak limits of the composite functions of u . Since Lemma 4.2 yields 
a uniform estimate of the space derivatives ((4.27) is of the form (2.15) with 
2i = 2), Theorem 2.2 applies and shows that v is a measure-valued solution 

to the conservation law (1.1). Lemma 4.3 and Theorem 2.3 then prove that v 
is an entropy measure-valued solution. Moroever, Theorem 2.4 applies easily 
since Lemma 4.3 can be used with a given strictly convex function (for instance 

U(u) = u2 /2; but we could also do for this point with Lemma 4.1); thus, the 
Young measure v satisfies the initial data u0. Finally, Theorem 2.1 shows 
that v reduces to a Dirac mass. The conclusion is summarized in the following 
theorem. 
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Theorem 4.2 (Convergence of the difference schemes with antidiffusive flux). 
Consider the family of approximate solutions uh constructed by the scheme with 
antidiffusive flux (4.12), (4.13) (and (2.9), (2.10)) for a conservation law in one 
space dimension. Assume that the family {uh} is uniformly bounded in L?- 
norm (cf. Theorem 4.1). Then under the CFL stability condition (4.14) and the 
condition (4.15) on the antidiffusive flux, the Young measure v associated with 
the family {u h} reduces to a Dirac mass, i.e., 

(4.36) Vt- =u(tx)' a.e. te(OT), xeR, 

holds true, where u is the unique entropy weak L?-solution to problem (1.1), 
(1.2) (in one space dimension). Hence, when h goes to zero, the sequence 
{uh}h>O converges in the L1 strong topology to the unique entropy solution u. 

This result is essentially the same as the one obtained by the TVB approach. 
But we emphasize that the proofs of this result are new and their interest lies in 
the fact that they can be generalized to equations with several space variables. 
Moreover, we point out that this result gives in particular the convergence of the 
scheme with flux limiter (4.8) introduced in ?4.2 under the condition al, B1? E 

(2, 1) and a 2, B2 e[1,2] (instead of a1,, fil (0, 1) and a2, 12=2 bythe 
TVB approach). See Corollary 4.2 below for a precise statement of convergence. 

4.5. Convergence for an equation with several space variables. The previous 
analysis of convergence is now generalized to the case of an equation with several 
space variables. The steps of the proof here are exactly the same as the ones of 
?4.4 and are based on the general theorems of convergence recalled in ?2 and 
the sharp entropy inequality derived in ?3. 

The notation was introduced in (4.3)-(4.6) (see also (2.9), (2.10)). As in 
Lemmas 4.1 and 4.2, the estimate of the discrete space derivatives of uh is 
derived via an evaluation of the total amount of entropy production of the 
scheme. 

Lemma 4.4 (Uniform estimate of the discrete space derivative). Assume that 
the CFL stability condition 

(4.37) AXsup I(u)I < A ?ysupIg'(u)I < 
U U 

(the supremum being taken over all u under consideration) and the following 
condition on the antidiffusivefluxes, 

(4.38) iar+1/2 jl <la,,j n EN, i,jeL, withae(2, ), 

lb +12 < Ch', n E N, i, j E Z, with /3 E (2, 1), 

are satisfied. Then the scheme (4.3)-(4.5) satisfies the following entropy 
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inequality: 

z 1(Un+1)2hxh- h 2(UI j)2hxhy 
i, jEZ i, jEZ 

(4.39) + Alin+lj j-u ilhh 
i, jEZ 

+ K2 > Aylu j+l - u7 3hlhh<Ch3I2, n e<N, 
i, jEZ 

where y = min(a, ,B) and K1, K2 are two positive constants independent of 
h, Ax and uo . 
Proof. The proof is based on the following (convex) decomposition of the 
scheme into two one-dimensional schemes: 

Ui, j = {ui, - 2Ax(fi+112,j - J-1/2,j)} 

+ 2ui,; 2A -lj+/ glj12} n E N5 i, j E Z. 

Since the function L2 U2iS convex, we have 

2 ~ ~ f 1 (Un+1)2 < 1{Uin j- 2AXt+/2j 1/n2,) 

+ un -2A (9l jl2gi,j-112)1 n E N5 i, j E Z . 4i,i , niNji je2 

We thus get 

(4.40) 1 (Un+1)-2(un )2 < An + B , n EN, ijE7Z, 

where we have set 

Ai n = 1 
(1 Un j2AXf, n _ tin 12 j)2-( n )2 n E N, i, j E Z, 

and 

B j = 2(1{U71 - 2)(gA j+l/2- g1n 12)} -2(Un )2), n E N, i, j E Z. 

Taking into account (4.37) and (4.38), a direct application of Lemma 4.1 leads 
to the inequality 

1 {Uin' j - 2Ax 
( 

nl2 i-fi1/2,) hx- 2(Uni j) 2hx 2 {u7 -)(f[,112,j - fit112 2)}h - i 
(4.41) iEZ iEZ 

+ C 2Axu+1 jUn - u713h < Ch?32 
iEZ 

for each time n (n E N, n * h < T) and each y-index j E Z. But the support 
of (U7 j) is included in a set of the form {(i, j)/IiI, IjI < N+n} (if the support 
of (u? j) is included in the set {(i, j)/jiL, ijj < N}). Moreover, A7n is zero 
for (i, j) outside this set, so that (4.41) implies, after multiplication by h3Y and 
summation with respect to j, 

An 1h h + C2Ax Z IUn+l uInU j13 hxhy < Ch3/2a, n EN. 
i, jEZ i, jEZ 
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We thus have 

Z Ajhhy + C U .i7+l jU7J3hXhy < Ch3a/2, 
(4.42) i, jEz i, jEZ 

neN, nh<T. 

Similarly, for the B7 j terms we obtain 

Z B7n jh1hy + C E Aylin -U nj 13hxhy < Ch 3fl/2 

(4.43) i, jEZ i, jEZ 

neN, nh<T. 

The inequality (4.39) follows immediately from (4.40), (4.42), and (4.43). E 

From Lemma 4.4 we deduce the estimate of the space derivatives. The proof 
is similar to the one of Lemma 4.2, so we omit it. 

Lemma 4.5 (Uniform estimate of the discrete space derivatives). Under the as- 
sumptions of Lemma 4.4, we have the uniform estimate 

(4.44) h213 E z (l+i1 l l + lh+h l"j) h hyh < c. 
nEed ijEt. X Y 

nh<T 

Finally, we derive approximate entropy inequalities satisfied by the scheme. 

Lemma 4.6 (Approximate entropy inequalities). Suppose that the CFL stability 
condition (4.37) and the condition (4.38) are satisfied. Let U: R --+ R be a 
convex function of class C2 and let (F, G) denote the numerical entropy flux 

functions associated with p and q. Assume moreover that {u } remains uni- 
formly bounded in L?-norm. Then the scheme satisfies the entropy inequality 
of the form (2.16), (2.17) (see Theorem 2.3). 

Proof of Lemma 4.6. Let us introduce the notation 

_n+1 n (n n 

(4.45) 
~ uij =uij - x (i + 1 /2, j -Pi- 1/2, j) 

_i(qn - 
1/2a ij-112) ' ,ijE2 

so that with (4.3)-(4.5), we obtain 

Un+1 _n+1 n n n n 

(4.46) uij = uij - (a+112,j - a1/2, j) - (b - 1 i,j-1/2)' 

n E N, i, j E Z. 

Since an E-scheme in several space dimensions satisfies an exact cell entropy 
inequality (Osher [35]), (4.45) gives 

U(-an+,) _-U(2ln) + Ax Fin~ll j Finl /2j + AY(Gi n~ GnJ-12 
-j 

Uu%) + ~( 1/2,j - 1F/12,) + G+ 1/2 -G7112) <0 0 

n EN, i5 j EZ. 
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Thus, subtracting U(u7n1+) = U n+1 and dividing by h, we get 
1 n+1 n~ 1 

(Ui J1_ Ui1 j) + h (Fi+112 -Fi- 1/2) j) 
(4.47) 1 X 

+ h (Gn j+1-Gn 1/2) < R n E N, i, j E Z, 

where we have set 
1 UUn+l 1 (_fn+1)) (4.48) R11 = (U(u1 )-U(u )) n E N, i, j E Z. 

Inequality (4.47) is exactly (2.16). It remains to prove that the R . terms satisfy ii 

(2.17). Since the function U is convex, it results from (4.46) that 
n 1/Un 1n nnn n 

R.. < - hU (ur+l ) ( (ain - -al j 2y) + ( b j+l/-bin -1/)) 

neN, i, je7Z. 
Then, introducing a positive test function (0 and using the estimate (4.44) to- 
gether with the condition (4.38) on the antidiffusive fluxes, the same arguments 
as in the proof of Lemma 4.3 show the inequality 

(4.49) E (nxi, yj)R 
n 

hxhyh < Chy -2/3, 
nEN ijEZ 

nh<T 

with y = min(a, /3). That completes the proof. E 

Finally, as in ?4.4, using the general convergence theorems (Theorems 2.2- 
2.4) of ?2 and the uniqueness theorem of Di Perna (Theorem 2.1), we deduce 
from Lemmas 4.4-4.6 the following theorem, which is the main result of this 
paper. 

Theorem 4.3 (Convergence of the difference schemes with antidiffusive fluxes). 
Consider the family of approximate solutions {uh }h>0 constructed by a scheme 
with antidiffusive fluxes, (4.3)-(4.5) and (2.9), (2.10), for a scalar conservation 
law in several space dimensions. Assume that this family is uniformly bounded in 
L -norm (cf Theorem 4.1). Then under the CFL stability condition (4.37) and 
the condition (4.38) on the antidiffusivefluxes, the Young measure v associated 
with the family {u } reduces to a Dirac mass, i.e., 

Vtxy = u(txy) a.e. t > 0, (x, y) E R 

where u denotes the unique entropy weak L' solution to problem (1.1), (1.2). 
Hence, when h goes to zero, the approximate solutions uh converge to the unique 
entropy weak solution u in the L1 strong topology. 

We recall that the L??-estimate assumed in Theorem 4.3 is actually ensured 
by Theorem 4.1 for the main choices of antidiffusive fluxes introduced in the 
literature. In particular, in the case of the scheme constructed in ?4.2 from the 
Van Leer flux limiter, we obtain the following convergence result (the proof is 
omitted). 
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Corollary 4.2 (Convergence of a scheme with flux limiter). Under the CFL sta- 
bility condition (4.11) and the condition 

(4.50) a,1 E (2, 1) a2 2e [1, 2], 

the uniformly accurate version of the Van Leer scheme introduced in ?4.2 con- 
verges in the L -norm strongly towards the unique entropy weak L' solution of 
the problem (1.1), (1.2). 

Remark 4.2; A number of generalizations of Theorem 4.3 are possible. For 
instance, if the E-schemes are chosen to be the modified Lax-Friedrichs scheme 
(see ?3.3), then in view of Theorem 3.2 it is clear that Theorem 4.3 remains 
valid if (4.38) is replaced by the weaker condition 

a7+112, < Ch , n E N, i, j e Z, with a E (' , 1), 

icla j+rorllaryCh ns ENr if jieaZ, withof. e (aseh1). 

In particular, Corollary 4.2 remains true if instead of (4.50) we assume that 

al> fl E (' 1)5 a E [l 5 2 
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