
MATHEMATICS OF COMPUTATION 
VOLUME 57, NUMBER 195 
JULY 1991, PAGES 259-271 

POLYTOPE VOLUME COMPUTATION 

JIM LAWRENCE 

ABSTRACT. A combinatorial form of Gram's relation for convex polytopes can 
be adapted for use in computing polytope volume. We present an algorithm 
for volume computation based on this observation. This algorithm is useful in 
finding the volume of a polytope given as the solution set of a system of linear 
inequalities, P = {x E R': Ax < b} . 

As an illustration we compute a formula for the volume of a projective image 
of the n-cube. From this formula we deduce that, when A and b have rational 
entries (so that the volume of P is also a rational number), the number of binary 
digits in the denominator of the volume cannot be bounded by a polynomial in 
the total number of digits in the numerators and denominators of entries of A 
and b . This settles a question posed by Dyer and Frieze. 

1. INTRODUCTION 

We present a method for computing exactly the volume of a convex polytope 
given as the set of solutions of a finite system of linear inequalities. 

Some methods for exact computation of the volume of a convex polytope P 
in Din are given in [ 1, 5, 13, 30]. In Cohen and Hickey [5] and Von Hohenbalken 
[30], the volume is obtained by triangulating the polytope and summing the 
volumes of the simplexes of the triangulation. (Cohen and Hickey [5] compare 
this method with an approximate method.) In Allgower and Schmidt [1], the 
volume is computed from a triangulation of the boundary of P. Lasserre [13] 
presents a method based on the recursive use of a well-known formula for the 
volume (Theorem 37 of [8]); in many cases this approach also amounts to 
summing the volumes of the simplexes in a certain triangulation of the polytope. 
The method in the present paper avoids triangulation of P or of its boundary. 

Several papers concern computing the volume of certain sets in ]R3 , e.g., Lee 
and Requicha [15, 16], where more general three-dimensional sets are consid- 
ered, and Shoemaker and Huang [26]. In Speevak [27], a novel method for 
computing volumes of certain pyramids in IRn is given. 

The method presented in this paper is based essentially on Gram's relation 
(see Shephard [25]). If the polytope P is simple, then Gram's relation provides 
a method by which one can write the volume of P as a sum of numbers N,, one 
for each vertex v of P. These numbers are easy to compute, so the difficulty 
of the procedure is mainly that of enumerating the vertices of P. 
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Recent results on the complexity of volume estimation appear in Barany and 
Furedi [3], Elekes [9], and Lovdsz [17]. These results pertain to convex sets C 
not necessarily given as an intersection of halfspaces, but rather determined by 
certain oracles, e.g., by an oracle that, when given x E iR n, either assures us 
that x E C, or gives us a halfspace H containing C but not x. 

The problem considered in this paper has been shown to be #P-hard (Dyer 
and Frieze [7]), even when restricted to polytopes for which the coefficient ma- 
trix of the defining system of inequalities is totally unimodular. (For a treatment 
of " #P-hardness" see Valiant [29].) 

Also, in [7], Dyer and Frieze pose the following problem. Let A be an 
m x n matrix of rational numbers, and let b be a column vector of m rational 
numbers. Let P = {x E 1Rn: Ax < b} be a bounded polytope so that the volume 
of P will necessarily be a rational number. Define the size (as in [24]) of the 
rational number r = a/b (reduced) to be one more than the total number of 
digits in the binary representations of the integers a and b, and the size of the 
pair (A, b) to be m(n + 1) more than the sum of the sizes of the entries of 
A and b. Is the size of the volume of P polynomially bounded in the size of 
(A, b) ? We shall see that the answer to this question is "no."9 

For background material concerning convex polytopes, systems of linear in- 
equalities, linear programming, and valuations on convex polytopes, see [11, 
28, 10, 23]. 

2. STATEMENT OF THE MAIN RESULT, 

AND A RESULT FROM COMBINATORIAL INTEGRAL GEOMETRY 

We identify Rin with the vector space of real column vectors of length n . Let 
P C iR be an n-dimensional polyhedron. Then P is the set of solutions to a 
finite system of linear inequalities, say, P = {x E IRn: atx < b for 1 < i < m}, 
where the a 's are in Rin and the b 's are in R1. Given such a representation, 
the function ri(x) = bi - atx is called the ith residual. The polyhedron P is 
the set on which all the residuals are nonnegative. The ith inequality constraint 
is said to be binding at x if ri(x) = 0. The result upon which our algorithm 
for volume computation rests is as follows: 

Theorem. Suppose P ={x E Rn: ri(x) = bi - atx > O for i = 1, .., m}l. 
Suppose further that P is bounded and that for each vertex v of P the number 
of indices i such that ri(v) = 0 is n. In particular, P is a simple polytope. 
Suppose C E 1Rn and d E R are such that the function f(x) = Ctx + d is 
nonconstant on each edge of P. Given a vertex v of P, let 

N - f(v)n 
v n!8vyi yn 

where, if the indices of the constraints which are binding at v are il, ..., in, 
then Y1, ... , Yn are such that 

c=yja; + +ynan 
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and J8 is the absolute value of the determinant of the n x n matrix whose 
columns are ai, ..., ai Then the volume of P is 

vol(P)= E Nv 
v, a vertex 

of P 

This theorem follows modulo the computation of the numbers Nv from the 
corollary at the end of this section. The numbers N-v are computed (under the 
unnecessary but convenient restriction that P be contained in the nonnegative 
orthant in in and have the origin as a vertex) in ?3. 

We next describe a combinatorial form of Gram's relation. 
If v is a vertex of P, we wish to describe the "forward cone" of P at v 

(with respect to f) . Let il , . ., in be the indices of the n constraints which 
are binding at v. Then v is the unique solution to the system of equations 

(1) ~~~~a'x b. (j 1..n). 

It follows that {af, ..., a1} forms a basis for in , and there is a unique 

representation c = EjnI yja1 of c in terms of the basis. From this we have 

f(x) = f j(v) - ,=1 yjri (x) . Omitting any one of the constraints in (1) leads to 
a system whose solution set is a line through v . Each edge of P containing v 
spans such a line. Since f is assumed to be nonconstant on each of the edges, 
it follows that yj $ 0 for j = 1, ..., n. We denote by e(v) the number of 
indices j such that yj > 0. This is also the number of edges of P containing 
v on which f decreases in the direction leaving v . The forward cone at v is 
the set F(v) of solutions x to the following system of inequalities: 

ri(x)<0 ifyj>0, 

ri (x) > 0 if yj < 0. 

The closure of this set is a simplicial cone with apex v, and on this cone f 
achieves its minimum value at v. 

For a set K C inf, C(K) denotes the characteristic function of K, so that 
for x E iRn 

C 
1 ifxEK, 

C if x0K. 
If G is a face of the convex polyhedron P, we denote by y(G, P) the cone 
generatedby P at G: y(G, P) = {g+a(y-x): x, g E G, yE P, and a > 0}. 

Lemma. For P C iRn a simple, n-dimensional polyhedron, v a vertex of P, 
and f(x) = ctx + d a function which is nonconstant on each edge of P, as 
above, we have 

(1 )e(v) C(F(v)) = L(-. 1)dim(G) C(y(G P)), 
G 
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where the summation extends over all faces G of P such that f attains its 
maximum value on G at v. 
Proof. Let P be given (as above) as the set of solutions to the inequalities 
ri(x) > 0 (i = 1, ..., i), and suppose that i1, ..., in are the indices of the 
constraints which are binding at v. The 2n subsets of [n] = {1, 2, ..., n} 
are in bijective correspondence with the faces of P containing v by the rule 
S --+ G(S) = Pnf{x E Rn: r (x) = 0 for j E S}, for S C [n]. The function G is 
order-reversing: If S C T then G(T) C G(S). We have dim(G(S)) = n - ISI. 
Also, for S C [n], y(G(S), P) = {x E 1Rn: r1 (x) > 0 for j E S}, so that 
x E y(G(S), P) if and only if S C Tx, where Tx = {j E [n]: r (x) > 0}. 

Suppose we have, as above, f(x) = f(v) _ Z>1 yE r (x). Let W = {j E 
[n]: yj < } . Then f assumes its maximum value on G(W) at v, and W is 
the (unique) smallest such set. For S C [n], f assumes its maximum value on 
G(S) at v if and only if S D W. 

For x E 1Rl, the value of the right-hand side of the equation in the lemma is 

E (-1 di(() C ( y ( G(S), P) ) (x ) 
SC[n] 
SDW 

= E (-l~n-IS= (1)f -'W if Tx = W 

WCSCTx 0 otherwise. 

Clearly, this is (_l)e(v)C(F(v))(x). o 

In the proof of the theorem below we use a version of Gram's relation. (See 
Shephard [25]. The following is a strengthened version which can be proven 
using methods of [25]. Gram's relation is also known as the Brianchon-Gram 
Theorem. See McMullen [18].) 

Gram's relation. Let P be a convex polyhedron having at least one vertex. Then 

E (1) dim(G)C(y(G, P)) = C(P). 
G, a bounded 

face of P 

Theorem. Suppose P and f are as in the statement of the lemma. Additionally, 
assume that f attains its minimum value on P. Then 

C(P) = E (_1)e(v)C(F(v)). 

v, a vertex 
of P 

Proof. We have 

E (_l)e(v)C(F(v)) = z z (_l)dim(G)C(y(G P)) 
v, a vertex v, a vertex G, a face of P 

of P of P on which f attains 
its maximum value at v 

Z (_ )dim(G) C(y(G, P)) = C(P). 
G, a bounded 

face of P 
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The first of these equalities follows from the lemma; the second from the fact 
that a face G on which f is bounded above and below must be bounded, since 
f is not constant on any edge of G; and the third from the above version of 
Gram's relation. o 

This theorem is useful, as we shall see, not only in volume computation 
but also in the computation of any valuation which can easily be evaluated on 
simplexes. We recall some fundamental facts concerning valuations, beginning 
with the definition (see also [14]). 

Let sY be a family of sets in R' which is closed under finite intersections 
and unions, and suppose X E s . A valuation on sY is a function V: sY -- R 
such that (i) V(X) = 0 and (ii) for each pair of sets A, B E aY, the identity 
V(A) + V(B) = V(AnB) + V(AU B) holds. 

Any valuation V on sY induces a homomorphism V: 9(,s{) --+ R , where 
Sa(Q) is the additive group generated by the characteristic functions C(F) of 
elements F of AY, satisfying V(F) = V(C(F)) for each F E S7. 

Here we are interested in examples in which sY is a collection of sets which 
are finite unions of polyhedra. For such a collection, given a function k which 
is integrable on each element of AY, we can define a valuation by integration: 
V(F) = fF k dyi. (In this case, the induced homomorphism V: 5'Q) -* R is 
given by V(g) = fn gk dy .) For sY the collection of finite unions of convex 
polytopes, taking k _ 1 , we get V(F) = vol(F), the ordinary volume of F. 

We can now state the following corollary to the theorem. 

Corollary. If V is any valuation defined on a family sY which includes the 
polyhedron P of the theorem and all of the forward cones F(v) for vertices v 
of P, then 

V(P) =1 _)e()V(Fv) 
v, a vertex 

of P 

Proof. If V: 59Q) - IR is the induced homomorphism, then we have 

V(P) = V(C(P)) = V C(flv)) 
v, a vertex 

of P 

E ~ (l1)e(v)V(C(F(v))) = E (_1)e(v)V(F(v)). D 
v, a vertex v, a vertex 

of P of P 

Of course, the volume function fails to satisfy the hypothesis of this corollary 
because it is not defined on the (unbounded) forward cones. We may still use 
the corollary to evaluate vol(P), if P is a polytope, as follows. Let t be a real 
number large enough so that the halfspace Ht = {x E iRn: f (x) < t} contains 
P. Let the valuation V be defined by V(F) = vol(F n Ht) for any set F 
which is the finite union of convex polyhedra whose intersections with Ht are 
bounded. Now the corollary applies. The left-hand side of the equation is the 
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volume of P. On the right-hand side is a sum involving volumes of sets of the 
form F(v) n Ht. which are simplexes. 

As an example, consider the case in which P is the unit n-cube, 

P = C 
n = {[x E R n: 0 < x < 1 for 1 < i < n}. 

Let f (x) = yIx1 + + YnXn where the yi's are positive. Let v = [e1 enIt. 
where ei = 0 or 1 for each i, so that v is one of the 2n vertices of Cn. The 
forward cone F(v) is the solution set of the system 

x > 0 if e=O 
x > 1 if e =1, 

and F (v)fnHt is the set which also satisfies the additional inequality n=1 Yixi < 
t. The volume of this set is easily seen to be 

if t > f(v) 
n! Yl Y2 Yn 

0 if t < f (V) . 

By the corollary, the volume of Cn n Ht is 

1E(- 1) Iv ((t _f (V))+)n 
n! V Y1 . Yn 

where, if y E IR, y+ = max{0, y}, and 1v = ZiU1i . This formula has already 
been observed in [4]. Dyer and Frieze [7] show that computing vol(Cn n Ht) is 
#P-hard. 

As another example we compute the volumes of certain projective images of 
the unit n-cube. 

For u E IRn let Tu denote the projective transformation T,(x) = 

x/(1 + uTx). For u, v E IRn one has T,(Tv(x)) = T,+v(x), and in partic- 
ular, T_u is the inverse of Tu. 

Let 1R+ = {[x1, ... xt E 1Rn: x? (i=1,..., n)}, the nonnegative 
n ~~~n orthant. If u > 0, then Tu is defined on 1R+ . If x e 1R+ and y = Tu(x), then 

0 < x = T U(y) = y/(l - uty) . Clearly, 

Tu(R) = {y E Rn: Uty < 1}. 

This set coincides, up to the boundary, with the simplex 

conv{ 0 , v(1) . 
... 

, v(n), where v (i) = [, ... , 1 ui . 
... 

, 0], 

the nonzero entry being in the ith coordinate. 
We wish to apply the corollary with the valuation V(P) = vol Tu(P) , which is 

defined on polyhedra P C 1Rn, to compute V(Cn). To this end, we determine 
V(F(v)) for vertices v = [e ... en]t of Cn. We have 

Tu(F(v)) = {y E Rn: T u(y) E F(v)} 

= {y: Yi > 0 if ei = 0, Yi + uTy > 1 if e8 = 1, and u y < . 
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This set coincides, up to its boundary, with the simplex 

conv{T,(v), v )() . .., V )}, 

where the v(")'s are as before, and of course 

TU(v) = [1 + Ui* I+ UT 
1 

Upon observing that the determinant of the matrix 
[ 1/ul 11 

[1Un 1 

Ei/(1 + UTV) 6 n/(l + UTV) I 

is 1/(u1 ... (1 + UTv)), we deduce that 

V(F(v)) = vol Tu(F(v)) = T 
n!ul UnO +N UV) 

By the corollary we have 

V( ) ...a U El + UTV 

3. DESCRIPTION OF THE METHOD 

Let the polytope P whose volume we are to compute be given as 

P ={x E R:x > 0, Ax < b}, 

where A is an m x n matrix and b is a column vector in Rm having nonneg- 
ative entries. We assume that P is a simple polytope and that each vertex v 
of P satisfies with equality exactly n of the m + n inequalities defining P. In 
particular, considering that the origin in iRn is a vertex of P, the entries of b 
are positive. (This assumption can be discarded by making use of standard lex- 
icographic techniques for handling primal degeneracy in linear programming. 
See [10].) Additionally, we assume the availability of a function f(x) = ctx + d 
which is constant on no edge of P. 

For i = 1, ... , n, let ri(x) be the residual associated with the ith non- 
negativity constraint; ri(x) is the value of the ith coordinate of x. For 
i = n + 1, ..., m + n, let ri(x) be the residual associated with the inequality 
involving the (i - n)th row of A. 

We can combine the above data to formulate a linear programming problem: 

maximize ctx + d subject to the constraints 

(2) Ax < b, 
x > 0. 



266 JIM LAWRENCE 

The polytope P is the feasible region for (2). Our assumption that each ver- 
tex of P satisfies exactly n of the defining inequalities with equality is the 
assumption of primal nondegeneracy for (2). If we consider simplex tableaux 
to be equivalent if they differ only by row permutation, then primal nondegen- 
eracy implies a bijective correspondence between the set of (equivalence classes 
of) simplex tableaux and the vertex set of P. 

The vertex enumerating algorithms of [2, 20, 21] use simplex pivoting meth- 
ods to obtain all of the basic feasible tableaux for (2). See also [6, 22] for 
surveys of vertex-finding algorithms. Our method uses such an algorithm. 

For each tableau, the numbers e(v) and vol(F(v) n Ht) are determined, 
where v is the vertex of P corresponding to the tableau. The summation in 
the corollary is computed using this information. 

We describe how to glean the needed information from the simplex tableaux. 
After introducing slack variables for (2), we have 

maximize [0 x + d subject to the constraints 

[A:I]5 = b, 

where now x E Rm+n . The initial tableau is 

T [A 
I 

b] 

corresponding to the origin in iRn, a vertex of P. The basic sequence for T is 
(n + 1, n + 2, ..., n + m) . The basic sequence for a tableau is the sequence of 
indices of basic columns in the order they would appear in the identity matrix. 

Suppose v is a vertex of P. Suppose rk (v) > 0 for j = 1, ..., m, and 

ki < ... < km so that k1, ..., km are the indices of the residuals of the 

nonbinding constraints. Let T be a tableau corresponding to v . The entries in 
its basic sequence (fl, ... , /Im) are the numbers k1 (j = 1, ..., m) in some 

order. The tableau T is of the form 

~~ [ M ~~~ bl, h '~- if i 

T = [ | day S where M(i 5 
fj) ={0i [YiY2 ..Ym+nd ~ ee Q~~ 0 if i 0j. 

For us, what is important is that yi = 0 if and only if i = flj for some j, and 

f(x) = d - Z74iIm yiri(x) . Thus, the bottom row of T gives the coefficients of 
the objective function when written in terms of the residuals of the constraints 
which are binding at v. The number e(v) is the number of positive yi's. By 
definition, the forward cone F(v) is the set of solutions x to 

r1(x) < 0 if yi > 0 

ri(x) > 0 if Yi < ?. 
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Given a real number t, let Ht = {x E DR': f(x) < t}, as before. We must 
compute the volume of the set F(v) n Ht. This set is given by the inequalities 

r1(x) < 0 if Ys > O, 
r(x) > 0 if < O, 
m+n 

Zyiri(x) >d-t. 
i=1 

This set is nonempty if t> d. 
Let i1 < i2 <* < in be the indices of the residuals for the constraints 

which are binding at v, so that yi $0 ? for 1 < j < n . The volume of the set 

of y = [y1, *--, ne 1R 
n 

satisfying 
n 

(5) yj > 0 for i = l 1 no E Iyi lyj < t - 
j=1 

is +(t - d) yi I, when t > d. The linear transformation mapping 
x E iRn to y = [-sgn(yi )r. (X) )ri (x)]t maps the simplex which 
is the closure of the set of solutions to (4) onto the solution set to (5). We 
denote by 6, the absolute value of the determinant of this transformation. The 
volume of the solution set to (4) is then 

(0 if t < 

(6) vol(F(v) nfH) = j1 1 (t - d) if t>d. 

The number 6, in (6) is easily seen to be the determinant of the basis 
matrix-the matrix consisting of the columns of [A: I] having indices ba- 
sic in T and occurring in the order dictated by the basic sequence for T. It is 
easy to calculate 5V if we have arrived at T from T by a sequence of pivots. 
It is the product of the pivot elements. 

Finally, upon multiplying both sides of (6) by (-1)e(v), we get 

f 0 if t < d, 
(7) (l)e(v)vol(F(v) n Ht) = (l)n 1 (t - d)n if t > d. 

in! v yi... Yin 

Summing these numbers for each vertex v yields the volume of the set P n Ht. 
If t exceeds the optimal value of the linear programming problem (2), then the 
sum is the volume of P. 

Observe that for large t the functions of t that we sum are polynomials, and 
the sum is a constant-the volume of P. It follows that the sum is a constant 
polynomial. Evaluation at t = 0 yields the volume of P as the sum of the 
numbers 

11 dn 
(8) v= Y 
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4. AN EXAMPLE AND COMMENTS 

Figures 1 and 2 exhibit the feasible tableaux for the problem 

maximize x1 + X2 

subject to - x1 + x2 < 2, 

X2 < 4 , 

3x1 + 2x2 < 15, 

X1' X2 > ?O, 

along with a graph indicating the corresponding vertices. Our computations, as 
shown, indicate that the area of the polygon is 38/3 (which, in this example, 
can easily be checked by other means). 

-1 1 1 0 0 2 

I 0 1 0 1 0 4 6 1. N =L -( v v 2! 1 (-1) (-1) 

3 2 0 0 1 15 

-1 -1 0 0 0 0 

o 5/3 1 0 1/3 7 

II 0 1 0 1 0 4 1 1 52 v v 2! 3 (-1/3) (1/3) 

1 2/3 0 0 1/3 5 

0-1/3 0 0 1/3 5 

0 0 1 -5/3 1/3 1/3 

1 1 (19/3 )2 
III 0 1 0 1 0 4 | 3. N = - 

v v 2! 3 (1 /3) (1/3) 

1 0 0 -2/3 1/3 7/3 

0 0 0 1/3 1/3 19/3 

0 0 3 -5 1 1 

I V 0 1 0 1 0 4 8 =1. N- 1 6 v v - 2! 1 (-1) (2) 

1 0 -1 1 0 2 

0 0 -1 2 0 6 

5 0 -2 0 1 11 

V -1 1 1 0 0 2 6 =1. N -= 1 -2 v v- 2! 1 (-2) (1) 

1 0 -1 1 0 2 

-2 0 1 0 0 2 

Area N = 38 
FIGURE 3 

FIGURE 1 
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x2 

IV III 
4 

3 

2 \ 

P 

1~~~~~~~~~~~~~~~~~~~ 
___ I \ II > 

1 2 3 4 5 

FIGURE 2 

The main contributor to the complexity of this method is the possibly high 
number of vertices of the polytope P. A polytope of dimension n determined 
by m + n linear inequality constraints may have as many as ( m+n- L(n+1)/2J) + 

2 
m+n-L(n+2)/2J) vertices (see [ 19]). 

m 
A problem which provides a complication in higher dimensions is that of 

round-off error. The method requires summing a lot of numbers, some positive 
and some negative. These numbers, compared to the volume of P, can be quite 
large in magnitude, so that there can be considerable loss of significance. One 
(perhaps costly) way around this is the use of "exact arithmetic." To illustrate 
the extent to which this approach can indeed be costly and to provide a negative 
solution to the problem of Dyer and Frieze [7] mentioned in the Introduction, 
we consider again the example at the end of ?2, with 

-1 1 1 i -t 
U= -2 e - 2nj 

The projective image Tu (Cn) is the polytope which consists of those y E iRn 

which satisfy the 2n inequalities 

Yi >0 (for 1 <i<n), 
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1 11 < 
2Y1 + (1 +4Y2+'''+ F Yn < 1 

2Y1 + Y2 + +' (+ n )Yn < 

Its volume is 

1 ~- (-1)IvI 2(n +3n)/2 2n+l_1 q1(N)-l 

n!W . 
U uu $ l + UtV n! N 

vertex of Cn 

where q(N) is the number of l's in the binary expansion of N. Suppose this 
number, written as a reduced fraction, is a/b. Note that each prime N such 
that 2n < N < 2n+1 divides b, so a very crude lower bound on b is 2k, where 
k is the number of such primes N. It follows by the prime number theorem 
[12, p. 9] that k is not bounded by a polynomial in n. We see that the number 
of digits in the binary expansion of b is not bounded by a polynomial in n. 

In the presence of primal degeneracy there is no longer a bijective correspon- 
dence between the set of vertices of P and the set of equivalence classes of 
feasible tableaux. In this case it is nevertheless possible to find the desired vol- 
ume by performing the summation, but now over the set of tableaux for which 
a lexicographic positivity condition holds. 

The requirement that the objective function f be nonconstant on the edges 
of P also provides a complication. This requirement is fulfilled by f (x) = ctX, 
where c = [1, M, ..., Mn-lit, for M a sufficiently large number. If A and 
b have rational entries, then one can show (using the methods of [24, ? 11.3]) 
that M can be chosen to be of size polynomial in the size of (A, b) . 

ACKNOWLEDGMENT 

We wish to note our appreciation for help and encouragement rendered by 
several people-Javier Bernal, Mark Hartmann, Victor Klee, Carl Lee, Wal- 
ter Morris, Ted Speevak, and Christoph Witzgall. Aid rendered ranged from 
encouraging the writing of the paper through providing references of which I 
was unaware, to reading a preliminary draft, finding mistakes, and suggesting 
improvements! 

BIBLIOGRAPHY 

1. E. L. Allgower and P. M. Schmidt, Computing volumes of polyhedra, Math. Comp. 46 
(1986), 171-174. 

2. M. L. Balinski, An algorithm forfinding all vertices of convex polyhedral sets, SIAM J. Appl. 
Math. 9 (1961), 72-88. 

3. J. BArdny and Z. Furedi, Computing the volume is difficult, Proc. 18th Annual ACM Sympos. 
on Theory of Computing, 1986, pp. 442-447. 

4. D. L. Barrow and P. W. Smith, Spline notation applied to a volume problem, Amer. Math. 
Monthly 86 (1979), 50-51. 

5. J. Cohen and T. Hickey, Two algorithms for determining volumes of convex polyhedra, J. 
Assoc. Comput. Mach. 26 (1979), 401-414. 

6. M. E. Dyer, The complexity of vertex enumeration methods, Math. Oper. Res. 8 (1983), 
381-402. 



POLYTOPE VOLUME COMPUTATION 271 

7. M. E. Dyer and A. M. Frieze, On the complexity of computing the volume of a polyhedron, 
SIAM J. Comput. 17 (1988), 967-974. 

8. H. G. Eggleston, Convexity, Cambridge Univ. Press, 1958. 
9. G. Elekes, A geometric inequality and the complexity of computing volume, Discrete Comput. 

Geom. 1 (1986), 289-292. 
10. S. I. Gass, Linear programming, McGraw-Hill, 1958. 
11. B. GrUnbaum, Convex polytopes, Interscience, 1967. 
12. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fourth ed., Claren- 

don Press, 1968. 
13. J. B. Lasserre, An analytical expression and an algorithm for the volume of a convex poly- 

hedron in Rn1, J. Optim. Theory Appl. 39 (1983), 363-377. 
14. J. Lawrence, Valuations and polarity, Discrete Comput. Geom. 3 (1988), 307-324. 

15. Y. T. Lee and A. A. G. Requicha, Algorithms for computing the volume and other integral 
properties of solids. I. Known methods and open issues, Comm. ACM 25 (1982), 635-641. 

16. , Algorithms for computing the volume and other integral properties of solids. II. A family 
of algorithms based on representation conversion and cellular approximation, Comm. ACM 
25 (1982), 642-650. 

17. L. LovAsz, An algorithmic theory of numbers, graphs and convexity, SIAM, 1986. 

18. P. McMullen, Angle-sum relations for polyhedral sets, Mathematika 33 (1986), 173-188. 
19. P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, Cam- 

bridge Univ. Press, 1971. 
20. M. Manas and J. Nedoma, Finding all vertices of a convex polyhedron, Numer. Math. 12 

(1968), 226-229. 
21. T. H. Mattheiss, An algorithm for determining irrelevant constraints and all vertices in sys- 

tems of linear inequalities, Oper. Res. 21 (1973), 247-260. 
22. T. H. Mattheis and D. S. Rubin, A survey and comparison of methods for finding all vertices 

of convex polyhedral sets, Math. Oper. Res. 5 (1980), 167-185. 
23. G. C. Rota, The valuation ring, Studies in Pure Mathematics (L. Mirsky, ed.), Academic 

Press, New York, 1971. 
24. A. Schrijver, Theory of linear and integer programming, Wiley, Chichester, 1986. 

25. G. C. Shephard, An elementary proof of Gram's theorem for convex polytopes, Canad. J. 
Math. 19 (1967), 1214-1217. 

26. D. P. Shoemaker and T. C. Huang, A systematic methodfor calculating volumes ofpolyhedra 
corresponding to Brillouin zones, Acta Cryst. Sect. A 7 (1954), 249-259. 

27. T. Speevak, An efficient algorithm for obtaining the volume of a special kind of pyramid and 
application to convex polyhedra, Math. Comp. 46 (1986), 531-536. 

28. J. Stoer and C. Witzgall, Convexity and optimization in finite dimensions, Springer-Verlag, 
1970. 

29. L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 
(1979), 410-421. 

30. B. Von Hohenbalken, Finding simplicial subdivisions of polytopes, Math. Programming 21 
(1981), 233-234. 

DEPARTMENT OF MATHEMATICAL SCIENCES, GEORGE MASON UNIVERSITY, FAIRFAX, VIRGINIA 

22030 

CENTER FOR COMPUTING AND APPLIED MATHEMATICS, NATIONAL INSTITUTE OF STANDARDS 

AND TECHNOLOGY, GAITHERSBURG, MARYLAND 20899 
E-mail address: lawrence~gmuvax.gmu.edu 


	Cit r252_c254: 
	Cit r256_c258: 
	Cit r254_c256: 
	Cit r271_c273: 


