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A CLASSIFICATION OF THE COSETS 
OF THE REED-MULLER CODE v(l, 6) 

JAMES A. MA1ORANA 

ABSTRACT. The weight distribution of a coset of a Reed-Muller code M( 1, m) 
is invariant under a large transformation group consisting of all affine rearrange- 
ments of a vector space with dimension m . We discuss a general algorithm that 
produces an ordered list of orbit representatives for this group action. As a by- 
product the procedure finds the order of the symmetry group of a coset. 

With m = 6 we can implement the algorithm on a computer and find that 
there are 150357 equivalence classes. These classes produce 2082 distinct weight 
distributions. Their symmetry groups have 122 different orders. 

1. INTRODUCTION 

This paper presents an algorithm that allows us to classify the cosets of the 
Reed-Muller code R (1, m) for any m. The general procedure reduces the 
calculation to a lower dimension, m - 1. 

Rather than discussing the Reed-Muller codes here, we assume Chapters 13 
and 14 of [2]. Our algorithm in principle solves research problem (14.2) in [2], 
but in practice we produce a new result only for m = 6. The actual computer 
run provides much additional information about the cosets of the W(1, 6) 
code. 

The articles [3, 4] provide a good background about the type of calculation 
we consider here. Berlekamp and Welch classify the cosets of R(1, 5) in [1]. 

First we construct a precise mathematical framework for our calculation. We 
must classify the orbits of a finite group G acting on a finite function space 
[V, F] . One orbit of this action is isomorphic to the code R (1, m) . The other 
orbits are affine equivalence classes of cosets of R (1, m). By Theorem 4 of 
Chapter 14 of [2], equivalent cosets possess identical weight distributions. Two 
cosets are equivalent if one transforms into the other by an affine rearrangement 
of the underlying dimension-m vector space V over the field F with two 
elements. 

Next we decompose the space V into a subspace Q and its complemen- 
tary hyperplane P = V - Q. This allows calculations in dimension m - 1 
to determine a representative for each orbit of G. In dimension m - 1 we 
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determine by induction orbit representatives and their symmetry groups. Using 
this knowledge, we outline a complete program that enumerates the orbits in 
dimension m. 

To run this procedure on a computer, we restrict attention to the case m = 6. 
For this dimension we give more details about the actual calculations. We 
also outline a verification algorithm that provides supporting evidence for the 
accuracy of the computer run. The Appendix to this paper contains two tables 
that summarize the output from the computer. The first table lists information 
about the minimum weight of a member of a coset, while the second provides 
information about some of the symmetry groups of the cosets of M(1, 6). 

2. BACKGROUND 

This section defines the action of a group G on a function space [V, F]. 
First we build the affine group AG(m) from the general linear group GL(m, 2) 
by adjoining translations of V. The Reed-Muller code W(1, m) corresponds 
to the space of affine functions AF(m) C [V, F]. The group AG(m) acts 
naturally on the space [V, F]. Letting AF(m) act on [V, F] by addition of 
functions, we define G as the semidirect product of AG(m) and AF(m). 

Let F = {O, 1 } be the field with two elements, and let V be the vector space 
over F with dimension m . The function space [V, F] of all maps f: V -> F 

2m is a finite set with 2 elements. Let GL(m, 2), the general linear group, be 
the collection of vector space automorphisms of V . For each u E V define a 
translation Tu: V -+ V by Tu(w) = u +w for w E V. Since Tu T = Tu+W 
the collection of translations form a group isomorphic to V. 

An element of AG(m) will be a pair (A, u) with A e GL(m, 2) and u E V. 
Define an action of AG(m) on V by 

(2.1) (A, u)(w) = A(w) + u 

for w E V. From (2.1) we derive the group operations for AG(m) as 

(2.2) (A, u)(B, w) = (AB, A(w) + u), 
(2.3) (A, u) 1 (A-, A-1(u)) 

for A, B E GL(m, 2) and U, w E V. Thus, AG(m) is the semidirect product 
of GL(m, 2) with V. 

The affine group AG(m) is the collection of all invertible transformations 
a: V -+ V that satisfy 

(2.4) a(u + w) = a(u) + a(w) + a(O) 

for all u, w E V. 
A set {uO, U1, ..., Um} C V is in general position if u1 - u0 U2 - UO 5 ... 

Um - uO form a linearly independent set of vectors. A member a E AG(m) is 
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parametrized uniquely by the values a(uo), a(ul), ..., a(u,) which are also 
in general position. 

The space AF(m) C [V, F] of affine functions on V is the collection of all 
maps f: V -+ F that satisfy 

(2.5) f (u + w) = f (U) + f (W) + f(O) 

for all u, w E V. The values f(uo), f(u1), ... , f(um) of f are arbitrary, 
and in fact, AF(m) is a vector space with dimension m + 1 . 

We define a group G, that as a set is the product of AG(m) with AF(m), by 
defining its action on the function space [V, F]. For A E AG(m), b E AF(m), 
and f: V -+ F we have that c = (A, b) is a general element of G. We define 
g= c(f):V -+F by 

(2.6) g(u) = f(A1 (u)) + b(u) 

for u E V. From (2.6) we derive the group operations for G as 

(2.7) (A, b)(C, d) =(AC, A(d) + b), 

(2.8) (A, b)1 = (A-' A -l(b)) 

for A, C E AG(m) and b, d E AF(m) . Thus, G is the semidirect product of 
AG(m) with AF(m). 

The action of AF(m) on [V, F] generates the cosets of the Reed-Muller 
code W(1, m). The automorphism group of this code is AG(m) by Theorem 
24 of Chapter 13 of [2]. Two cosets of W(1, m) are affinely equivalent if one 
is mapped to the other by some element of AG(m). By Theorem 4 of Chapter 
14 of [2], affinely equivalent cosets have identical weight distributions. Since an 
orbit of G is an affine equivalence class of cosets of l (1, m), a classification 
of the orbits of G provides a global understanding of R(1, m) . 

The order of G is approximately .29 x 2(m+1) while [V2 F] contains 2m 

elements. Thus, a lower bound for the number of orbits of G is 3.4 x 2 -(m+I2 

Only for m < 6 will an enumeration be reasonable. 

3. THE GENERAL ALGORITHM 

Using the framework from the previous section, we develop an algorithm that 
produces orbit representatives for the action of G on [V, F] . By introducing 
a mapping N of the function space [V, F] into the integers Z, we identify 
a unique element f inside each orbit of G, namely the one which minimizes 
N. Our procedure makes a list of these f ordered by their values N(f) . As a 
by-product the order o of the symmetry group of f is found. 

By splitting the space V into a pair P, Q of hyperplanes, the calculation 
of the orbits of G reduces to dimension m - 1. In this dimension we need 
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orbit representatives h1, h2, ... , hL and their symmetry groups SMrnI (h) . An 
orbit representative f has the property that f Ip must be an hi. Further, fIQ 
must be an orbit representative under the action of a group Sm 1 (hi)M. For 
each f we consider the other decompositions of V into a pair of hyperplanes. 
We test in two stages whether one of these decompositions proves that f is not 
minimal. Any f that passes these tests is an orbit representative. 

We map the two vector spaces V and [V, F] into the integers by choosing 
a basis ul, u2, .. . , Um for V. Each u E V has a unique expression as e auI + 
e2u2 + + eMuM with ei E F. Define the integer 

m 
(3.1) n(u) = Zei2' . 

i= 1 

For a function f E [V, F] define the integer 

(3.2) N(f) = Ef (u)2f(U) 
uEV 

Here we consider F = {O 1 } as a subset of the integers. 
We use N to order the set [V, F] by f < g if N(f) < N(g) . The action 

of G on [V, F] produces for each g E [V, F] an orbit gG = {a(g)la E G}. 

Since we have totally ordered [V, F], each orbit gG has a unique minimal 
element f . We can produce a list fi < f2 < < fK that contains all such 
orbit representatives by using the following naive algorithm. 

Loop through the integers from 0 to 22 _ 1 . For each i set f = N I 
(i) and 

check whether a(f) > f for each a E G. If so, then f is the representative 
for its orbit fG and is added to the list. As a by-product we can observe how 
many times a(f) = f, and this is the order of the symmetry group 

(3.3) S(f) = {a E Gla(f) = f} 

of f. In addition to the list fi < f2 < ... < fK we obtain the invariants 
?i = IS(Ji)I of the orbits of G. That is, if g = a(f) for some a E G, then 

S(g) = aS(f)a' , and two conjugate subgroups have the same order. 
This procedure is practical only for m < 5. In order to push into new 

territory, we must reduce the work involved. In fact, we may carry out the 
calculation in one lower dimension. Consider the decomposition of V into two 
disjoint hyperplanes V = P U Q. where Q = (u1, u2, ... ., UMrn) is a subspace 
and P = Um + Q = V - Q is its translate. A function f E [V, F] decomposes 
into two functions fA and fi on dimension-(m - 1) space Vm- I= Q. Here, 
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fo(u) = f(u) and f1(u) = f(ur + u) for u E Vrm c Vtm. We have that 

2m1 (3.4) N(f) = N(fL)2 + N(fo). 

We can specify f by giving its two pieces fA and Hi * 
Let H be the subgroup of G that preserves the decomposition V = P U Q. 

More precisely, remember that G is the semidirect product of AG(m) with 
AF(m), and then 

(3.5) H = {(A, b)I A E AG(m), b E AF(m), AQ = Q}. 

Thus, H induces actions on the function spaces [P, F] and [Q, F]. Let M 
be the normal subgroup of H defined by 

(3.6) M = {a E HI a(g) E g for all g E [P, F]}. 

The group H/M acts on the space [P, F]. This action is isomorphic to the 
action of G on [V, F] in dimension m - 1 . In fact, H possesses a subgroup 
Gm- with H= Gm -M, and Gm - is the dimension-(m- 1) version of G. 
In fact, Gmri consists of all (A, b) E H that satisfy A(O) = 0 and b(O) =0. 

Iff cE [V, F] is minimal in its orbit, then f < a(f) for all a E Gm . By 
(3.4) we have that fi < a (fl). By induction we have a list h1 < h2 < < hL 
of orbit representatives for dimension m - 1, and Hi must equal hi for some 
i. Let 

(3.7) SM-l (h) = {a E Gm-' 1 a(hi) = hi}; 

then the subgroup T(hi) = Smr (hi)M of H leaves fi invariant. It follows 
that fo < a(fo) for all a E T(hi). The action of T(hi) on [Q, F] is easy to 
describe. First, for a E M there are elements u E Q and e E F such that 

(3.8) a(g)(w) = g(w + u) + e 

for g E [Q, F] and w E Q. If (A, b) E Gmrn leaves um fixed, that is 
A(um) = um while b(um) = 0, then (A, b) acts on the spaces [P, F] and 
[Q, F] identically under the correspondence um + u +-* u. The remainder of 

the action of Gm n on [Q F] is determined by noting that Gm I possesses a 
normal subgroup M1, isomorphic to M, that acts as the identity on [Q, F] . 

We recapitulate at this point. So far, the algorithm says that if f is minimal 
under the action of G, then fi = hi and fo is minimal under the action 
of T(hi). This all takes place in dimension m - 1 and guarantees that f is 
minimal under the action of H c G. But H has 2 x (2m - 1) cosets, one for 
each hyperplane of V. Choose coset representatives for H, 

(3.9) G=H+Hc1 + +Hc1, 

where I = 2m+1 - 3. Define f' = cj(f). The function f is minimal when 

f < a(f) for all a E H and j from i to I. 
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For each I some element d E Gm - c H puts 17 in minimal form, 

d1(f/) = hk. If hk precedes Ji = hi in the list h< h < .<.< hL of 
m - 1 forms, then f is not minimal. If hk follows hi, then for all a E Hcj 
we have f < a(f). Only when hk = hi do we need consider the action of H 

onfo. 
Having understood the dimension-(m - 1) case and produced the list hl < 

h2 < ... < hL, we can go further and find an efficient invariant >J(h) that 

maps any member h of [Vm 1, F] to the representative hk for its orbit under 
Gm - . The next step in the algorithm is to check that 

(3.10) (fi ) > hi = fi 

for all j. If f passes this test we can define the set 

(3.11) EQ = {Ajl (f') = fi }. 

The final step of our procedure restricts attention to the set EQ. If j E EQ, 
then we must find dj E Gm i with dj(f/l) = fi . Let gj = dj(fgo). We must 
check that a(gj) > fo for all a E T(f1). While doing so, we find the set 

(3.12) EQQ = {j E EQJ fo = a(g1) for some a E T(f)}I. 

Any f that survives is minimal under the action of G, and we append f to 
our output list. Since we consider candidates in numerical order, the output list 
is ordered. While proving f minimal, we can find the order of the subgroup of 
T(f1) that leaves fo invariant. The product of this order with the cardinality 
of EQQ is the order of S(f). 

We conclude this section with a formal summary of the general algorithm. 

Procedure. To produce an ordered list 

fl < f2 < ..< fL 

of orbit representatives for the action of G on [V, F] together with the orders 
oi of their symmetry groups do the following: 

(A) In dimension m - 1 produce a list 

hi < h2 < < hK 

of representatives for the action of Gm- I on [Vm- 1, F]. 
(B) Find the symmetry groups Sm '(hi). 
(C) Loop through the hi in numerical order. 
(D) Find in numerical order all fo that are minimal under the action of 

T(h,) = Sm-l(h)M. 
(E) For f E [V, F] with fi = hi from step (C) and fo from step (D), form 

fi = Cy(f) and check that >J(f/) ? Ji for] from ito 2r+l . 



COSETS OF THE REED-MULLER CODE M(1, 6) 409 

(F) When ,J(fj') = f1 find dE Gr i such that d (fi) = fi and check 

that a(d1 (fOj)) > fo for all a E T(f1 ) . 
(G) Append to the output list the survivors f of steps (E) and (F) along 

with the order o of S(f) implicitly calculated by steps (D), (E), and 
(F). 

4. THE PRACTICAL APPLICATION OF THE ALGORITHM 

In this section we discuss implementation details for our algorithm. The 
classification of the cosets of the Reed-Muller code W(1, 5) was done by 
Berlekamp and Welch in [1]. For m > 6 the number of orbits exceeds our 
ability to store them. This leaves only m = 6 as practical while producing new 
information. 

In order to execute our procedure on a computer, we need concrete realiza- 
tions of the objects G and [V, F]. The map N makes a function f: V -+ F 
into a 2m-bit integer. A special case of the theory developed by Sims in [5, 
6] allows us to view the group G as a product set CO x C1 x x Cm. We 
also present an explicit algorithm for the invariant >J on the function space 
[V5, F]. For the remainder of this section we consider only the m = 6 case 
of the general algorithm. 

We represent a function f E [V, F] as the integer N(f). An element of G 
is a pair (A, b) with A E AG(m) and b E AF(m). Now A acts on V as a 
permutation. Therefore, the integer N(A(f)) arises as a rearrangement of the 
2m bits in the binary expansion (3.2) of N(f). The element b E AF(m) C 
[V, F] acts on [V, F] by function addition b(f) = f + b. Thus N(b(f)) is 
the bit-by-bit addition modulo 2 of the integers N(b) and N(f). 

The first steps of our procedure concern the m = 5 situation. We must 
produce 48 orbit representatives h, < h2 < < h48 and then describe their 
symmetry groups S5(hi). To do this, we need a better description of G. We 
use an (m + 1)-fold product CO x C1 x ... x Cm connected with the geometry 
of V. 

For each I from 0 to m choose elements A(I, J) E AG(m) for J from 
e(I) to 2m- 1 , where e(0) = 0 and e(I) = 2 1 for I > 0 . We require that the 
element A(I, J) fixes all u E V with n(u) < e(I) and takes n 1(e(I)) E V 
to n 1(J) E V. Also choose b(I) E AF(m) such that b(I)(u) = 0 when 
n(u) < e(I) while b(I)(u) = 1 when n(u) = e(I) . The set C1 consists of the 
2(2m - e(I)) elements (A(I, J), 0) and (A(I, J), b(I)), where e(I) < J < 
2m. Each element a E G has a unique expression as coc1 ... Cm with ci E C1 . 
Further, the sets GI = C1 x C+1I x x Cm are all subgroups of G. In fact, 

GI+I is a subgroup of GI with the set C1 as coset representatives. 
This description of G is shared by each of its subgroups. Given h = hi for 

some i from 1 to 48, we describe S5(h) as a product SO x SI x x S5. Each 

SI is a set of coset representatives for S5(h) n as a subgroup of S5(h)nG, . 
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If s E SI, then there is a unique c E CI with c Is e G+L, that is, s E cGI+ . 
Each time the intersection cGI+ n S5(h) for c E CI is not empty, we generate 
one element of SI. 

The actual calculation of So involves a search through the product space 
Co x C1 x * C x C5 for elements that fix h. This is a search through a tree 
with 32 - e(I) branches at each node on level I. This follows from the fact that 
elements of CI occur in pairs (A, 0) and (A, b), where at most one of these 
elements may fix h. Since the elements of C1 leave the space VI5 = {ul n(u) < 
e(I)} fixed and the values of h on VI5 unchanged, we can accelerate the search. 

I~~~~~ Only when (coac 
... 

cI) (h) agrees with h on VI5+I will further extension of this 
product produce a symmetry of h. Once we find a symmetry (c0c1 ... cO(h) = 
h, we add c0c .. C5 to SO and consider the next possibility for c0. Finally, 
the sets S, for I > 0 are found by a similar search over a part of the tree that 
begins on level I. 

Steps (C) and (D) of our procedure involve finding in numerical order all 
functions f0 E [V5, F] that are minimal in the orbits of T(h) = S5(h)M. 
This is accomplished by simple exhaustion. Using a six-deep set of nested 
loops, we form all products s = sos1 ... s5 with si E SI for I from 0 to 5. 
Form g = s(fo) and check whether a(g) < fo for any a E M. If so, we are 
finished with fo. Otherwise, count how many times a(g) = fo and accumulate 
this number. If we successfully exhaust over S5(h), then fo is minimal and we 
have accumulated the order of S(f) n H. That is, any element of the subgroup 
H of G that fixes the function f formed from fi = h and f0 must appear 
as a symmetry of fA as acted upon by T(h). 

Step (E) requires the evaluation of the invariant >J on the function fJ. 
When m = 4, the group G4 makes eight orbits as it acts on [V4, F]. The 
weight distribution of the cosets of the Reed-Muller code W(1, 4) provides a 
complete invariant J4 that maps the space [V4, F] into these eight orbits. See 
[2, Chapter 14] for more details. 

For m = 5, a more involved calculation produces a complete invariant >. 
Consider the 31 distinct dimension-four subspaces of V5 . Given g E [V5, F], 
each subspace W of V5 creates a pair of functions on V4, namely by restric- 
tion to W and to V5 - W. Using the invariant >", we form an unordered 
pair of orbits of G4 . There are 36 = 8 x (8 + 1)/2 possible pairs. We tabulate 
the number of times each pair occurs while exhausting over the 31 subspaces 
W of V5. This forms a distribution D(g) = (DI, D2, ..., D36) of counts 
that sums to 31. This 36-long vector of integers is a complete invariant for the 
action of G5 on [V5, F] . We store the 48 count vectors D(hi) associated with 
the known forms h, < h2 < ...< h48. Given any g E [V5, F], we calculate 
its count vector D(g) and compare against the known list. We set "J(g) = hi 
when D(g) = D(hi) for some i from 1 to 48. 
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To implement the final step, the only new algorithm needed is the production 
of an element d E G5 such that d(g) = 7(g), given g E [V5 , F]. Using the 
product structure G5 = C0 x Cl x x C5, we exhaust over G5 by walking 
through the associated tree. We eliminate a branch when it cannot produce 
the desired transformation. With a three-fold product d = coci C2 there is one 
chance in two that d(g) = ,J(g) is impossible. For a four-fold product this 
increases to seven chances in eight. This cut-down effect makes the work of 
finding d manageable. 

5. THE ANSWER AND A VERIFICATION ALGORITHM 

The algorithm of the previous section was run on a computer and an answer 
obtained. We found 150357 orbits for the action of G on [V, F] when m = 
6. These orbits produced a total of 2082 distinct weight distributions on the 
associated cosets of the R(1, 6) code. Our calculation found 122 different 
orders among the symmetry groups for these orbits. The Appendix presents 
some of the information generated by the computer. 

The answer is a binary file of 150357 pairs (f, o) of 64-bit numbers. Here, 
f is an orbit representative, the numerically least element in its orbit, while 
o = IS(f)l is the order of its symmetry group. Because of the complexity of 
the calculation, there was no certainty that the computer would execute the 
algorithm correctly. We ran a verification algorithm that provided 48 checks on 
the accuracy of the answer. We finish by outlining this procedure. 

Consider the entire space [V, F] of functions when m = 6. Since V de- 
composes into pairs of hyperplanes in 63 ways, each member f of [V, F] 
yields 126 functions on dimension-five space. An exhaustion over [V, F] pro- 

64 5 
duces a total of 126 x 2 functions on V . We classify each by equivalence 
under G5 and generate 48 counts Al, Y25 ..., Y48* Each y, is a function of 
the size of the orbit of hi. We have that 

(5.1) y. 126126 x 2 x IG 5/S5 (hi)I 

for I from 1 to 48. 
We can calculate the numbers yj from the output of our computer run. For 

each f on the output list, consider its restriction to the 126 hyperplanes inside 
V. Classify the resulting functions on V5 using the invariant >Y and produce 
a count z,(f) of the number of times h1 occurred. Each function in the orbit 
of f will produce z1(f) contributions toward the count ye. Since there are 
G / S(f)l functions in this orbit, we have that 

150357 

(5.2) YI = E ZI(fj) x IGIloj 
J=1 

for each I from 1 to 48. Here, (fj, oj) are the pairs on our output list for J 
from 1 to 150357. 
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APPENDIX 

The Appendix consists of two tables. The first table describes the minimum 
weight that occurs in the weight distribution of a coset of the Reed-Muller 
code R( 1, 6). The column labeled MIN WEIGHT contains the possible values 
for the minimum weight of a coset. Column ORBITS reports the number of 
equivalence classes of cosets that have this minimum weight. Column FIRST 
FUNCTION is the numerically smallest function, written in hexadecimal, with 
a given minimum weight. Column INDEX is the position of its equivalence 
class in the output file where the first output has INDEX = 0. 

The second table reports the orders of the symmetry groups that are asso- 
ciated with a unique equivalence class of cosets. That is, for each of the 34 
entries in this table the factored number that appears in the column ORDER 
OF SYMMETRY is the order of the symmetry group S(f) only for f in a 
single equivalence class of cosets. The other two columns are similar to those 
in Table 1. 

TABLE 1 

Minimum weight 

MIN FIRST 
WEIGHT ORBITS INDEX FUNCTION 

0 1 0 0 
1 1 1 1 
2 1 2 3 
3 1 3 7 
4 2 4 F 
5 2 6 IF 
6 4 7 3F 
7 6 8 7F 
8 11 9 FF 
9 15 14 1FF 

10 29 20 3FF 
11 46 23 7FF 
12 92 24 FFF 
13 160 28 1FFF 
14 325 29 3FFF 
15 626 30 7FFF 
16 1326 31 FFFF 
17 2647 226 100017FFF 
18 5496 412 300033FFF 
19 10789 1521 700071FFF 
20 19964 4185 FOOOFOFFF 
21 31521 15521 1FOO1F1F3F 
22 38142 22826 3FO1lF1F37 
23 27795 28859 7FO70FOFF1 
24 10280 29599 FFOFOFOFFO 
25 983 147138 1017FOF333C55 
26 84 149839 3033F0775D3C4 
27 4 150349 7133D156E7A68 
28 4 150353 F333C555A6669 



COSETS OF THE REED-MULLER CODE M(1, 6) 413 

TABLE 2 
Symmetry group orders 

ORDER OF FIRST 
SYMMETRY INDEX FUNCTION 

2* 3 * 5 149873 3033F555659A6 

27 * 5 201 1173DED 
25 3 7 150350 7133D156EB6A4 
6 2 2 .3 .5 1499 35556566A 

8 2 *3*7 225 10001 3FFF 
7 2 2 .3 *5 103315 1011703586428 
29 3 5 22971 3F030F333C 

2 33 28422 3F5555556A 
27 .33 .5 149871 3033F5556566A 
21 l3*7 150356 F33553C66695A 
2 .3.5 112 7333C 
10 2 2 3 *.7 412 300033FFF 

216 148 F33FF 
15 2 * 3 29604 FFOFOF333C 

2 33.5.7 226 100017FFF 
14 2 .3.7 81 33FFF 

17 
2 . 3 29602 FFOFOF3333 

29 3 . 35 7 1494 355555556 
215 *3*7 150354 F333C555A6696 

215.33 28 1FFF 
12 2 2 .3 .5.7 52 17FFF 
2 *345*7 150352 7333C555A6669 

18 2 2 .3 134 FOFFF 
17 3 2 .3 24 FFF 

215 .33 .5 4185 FOOOFOFFF 
15 2 2 2 3.7 8 7F 

19 3 
2 * 3 . 5 29599 FFOFOFOFFO 

215 .34.5*7 150353 F333C555A6669 
18 2 2 2 3.7 9 FF 

17 3 
2 .3 .5.7 4 F 

16 2 
2 *3 *5-7-31 2 3 

2 *3 .5*7 31 FFFF 
15 4 2 2 .3 . 5.7.3 1 1 1 
21 4 2 2 .3 . 57.7 31 0 0 
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