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THE STRUCTURE OF MULTIVARIATE SUPERSPLINE SPACES 
OF HIGH DEGREE 

PETER ALFELD AND MARITZA SIRVENT 

ABSTRACT. We consider splines (of global smoothness r, polynomial degree d, 
in a general number k of independent variables, defined on a k-dimensional 

triangulation - of a suitable domain Q ) which are r2k m - -times differen- 
tiable across every m-face ( m = 0, , k - 1) of a simplex in -T. For the 
case d > r2k we identify a structure that allows the construction of a minimally 
supported basis. 

1. INTRODUCTION 

A K-simplex K (O < c < k) is the convex hull of K + 1 points in Rk called 
the vertices of K. K is nondegenerate if its K-dimensional volume is nonzero, 
and degenerate otherwise. The dimension of a nondegenerate K-simplex is K. 
The convex hull of a subset of ji + 1 vertices of K is a j-face of K. 

Let 77 c IRk be a given set of N distinct points. 
A triangulation Y of the set %"F is a set of nondegenerate k-simplices sat- 

isfying the following requirements: 
1. All vertices of each simplex in Y are elements of F/. 
2. The interiors of the simplices in Y are pairwise disjoint. 
3. The set 

(1) Q:= U KcIRk 
KE?7 

is homeomorphic to [0, 1]1k 
4. Each (k - 1)-face of a simplex in Y is either on the boundary of Q, 

or else is a common face of exactly two simplices in SF. 
5. No simplex in Y contains any points of 77 other than its vertices. 

Note that a [-face of a simplex in Y is itself a pu-dimensional simplex. On 
the triangulation Y we define a spline space Sr (Y) as usual by 

(2) S (9) = fs E SI, E Y@ 'T E i}' 

where 3k is the (kdd)-dimensional linear space of all k-variate polynomials 
of total degree less than or equal to d . 
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In this paper, we consider subspaces of S (T) obtained by increasing the 
smoothness requirements across faces of the underlying simplices. More pre- 
cisely, denoting by 9'l the set of all ,u-faces of the simplices in 3T (u = 

0, ..., k - 1) and letting 5' = UYI05 ,' , we define the (superspline) space 

Sd(,T) as a subspace of S'(9) as follows: 

S) 
r 

= {s E r(): s is p-times differentiable across a Va e 5}, 

where p = r2kdimaI 

The concept of supersplines was introduced in Chui and Lai [8], [9]. The 
area in between finite elements and full spline spaces was further explored by 
Schumaker [16] and Ibrahim and Schumaker [1 ]. 

2. THE GENERALIZED BtZIER-BERNSTEIN FORM 

Crucial to analyzing the dimension of spline spaces is the B&zier-Bernstein 
form of a multivariate polynomial. In the case k < 2 this form is used widely 
and is well known. A review of the B&zier-Bernstein form for a general number 
of variables is in de Boor [6]. In this paper, we use a notation that is particularly 
suitable for our purposes. However, generalized barycentric coordinates and 
global control nets have also been proposed in Alfeld [2] and de Boor [6]. 

We use %'" as an index set and denote by N the set of nonnegative integers. 
For vectors I = [iv]v 

C 
NN and a = [aV],E, e RN we define 

(4) 11= Z iv, 
vE7a 

(5) a = jlI! 17 a, JI iv!, 
vE7Y vatY 

where 

(6) 00 := 1. 

We also use the notation 

(7) a(I) = conv{v: iv > 0}, a(a) = conv{v: av $0 ?} 

where conv X denotes the convex hull of a point set X. 
We now define generalized barycentric coordinates as cardinal piecewise linear 

functions be e S?(Q) by the requirement 

(1 if V=w 
(8) bV(W) =vw =jt0 else Vv, w E F. 

Clearly, in each k-simplex K E 3' the functions bV, where v is a vertex of 
K, reduce to the ordinary barycentric coordinates. Globally, i.e., for all x E Q, 
they satisfy 

(9) E b=1, b > 0 Vv E X, and x= bv(x)v. 
vE%/ vE7W 
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For a given polynomial degree d, we use the domain index set 

(10) Id= {I E NN: III = d and v(I) EE UJT}. 

Letting 

(11) b = b(x) = [b (X)]VE2 - 

it is clear that every function s E S (,T) can be written as 

(12) s=E c1b. 
IEId 

The coefficients c1 are the Bezier ordinates of s. 

3. THE DE CASTELJAU ALGORITHM 

Let S E S (8'), K E J, and SIK = P E Ok. Without loss of generality we 
may relabel the vertices and assume that K is the k-simplex 

(13) K= {a= (al,... , ak+l): al +...+ak+l =d, aj >O, aj ER}. 

Then, with Vj denoting the vertices of K, we have 

k+1 k+1 

(14) p= E cb' where x=E1bj , Zb1 = 1. 
IEKnId j=1 j=1 

The Bernstein polynomials bh(x) satisfy a recurrence relation, see Farin [10] 

k+1 

(15) b (x) = Eb b (X), III = d, and ej = (On , 1, ,0). 
j=1 

This relation allows one to expand p in terms of Bernstein polynomials of lower 
degree with (polynomial) coefficients PI (b). 

Theorem 1. We have 

(16) p= I l4(b)h', 0?r<d 
jIj=d-r 

where 

(17) P(b) qI 

k+1 
(18) PI(b)= E bjPI+e1 (b), III = d-rr 0 < r < d. 

j=1 

The intermediate coefficients p I(b) can also be written explicitly as 

(19) pr(b)= E CI?Mb IIIj =d-r. 
IMI=r 
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The formulas in Theorem 1 may be used to evaluate p at a given point, and 
are referred to as the de Casteljau Algorithm. 

4. SMOOTHNESS ACROSS AN INTERFACE 

Given a vector e E R k, the directional derivative of p in the direction of 
a = , ...b, ), denoted D,, is given by (Alfeld [2]) 

(20) Dap = d E PI ()b 
III=d- 1 

where 

(21) PI (O) ECI+MR I| d - 1. 
IMI=1 

In general, the rth directional derivative of p in the direction of a is given by 
(Farin [10]) 

(22) DP (d-r)! S 
I 

III=d-r 

where 

(23) pI (a) = 5 cI?MQM, I| = d - r, and pI (a) = cq. 
IMj=r 

The following theorem was proved by Farin [ 10] in the bivariate case; here we 
state without proof the result in any number of variables. Let T be an m-face 
of K; without loss of generality, we will assume that 

(24) T ={aEK: am+2 = ... = ak+1 = ?} 

Theorem 2. Let p, q E 3k be such that pir = qjT Then Ds p = Ds q on T for 
all directions a, 0 < s < r, if and only pj = qj for all J =(il... , m+1, 
0, ,0), IJI =d -r. 

5. SUBSIMPLICES AND SUBPOLYNOMIALS 

Let K EY9 be a k-simplex and T be a face of K with dim T =n, 

(25) K= {aERN: SEav =dav >0} 
VEK 

(26) T= {aEK: Sav=d}. 

For J E K d I so that ElET iv = d - p, define 

(27) TJ = {a= [avlVEK: jv > aV, v ET}. 

Clearly, Ti is a subsimplex of K similar to K. 
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Let p Ec?, and (I, CI)IEK be the control points of p with respect to K. 
The control points (I, c1)1c, define a polynomial pj of degree p. We call 
-rJ the subsimplex of K associated with J, and pj the subpolynomial of p 
associated with J. 

De Boor [6] introduces the concepts of subsimplices and subpolynomials and 
proves most of the results of this section. Since our definitions are slightly 
different, we restate two key facts involving subpolynomials. Theorem 2 can be 
restated as follows: 

Theorem 3. Let p, q E 9d and r be a face of K with dimr = m such that 

pIL=qLI. Then 
(28) DSp = DSq on , for all directions a and < s < p, 
if and only if 

(29) PI = q1 VI E K with dist(I, r) = p. 
The above theorem immediately yields the following: 

Theorem 4. Let K, K' EYA, - c K n K', p. q E 9J , and let s E S (Q) with 

SIK = P. SIK' = q. Then s E C'(r) if and only if PI = qp VI E K' with 
dist(I, r) = p. 

6. DETERMINING SETS 

We now generalize the concept of a determining set known from the bivariate 
case (see Alfeld and Schumaker [4]). 

Definition 5. A set D c Id is a determining set of Sr(T) if, for all s E (T) 

(30) cI = ? VI E D =- s- s_0. 

D is a minimal determining set if there is no determining set which has fewer 
elements than D. 

It is clear from elementary linear algebra that the number of elements in 
a determining set of Sr (T) provides an upper bound on the dimension of 
S (s) , and that the number of elements in a minimal determining set is unique 
and equals the dimension of Sr() . 

7. A MINIMAL DETERMINING SET OF (g) 

For each simplex a c 9' USY let p = r2k-dima- 1 as before; we define two 
sets of domain indices recursively by 

(31) 9(a)={IeId: LiV> d-P} 
vEa 

and 

(32) 0(f (af) \U 0('r) 
T-<a 

where r is a proper face of a. 
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Definition 6. Let a E 92U . A set X (a) c D(a) is a determining set of 
9(a) if, for all S E (T) 

(33) cI = O VI E (a) U (2(a) \ gr(a))= - C =? VI E 9(a). 
The set v is a minimal determining set of 9(a) if there is no determining 
set of 9(a) with fewer elements. 

Lemma 7. Let d > r2 kThen, for all I E Id there exists a unique a E 9' U 3 

such that I e- (a). 
Proof. To prove the lemma, we have to show first that for all a, r E 9' U 3: 

(34) c :A r 9(a) n (T) = 0 . 

To establish this, suppose there is a domain index I E 9(a) n (Tr), for two 
simplices a, r E 9 U A, such that dim a > dimr , and r is not a face of a . 
Thus, 

(35) L ? d -r2k-dima-i and i > d - r2k 

vEa vET 

which implies 
k-dim a-i k-diMT- 1 

(36) iv + , iv > 2d-r2 - r2 
VEa vET 

Moreover, 

(37) Siv+ iv 
S 

iv+ E iv. 
vEa vET vEanT vEauT 

Now, rearranging (37), substituting (36) into (37), and using EvEauT iv < d, 
we obtain 

(38) iv >d-r2k-diM 
vEalnT 

So there exists a face t of r such that I E 9(z), which is a contradiction. 
Finally, we need to prove that Id = U u- O(a) a 

To see this, we only need to show that for each domain index I E Id there 
exists a simplex a E 9 U S7 such that I E 9(a). However, this is trivial, 
since for each domain index I there exists at least one k-simplex K such that 

ZVEKiV = d. Thus, I E 9(K), and there must be a simplex a -E K such that 
I E .(a). *U 

Lemma 8. Let d > r2 k, p = r2 k-dim a-, and W(a) := 9(a) n K, where 
K E Y and a - K. Then -(a) is a minimal determining set of ?9(a). 
Proof. First we establish that - (a) is determining. 

Let s E Sd (), and let SIK = p, with p E ad . If 

then 
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where PI is the subpolynomial of p of degree < p associated with I (notice 
that dist (I, a) < p VI e V (a) ). Let K' be any other k-simplex of 9 such 
that a-<K' and K$K',andlet q=sIK', qE d. Now, sEC (a); then 
VI E (9(a) n K') U (_0 (a) \ ?(a))pj = q1, where q, is the subpolynomial of q 
of degree < p associated with I. But, 

(39) PI = ? VI E (90Z(a) n K) U (9 (a) \ _1r(ay)) 

(40) qI = 0 VI E (9(a) n K') U (9((a) \ 9(a)) 

(41) CI = 0 VI E (9(a) flK') U (2(a) \ (a)) 

(42) cl =0 VI E U ( 9(a) \ (a)) 

(43) C c1 = 0 VI E (a) U (9(a) \ 9 (a)) - 

Therefore, 

(44) cI = 0 VI E 0(a). 

To see that v (a) is indeed minimal, take I E v (a) and consider the set 
(a) = S (a) \ {I}, define a polynomial on K whose B&ier coefficients are 

equal to zero except at the domain point I, where c1 = 1, and extend this 
polynomial globally on the rest of the triangulation. 

The coefficients cj are equal to zero on 9 (a) \ ?2(a), since the smoothness 
conditions there only involve domain indices in 9(T) for T -< a. 

Hence, cj = 0 VJ E _(a) U (O(a) \ (a)), but this does not imply that 

Cj = 0 VJ E 9 (a) since in particular I E 9(a) and c, = 1 . 
Therefore, XV(a) cannot be determining and _ (a) is a minimal determin- 

ing set of 9 (a). U 

The following theorem is the central result of this paper. 

Theorem 9. Let r > 0, d > r2k and let X (a) = 9J(a) nK, where K E 7 is 
a k-simplex so that a is a face of K. Then 

(45) := U 5(a) 
aC5"UT 

is a minimal determining set of Sr(g). 

Proof. Let s E Sr(Q9) and assume that c, = 0 VI E V . Using induction on 
dim a, we first establish that v is a determining set. 

(l)If dima=0 then c, =0 VIES(Ca) implies c1=0 VI E(a),since 
B(a) =W (a)s 

(2) We assume now that CI = 0 VI e 9(a) and Va with dim a <n . 
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(3) Let dim a = n , ci = ? 'VI E- v (a) .Let ~9(a) = ,v (a) U (91~(a) \ -29(a)); 
notice that B(a) c X(a) U (U, (z)) 

By the induction hypothesis, c1 = 0 VI E UT-a (r) implies that c1 = 0 
VI e R(a) . But X(a) is a determining set of 9(a) ; thus, c1 = 0 VI E 9(a), 
hence 

(46) CI =?0 VI E U 9(a) 
aEES"UT 

and by Lemma 7 we get that 

(47) CI = ? VI E Id. 

To show that v is indeed minimal, we give arbitrary Bezier ordinates c1 
VI E X, and we construct the rest of the B&zier ordinates in such a way that 
the piecewise polynomial they determine is a superspline. 

So, we assume c1 VI E v are given, and let J E Id . Then by Lemma 7 there 
is a unique a c Y U T such that J E 9(a). 

We define cj inductively over dim a. 
(1) If a is a vertex, then there exists K E T so that a - K and v (a) c K. 
Let aj be the subsimplex of K associated with J, aj c -(a). Then the 

polynomial pJ is defined; so, for J E 92(a) n K' with K' E i, K' $ K, let 
-J be the subsimplex of K' associated with J. Then there is a unique way to 
give Bdzier ordinates to the domain points in -r in such a way that they define 
a polynomial qj which equals pJ. Furthermore, in this manner, cj can be 
defined for all J E 9(a) \ X(a) . 

(2) Suppose cj has been defined for all J E Udima<n, (a). 
(3) Let J E 2(a) with a an n-simplex and K E 3 such that X (a) c K. 

And let again aj be the subsimplex of K associated with J. Note that 

(48) aj c ?2f(a) n K c X (a) U (U 9(Tr) n K) 
T-<a 

Then by the induction hypothesis and by the fact that the Bdzier ordinates have 
been defined on X, we have that all of the B&zier ordinates on aj are defined; 
therefore pi is defined. So as before, for J E 9(a) n K', K' :$ K, we can 
define qj in the same way we did when a was a vertex. Thus, c1 has been 
defined for all I E Id . 

Next, we need to show that the piecewise polynomial function defined by the 
c 's is well defined. 

Suppose PL = qL for L E K and EZElv = d - p 
Let J E 9(a) n K' and suppose that J E XL with J 5$ L, where 

(49) fL={IcK:iV>1v vc-, 4e5'uT, and a<} 

and 

(50) TJ={IEK':iEv>jV E a}. 



THE STRUCTURE OF MULTIVARIATE SUPERSPLINE SPACES OF HIGH DEGREE 307 

Then J E XL implies j, > l , which in turn implies TJ C XL Therefore, qj is a 
subpolynomial of qL. Similarly, pj is a subpolynomial of AL* Hence, pj = qj 
since qL U AL E C' (4) . Therefore, the Bezier ordinates are well defined and by 
construction, the piecewise polynomial defined is a superspline. D 

Corollary 10. We have dim SE (,) = 11, U V (a) . 

In view of the above corollary, to compute dim Sd (S') we need only to know 
the cardinality of W (a) for every a E R9. Clearly, 1J0 (a) I depends only on 
m = dim a. The following theorem is proved in Alfeld and Sirvent [5]. 

Theorem 11. We have dim S'(?4) = Ek 0 qO(m)fm, where fm is the number 
of m-simplices of 59 U J, andfor m = 0, ... , k, X(m) = km (0), where, with 

Pm = r2k-m-1i the quantities Om (p) are defined recursively by 

,m Pq = 
P 

j + m -q -1) (d -p -j + q) 
(51) j=0q- 

-E (Zq+1) + j)] i=0 

if 0 < q <im, and 

m n(( j + m - )(P - P + m) 
(52) 0()=1 

j=0 

(53) (O) = (dk) -E (mj+f1)0 (o) 
m=0 

8. MINIMALLY SUPPORTED BASES 

Definition 12. The star of a simplex a E 59 U T, denoted star(a), is the set of 
all k-simplices K E S9 such that a is a face of K. 

Definition 13. A basis {lo: y = 1, 2, ..., dim SrQY)} is said to be minimally 

supported if for each basis function lu there exists a simplex a E 59 U T such 

that the support of l. is contained in star(a) . 

The basis functions constructed in the proof of Theorem 9 are minimally 
supported: using the same construction, we can define cardinal supersplines 

(54) 1I E Sr(g): II(J) = Vj VI J EYn 
so that, if I E v (a), then cj = 0 VJ E Id \ star(a) and C1 = i. 
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