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STABILITY ANALYSIS 
OF THE NONLINEAR GALERKIN METHOD 

R. TEMAM 

ABSTRACT. Our object in this article is to describe some numerical schemes for 
the approximation of nonlinear evolution equations, and to study the stability 
of the schemes. Spatial discretization can be performed by either spectral or 
pseudospectral methods, finite elements or finite differences; time discretization 
is done by two-level schemes, partly or fully explicit. 

The algorithms that we present stem from the study of the evolution equa- 
tions from the dynamical systems point of view. They are based on a differen- 
tiated treatment of the small and large wave lengths, and they are particularly 
adapted to the integration of such equations on large intervals of time. 

INTRODUCTION 

The long-time integration of dissipative evolution equations has emerged as 
a new type of problem in numerical analysis, and its appearance is due to the 
considerable increase in computing power that we have seen during the last 
years. 

Much effort has been devoted in the past to the approximation of evolution 
equations on finite intervals of time or, in the dynamically simple case where 
the solution converges to a steady (stationary) state as time goes to infinity. 
However, in many physically relevant situations the solutions to a dissipative 
evolution equation do not converge to a stationary solution. They rather remain 
time-dependent and they converge to a compact attractor that encompasses the 
nonlinear dynamics. Hence, and whether this is addressed implicitly or explic- 
itly, the numerical integration of the evolution equation is then closely related 
to the approximation of the attractor that may be a complicated set, even a 
fractal. 

Inertial algorithms are new integration algorithms that are based on the ap- 
proximation of the attractor by smooth, simple manifolds (namely the approx- 
imate inertial manifolds). These algorithms will be recalled below but, at this 
point, let us point out that one of their main features is a differentiated treat- 
ment of small and large wave lengths. An inertial manifold is an exact law of 
dependence of small wave lengths in terms of the large ones, the small wave 
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lengths being "slaved" by the large ones. An approximate inertial manifold pro- 
vides an approximate form of such a law. The decompositions of functions into 
small and large wave lengths components will be described in detail in ?2. They 
appear naturally when Fourier series or other spectral expansions are used. With 
finite elements they appear naturally with the utilization of hierarchical bases; 
finally, for finite differences they hinge upon the utilization of the incremental 
unknowns presented in [24] (see ?2). 

As far as the space discretization is concerned, inertial algorithms, including 
the nonlinear Galerkin method, have been introduced and studied in [7, 6, 18, 
19, 24, 15, 16] and other references quoted therein. In the present article we 
address the question of both time and space discretizations. In particular, we 
will emphasize the study of the stability analysis of such schemes and, as we 
will see, a striking fact is that the stability is mostly governed by the large wave 
lengths. This is an indication, broadly confirmed by the numerical tests, that 
these schemes are more advantageous than regular schemes for which the time 
step is commanded by both large and small wave lengths: the time step which 
is allowed for explicit or semi-implicit schemes is larger. 

Strictly speaking, this article does not provide a practical justification of the 
algorithms presented here, except for an analysis of stability. A full justification 
of these algorithms relies, on the theoretical side, on results concerning the 
attractors and their approximation (see, for instance, [9, 8, 7, 17, 22, 23], and 
the books [12, 25]); on the practical side it relies on the results of numerical 
tests, some of which are reported elsewhere (see [5, 6, 13, 1'4]), others being in 
progress and will be reported in the future. 

This paper is organized as follows. In ?1 we present the differential equa- 
tions that we approximate by time discretization. These equations are finite- 
dimensional differential equations corresponding to some (spatial) discretiza- 
tion of partial differential equations; however, since the emphasis here is on 
stability analysis, we do not describe the continuous problem. In ?2 we intro- 
duce the decomposition of the unknown function into small and large wave 
lengths and describe them explicitly for spectral methods and, in space dimen- 
sion one, for finite elements and finite differences. For finite differences this 
involves the utilization of the incremental unknowns. In ?3 we present the var- 
ious schemes based on the decomposition of the space, and in ?4 we perform 
the stability analysis of these schemes by energy methods. Although the en- 
ergy method provides only sufficient stability conditions, it is the only method 
adapted to a complete mathematical analysis, and it gives some indication on 
the necessary stability conditions. Finally, in ?5 we present several applications 
and make explicit the results of the previous sections. In a subsequent work we 
will study similar schemes based on the decomposition of the unknowns into 
several (more than two) scales of wave lengths. 

1. THE CONTINUOUS PROBLEM 

We denote by Vh a finite-dimensional vector space which is endowed with 
two scalar products and norms denoted (( I'))h 511 * h' ( *)h' h1 ' 1h In the 
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applications, VJ will be typically the approximation of a Sobolev-type space, 
11 Ih will be a discrete Sobolev norm, and I Ih will be a discrete L2_norm. 
This space Vh belongs to a family of spaces VhJ, h E A, which approximate 
an infinite-dimensional space V in the limit h -+ 0; however, these spaces and 
the parameter h (the discretization parameter) will not appear explicitly hence- 
forth, except in some specific situations: for example, we will make explicit the 
dependence of certain constants on h. We will denote by ci some (positive) 
absolute constants independent of h, and by Si = Si(h) some constants de- 
pending on h and which usually converge to 0 as h -O 0. It is assumed, for 
instance, that the norms on Vh are related in the following manner: 

(1.1) IUhlh < CIllUhIh, S1(h)I|Uh||h < I Uhlh Vuh E Vh 

We are also given 
-a bilinear continuous form ah(,) on Vh which satisfies 

(1.2) Iah(Uh, Vh)I < C2l1uhIIhllIVhIh VUh , Vh E 'Vh 

-a trilinear continuous form bh (., *, .) on VJ, satisfying 

(1.3) bh(Uh 5 Vh v vh) = O VUh , Vh E Vh , 

(1.4) Ibh(uh, Vh, Wh)I 
< 

C3lhIh'I llUhlIh' llVhllhlWhIh' lWhlh/ 

Vuh ' ,h V Wh E Vh 

-a bilinear continuous form dh(., .) on Vh, such that 

(1.5) Idh(uh, 3Vh)| < C4IIUhlIhIVhlh VUh ' 1h E Vh 

(1.6) ah(Uh a Uh) + dh(Uh 5 uh) > C5I|UhII VUh E Vh. 

We are then interested in the initial value problem: 
Find a function uh: R -+ Vh such that 

d 
(1.7) dt- (Uh X Vh)h + ah (uh, Vh) + bh (uh, uh, h) + dh (uh, Vd) 

-(fh' Vh) VVh E Vh, 

(1.8) uh(O) = UOh. 

Here, uOh is given in Jh and fh is given in L?(R+; J/). Since Vh is finite- 
dimensional, it is clear, thanks to (1.3), that the initial value problem (1.7), 
(1.8) has a unique solution defined for all time, 

(1.9) uh E L (R+; V*); 

more precisely, uh is bounded independently of h, from kt+ into the space 
Vh endowed with the norm Ih. 

There are many physically relevant equations which provide, by space dis- 
cretization, an evolution equation of the form (1.7), the hypotheses (1.2)-(1.6) 
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being satisfied. Among the most important equations, one can quote the Navier- 
Stokes equations in space dimension two, the Boussinesq equations (dimension 
two), or the Kuramoto-Sivashinsky equations. The details for these equations 
can be found in [25] or [19]; some related equations are recalled in ? 5. 

Our object hereafter is to investigate new forms of time discretizations of 
(1.7) that take advantage of suitable decompositions of the space Vh . 

2. INCREMENTAL UNKNOWNS 

We fix a value h1 of the parameter h but, for the sake of simplicity in the no- 
tations, we will denote the corresponding space Vh and its elements Uh Ih ' .... 

We consider then another space Vh corresponding to the value h = h2 of the 
parameter and such that Vh is included in Vh (= Vh). We denote by Wh a 
supplementary of Vh into Vh : 

(2.1) Vh = Vh2 3Wh 

The elements of Jh will be denoted hI YAh, ..., and those of Wh will be 
denoted Zh Zh . Any uh E Vh can be uniquely written as 

(2.2) Uh =h + Zh Yh E Vh , Zh E Wh. 

For reasons which will become clear hereafter, Yh will be called the large wave 
lengths or large eddies component of u I' and Zh will be called the small wave 
lengths or small eddies component of Uh. Examples of decompositions (2.1) 
will be given below; before doing that, we state the main hypotheses related to 
the decomposition (2.1) of Vh. We first require an enhanced Cauchy-Schwarz 
inequality of the form 

(2.3) I((Yh, Zh))I < (1 - 3)I1yhi1hI1zhIlh VYh E Vh2, VZh E WhX 

where 0 < 5 < 1 is independent of h. We also assume that 

(2.4) IZhlh < S2(h)I1Zh11h VZh E Wh, 

where S2(h)--0 as h-+0. 
We now give three important decompositions of the form (2.1). 
(i) Spectral discretization. This corresponds to the case where the spaces Vh 

are all subspaces of a Hilbert space V (scalar product ((., .)), norm 1l - 11), 
the forms ah (Uh, Vh) are just the restrictions to Vh of a bilinear continuous 
symmetric coercive form a(u, v) on V. Also, V is continuously imbedded 
and dense in another Hilbert space H (scalar product (., -), norm 1 ). Then 

|| Uh 1|h = 11 Uh 11 IUhlh = lUhl Vuh E Vh. 

Associated with a, V, and H is an unbounded self-adjoint operator A in 
H with domain D(A) c V, which possesses a basis wj, j E N, which is 
orthonormal in H and orthogonal in V: 

(2.5) Aw1 = A1w Vj AN, 0 <'A < 2 < i , + oc as j--+ . 
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Here, given m = m E N, we set h = 1//m and 

V = Span{wI,*** Wm}' 

and (1.7) results as the Galerkin approximation of some infinite-dimensional 
problem in the space V. 

Concerning the decomposition (2.1), we consider another integer m2 E N, 
m2 < ml , and we set 

Vh2 = Span{wI,* W m2 } h = Span{wm2+, * w m I} 

In this case, hJ2 and Wh are orthogonal in Vh (scalar product (('5 )) = 

((., .))) and (2.3) is satisfied with 5 = 1. For (2.4) we observe that, for every 
Zh E Wh , Zh =Z jm2+1 XJw1, 

we have 

2 

Zhlh = Z W = E 

j=m2+1 j=m2+1 

ml 

m2+1 M2+1ZZh h 
j=m2+1 

Hence, 

(2.6) S2 = (Am+) -/ 

When in the continuous problem, a and V are associated with an elliptic 
boundary value problem with space periodic boundary conditions, it is well 
known that the w are related to Fourier series and, depending on bh, (1.7) is 
a spectral or a pseudospectral approximation [ 11, 2] of the continuous problem. 
In this case, it is clear that, in (2.2), Yh corresponds to the large wave lengths 
and Zh corresponds to the small wave lengths. 

(ii) Finite elements. We restrict ourselves to the simplest situation: one- 
dimensional case with piecewise linear elements. More involved situations will 
be discussed below and elsewhere. 

The spaces Vh are all subspaces of the Hilbert space V = Ho (a) Q = 
(0, L), L > 0, and they are all endowed with the same scalar product 

((Uh, Vh))h = ((Uh, Vh)) = dh h dx. 

The scalar products (., .)h are those of L 2(0, L): 

AL 
(uh Vh)h = (Uh Vh) = UhVh dx. 

We set hi = h = 1/2N and h2 = 2h1 = 1/N, N E N. Then Vh is the space of 
real continuous functions on (O, L), which vanish at 0 and L and are linear 
on the intervals [jh, (? + 1)h/], j = 0 ,..., 2N- 1. The space Vh = V2h is 
defined in the same manner, but the functions in V2h are linear on the intervals 
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[2jh, 2(j + 1)h], i = 0, ...N, N- 1. The choice of the factor 2 for the ratio 
h2/hl is totally arbitrary; any other integer would be suitable as well. 

The nodal basis of Vh consists of the functions w1 h of Vh which are equal 
to 1 at jh and to 0 at the points ih, i, j = 1, ..., 2N- 1, i ] j. Similarly, 
the nodal basis of V"h consists of the functions w1 2h of V"h which are equal 
to 1 at 2jh and to 0 at the points 2ih, i, j = 1, ..., N- 1, i 0 j. The 
hierarchical basis of Vh consists of the union of the basis of V2h and of a basis 
of Wh: namely that consisting of the wjh, j = 2i + 1, i = 0 ..., N- 1 . If 
Uh belongs to Vh, its decomposition in the nodal basis reads 

2N-1 

(2.7) Uh = Z Uh(jh)w jh 
j=1 

while its decomposition in the hierarchical basis reads 
N-1 N-1 

(2.8) Uh uh(2jh)wjI2h + Z Uh((2i + 1)h)W2i+1 ,h 
j=1 i=O 

Here, uh((2i + 1 )h) is the incremental value of uh: 

(2.9) -h ((2i + 1)h) = Uh ((2i + 1)h) - I (Uh (2ih)+ Uh((2i + 2)h)). 

Note also that the first sum in (2.8) corresponds to the component Yh E Vh of 
Vh, while the second sum corresponds to the component Zh E Wh. It is clear 
that if h is small and uh is the restriction to Vh of a smooth function u in 
Ho (0, L) ,1 then Ah will be of the same order as uh, while Zh will be smaller 
by a factor h2: this justifies the terminology concerning small and large wave 
lengths. 

It is easy to check that each function Yh E Vh is orthogonal in V to each 

function Zh E Wh 2 Hence, (2.3) is obviously satisfied with 5 = 1. The 
verification of (2.4) has been performed in [19]; we have 

(2.10) S2(h) = h/ v. 

The verification of (1.1) is standard; in particular, for Si (h), setting X = 
Uh (ih), we see that 

pL (du)2 12N 12 

10 dx dx =~ 2 ( ?-~)d X ( ) ~~~~i=O 

Similarly, 
L h ~~2N- 1 

Hence, (h) h/2v10i=O 

Hence, S, (h) =h/2v/3. 

Ii.e., uh(jh) = u(jh), i = 0 .., 2N. Then iih((2i + I)h) = (h2/2)u"((2i + l)h) + O(h') . 
2This property is no longer true in higher dimension. 
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(iii) Finite differences. We now describe how a decomposition like (2.1) 
appears in finite differences by using the incremental unknowns introduced in 
[24]. 

The form (1.7) of the finite difference discretization of a problem occurs 
naturally by using the variational formulation of finite differences due to J. Cea 
[3]. 

Assume, for instance, that we consider the finite difference approximation 
of a continuous problem set in V = Hl (0, L) . We then set h = L/2N, 
N E N, and Vh is the space of step functions that are constant on the intervals 
[jh, (1 + 1)h), i = 0. .., 2N - 1, and that vanish on [O, h) and [L - h, L) . 
The space Vh is spanned by the functions wj h which belong to Vh , are equal 
to 1 on [jh5, (j + 1)h), and to 0 elsewhere, j=1,..., 2N- 2: 

2N-2 

Uh = E uh(jh)wjh VUh E Vh 
j=1 

We call }wjhI the natural basis of Vh, and we endow this space with the scalar 
products 

L-h L 

((Uh 5Vh))h VhUhvhVh dx (Uh, Vh)h L UhVh dx 

where Vh is the forward finite difference operator 

= o(x+ h)- ((x) (Vh () X)h 

We then set h2 = 2h and define in a similar manner the space Vh = V2h, a 
2 2h 

basis of which consists of the functions w1 2h' = 1, ..., N - 2, defined in 
a similar manner. Here again, the choice of the factor 2 for the ratio h2/h1 is 
totally arbitrary, and we could replace two by any other positive integer. Now 
we observe that V2h C Jh and we complete the decomposition (2.1) by defining 
Wh: this is the space spanned by the functions w2i+l ,h i = 0, ... , N-2, and 
W2N-2 . Any function uh E Vh can be written as 

(2.11) Uh Yh+Zh Yh E V2h, 
N-2 

Yh = E Uh(2jh)wJ,2hE 
j=1 

N-2 

Zh E Zh ((2i + 1)h)w2i+l, h + Zh((2N - 2)h)w2N-2h. 
i=O 

Here, for i = 0...., N- 2, 

(2.12) Zh ((2i + 1)h) =ah ((2i + 1)h) = Uh ((2i + 1)h)-Uh (2ih) 

and 

(2.13) Zh((2N - 2)h) = Uh((2N - 2)h). 
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It is clear that if uh is the restriction to Vh of a smooth function u in 
Hg (0, L) ,3 then Yh is of the same order as uh, while Zh will be smaller by a 
factor h: this justifies the terminology about large and small wave lengths. 

The purpose of the following lemmas is to check (2.3) and (2.4). 

Lemma 2.1. We have the enhanced Cauchy-Schwarz inequality 

(2.14) ((Yh ,Zh))h ? < lYh1hH1Zh 1h Vy e' E V2h' VZh E'J Wh 
Proof. We must show that 

(2.15) L 
VhyhVhzhdx < ( 

( 
Vhyh2 dx) (2] Vhzh2 dx) 

It suffices to show (2.15) with the interval (0, L) replaced by each of the coarse- 
grid intervals (2jh, 2(j + 1)h) . 

We first start with a typical interval, i.e., j = 1, ..., N - 3. Then Yh = MI 
on [2jh, 2(j + 1)h) and Yh = M2 on [2(j + 1)h, 2(j + 2)h); Zh = 0 on 
[2jh, (2j+ 1)h), = p1 on [(2j+ 1)h, 2(j+ 1)h), = 0 on [2(j+ 1)h, (2j+3)h), 
= P2 on [(2j + 3)h, 2(j + 2)h) (see Figure 2.1). 

<_- -Z h = ?----+---Z h = P1--<-- - -Z h = 
? 

-+- --z = P2---4 

? --Yh 
= 

Ml-= - Yh 
M2- 

x 0 x . __0 x 
2jh (2j+ 1)h 2(j+ 1)h (2j+3)h 2(j+2)h 

FIGURE 2.1 

Values of Yh and Zh on typical intervals 

On [2jh, (2j + 1)h), 

Vhyh = VhZh= 
P 

and on [(2j + 1)h, 2(j + 1)h), 
__ __ _ - M lPI V VSm Vz = VhYh= h ' Vh h h~- 

Thus, 
2(j+ 1)h 

J2jh VhyhVh Zhdx - (M2 - )PI 

(2. 16) 1 ( ju+ 1)h 2 ) 1/2 ( 2(j+ 1)h 2 ) 1/2 

- m2 - ml PNL 

3i.e., Uh (jh) = u(jh), j = O, 2N - 2. 
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We consider then the end intervals, j = 0 and j = N - 2, N - 1. The only 
difference, for j = 0, is that m1 = 0; hence (2.16) is still valid. Next we 
consider the intervals [L - 4h, L - 2h) and [L - 2h, L - h) together; we take 
into account the fact that Zh does not vanish (say = P2) on [L - 2h, L- h), 
but Zh = O on [L - h, L). We find 

rL-h V1 
JL 4hV hyhVhZhdx = - m1(P2 -P) 

12 2 22 1/2 
<h- 3 1 1l((P2 - PI) +P2 +PI ) 

_ 2 (jL-h ) 1/2 (jL-h ) 1/2 

Since 1// V< /, we obtain (2.14). o 

Lemma 2.2. We have the following strong discrete Poincare inequality for func- 
tions in Wh: 

(2.17) 1Zhlh < S2(h)IlZh11h VZh E Wh, S2(h) = h. 
Proof. As in Lemma 2.1, it suffices to prove the similar inequality on the inter- 

vals [2jh, 2(j + 1)h), j = 0 ...,N- 1, i.e., 
2(j+ 1I)h 2 2 V2(j+l)h z2 

(2.18) jh Zh dx < S2(h? h JVhZhI dx. 

Using the same notation as in Lemma 2.1, we see that the integral in the right- 

hand side of (2.18) is equal, for j = 0, ... , N - 3, to 2p 2/h, while the integral 

in the left-hand side is equal to p 2h; hence (2.18) with S2(h) = h/V/. On the 

interval (L - 4h, L), the integral of z 2 is equal to h(p 2 +p2), and the integral 

of IVhZhI2 is equal to (1/h)((p1 p2)2 + p2 + p2). We obtain an inequality 
similar to (2.18) with S2(h) = h, and finally (2.17) is proved. 0 

The proof of (1.1) is standard. Let us recall how the second inequality (1.1) 

is obtained, and let us derive S1 (h). Setting ,j = Uh (jh), we have Uh = 
2N- 2n 
j=1 jWj, hand 

2N-2 

u 
2 

=h 2, 
j=1 

2N-2 2N-2 

2= 2$j21 _j) ? 2 
j=1 1=1 

42N-2 

h E (since 0 = 42N I = ?) 
j=1l 

4 
-~U 2h 
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Thus, 

(2.19) S1(h) = h/2. 

Finally, we note the following result, which will be useful. 

Lemma 2.3. There holds 

(2.20) I h = lyh 2h' 1Yh 1h = 2Hyhih VYh E V2h = 
Vh2 

Proof. The first equality (2.20) is obvious, since both norms 1h and I ' 1h 
22 

are merely the L -norms. For proving the second equality (2.20) we use the 
same notation as in Lemma 2.1 and observe that V2hyh is constant on [2jh, 
2(j + 1)h) and equal to (mi2 - mI)/2h, while Vhyh is equal to 0 on [2jh, 
(2j + 1)h) and to (m2 - mI)/h on [(2j + 1)h, 2(j + 1)h). Hence, 

2(j+V)h IV 2dx (M2-r) 1 V2(j+)h IV 12dx, 
]2h 2h - 2h 2 i 2h 

and (2.20) follows by summation for j = 0, ..., N- 2. E 

Remark 2.1. The space VhJ plays exactly the same role as the space Vh (= Vh). 
Therefore, the analog of hypotheses (1.1)-(1.6) are valid; in particular, the 
second hypothesis (1.1) reads 

(2.21) Sl(2h)11yh112h < YYh12h VYh E Vh2 =V2h 

In conjunction with (2.19) and (2.20), the inequality (2.21) becomes 

(2.22) Sl(h)11Yh11h < 1Yhlh VYh E Vh2 V2h - 

S1 (h) = S1 (2h)/v'L 

For the other discretizations (spectral and finite elements), IIYh 1h2 
= 11Yh 1h and 

lyh=h2 =yh1h' VYh E Vh . Thus, (2.22) is still valid, but S1(h) = S1(h2). 

3. THE TIME-DISCRETIZED PROBLEMS 

We now describe the time discretization of equation (1.7); the schemes rely 
on the decomposition (2.1) of Vh and on theoretical work concerning the ap- 
proximation of attractors. 

Four schemes will be proposed. The first two are fully implicit in the linear 
terms and explicit or partly explicit in the nonlinear terms. The third is also 
explicit for the nonlinear terms, and for the linear terms it is explicit for the 
large wave lengths and implicit for the small wave lengths. The fourth differs 
from the previous ones in that the time evolution of z disappears, as is usual 
in the nonlinear Galerkin methods [ 18, 19]. The significance and advantages of 
the schemes will be discussed below. 

Scheme I. The initial data uOh in (1.8) is decomposed in the form 

(3.1) U YhE Vh 2 Z E WI 
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according to (2.2). We then define recursively the sequences of elements yn E 
h~~~~~~~~~~~~~~~~~~~~~~~~ Vh1Zn E Wh 5 as follows. 

yn n ~~~~~~n+1 n+1 When yh, zh are known, we define yh 
I 

E Vh and Zh E Wh by the 
equations 

1 (n+l1 n+1 n+1 1 
hy~ + n+1 

k (h Yh gYh)h +ah(yh + Zh ayh) +dh(yh +Zh 'Yh) 
(3.2) + h(n nY)+b(nz Z (3.2) + bh(Y~~h 5 Yh h h) h(h 1 h Y h) + bh(Zh 5 Yh Y h) 

-(f ' h)h Vgh E2J' 

1Zn+1 n +a n+1 n+1 1 d (y~ n+1 

(3.3) kZh - Zh zh)h + ah(yh + Zh hZh) + dh(yh + Zh 'Zh) 

+bh(yh 5 Yh , Zh) = (ft zh)h V~h E 

Here, k = At is the time step and f is a time average of fh :4 

n (n+l)k 
(3.4) f() f (t) dt. 

Equations (3.2)-(3.3) amount to a linear system for yn+ Zhn+ . Thanks to 
(1.6), the existence and uniqueness of h Z hj follow readily from Lax- 
Milgram's theorem. 

Scheme I'. This is a slightly modified version of Scheme I, where the b-terms 
in (3.2) are treated implicitly in z. Hence, we replace (3.2) by 

1 (n+l1 n+1 n+1 1 
d (y~ n+1 

k (h -Yh 5 yh)h +ah(yh + Zh , yh) +dh(yh +Zh Yh) 

(3.5) +bh(y , Yh) +bh(yh, Zh h) + bh(Zh Yh ' Yh) 

('5 h)h Vgh E2J' 

while (3.3) remains unchanged. 

Here again, the existence for each n of the pair yhn+ Zh n+, solution of 
(3.5) and (3.3), follows from Lax-Milgram's theorem, but the proof of this 
point depends on the a priori estimates which will be proved in ?4; therefore, 
we postpone the proof of the solvability of (3.5), (3.3) to ?4. 

Remark 3.1. Since (3.5), (3.3) is (linearly) implicit in yn+ h Zh ,n+ with a de- 
pendence on Zhn+ in the b-terms, the solution of (3.5), (3.3) is more difficult 
than that of (3.2), (3.3). However, we shall see that Scheme I' allows a better 
(larger) time step k. Also, the Zhn+ component of Uhn+ is small; therefore, 
the dependence of b on Zn+1 is rather mild. 

4If fh is smooth, we can take more simply fhn = fh(nk). 
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Scheme II. We start with the same 0h' Zh as in (3.1) and define recursively the 
sequences of elements yn, z . 

When yn and Zn are known, we define yn+ E Vh and Zhn+I E Wh by the 

equations 

n(Yh h h)h+ah(Yh + Zh h) + dh(yh +Zh 'Yh) 

(3.6) + bh(Yn y hh)+bh(Y, n+1 (Z+1 nh' h) h h5 h Yh+ h 5Zh , yh) +bh zh 5Y 

= (' h)h Vgh E Vh2' 

n1 n , (n + n+1 +d~n + n+1 

(3.7) (Zh -Zh z h)h+ah (h +Zh yh )?dh(h +Zh 'Yh) 

+ bh(Yn ny h)=(f h)h V=h E Wh. 

In fact, we first determine Zhn+ by solving (3.7), using (1.6) and Lax-Milgram's 

theorem. We then determine yn+ 
h by solving (3.6). 

Scheme III. This scheme is a slightly modified form of Scheme II, where the 
n+1 n 

term Zh - zh in (3.7) is removed. The reason for removing this term is that the 

evolution of the z-term (the small structures) is slow and can be neglected (see 
5 

[7]). A variation of Scheme II taking this into account consists in computing 

Zhn+ by solving 

h(yn n+z + dh(yhn + Zh Zh)+bh(Yh nh) 

=(fh7A ,2h) V'hEWah 

Then yn+1 is determined by (3.6). The existence of a solution Zhn+ to (3.8) 
follows readily from (1.6) and Lax-Milgram's theorem. 

Of course, an analog of Schemes I, I' where the z-terms are dropped can be 

presented; we will not do this here. 

For all schemes we set 

(3.9) un =y 
n 

+ Zn E Vh Vn. 

Of course, U h is expected to be an approximation of uh (nk) in the limit k -* . 

Remark 3.2. The effective resolution of the linear systems appearing in (3.2), 
(3.3), (3.5)-(3.7), and (3.8) will be discussed elsewhere and we will, as well, 
present and discuss the results of numerical experiments. 

At this point, one can speculate that the solution of problems (3.3), (3.7), 

or (3.8) involves almost as many unknowns or is almost as complicated as an 

Un+1 implicit or semi-implicit scheme in V* , for Uh . However, besides the theoret- 

ical advantages related to the closeness to the attractor that we will not discuss 

5We do not discuss here the validity of this hypothesis, which assumes that the high-frequency 
modes of f are not too large (see [5]). 
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here, the two advantages of the schemes of this type are the following: 
-Schemes I, I', II, and III yield a better stability condition than a similar 

scheme in Vh (see ?5). 
-It will appear from the a priori estimates below that the Zhn are small quan- 

tities and therefore, the linear systems corresponding to (3.3) or to (3.7) need 
not be solved with the highest accuracy. 

4. STABILITY ANALYSIS 

Our aim is now to perform a stability analysis for Schemes I-III by using 
energy methods. Namely, we want to obtain a priori estimates for the yn and 
zn that are independent of k (and h); we will be able to do so at the price of 
some conditions on k and h, the stability conditions. 

Scheme I. For the sake of simplicity, all the indices h will be dropped during 
the following computations. 

We replace 9h by 2ky n+1 in (3.2) and Zh by 2kzhn+1 in (3.3). We recall 
that 

2(a - b , a) = la12 _ lb12 + 2a - b12 

2(a - b b) = la 
12 _ lb12 2la _ bI2 

We then obtain (dropping the indices h): 
n+l 12 _ nI2 + iyn+l - yn12+ 2ka(u n+1 yn+1) + 2kd(un+1 n Y+1 

+2kb(yn ,yn yn+l) + 2kb(yn ,zn, yn+l) + 2kb(zn y 
n 

yn+1) 

=2k(f y )n+) 

(4.2) I n+112 _ I nI2 + Izn+1 _ n12+ 2ka(Un+1 zn+1) + 2kd(Un+1 n Z+1 

+ 2kb(yn, yn, ,zn+l ) = 2k(fn ,zn+l). 

We add these relations and take into account (1.3) and (1.6); we find 

iyn+l12 + I n+112) (Iyn,2 + I n,2) + Iyn+1 ynI2 

(4.3) 
~ + Z n+l _ z n12 + 2ka (Un+1, Un+1 ) + 2kd (Un+1, a )n 

= 2k(f(n 5n+1 ) - 2kb(Un yn yn+y1 yn) 
n+ n 2 -l n+1 n+ 1~ n+ 

(4.3) -z +2knk su to+2kd1a ,u -1). 

We write, thanks to (1.1) and (1.6), 

2ka(un+1 Un+l) + 2kd(un+1 a un+l) , 2kc5uIn+1 112 

2k(f, un+1) < 2kIfnI Iun+l1 < 2kc IfnI II n+I 

< c5kllun+1 H2 + kcj ffnl2 
C5 
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Then we majorize the b-terms using (1.4), the second inequality (1.1), (2.4 
and (2.22): 

2klb (u 
n 

Y. Yn+ -Y )I 

< 2kc 3ung 1/2H unjjH 1/2 jjYn jYn+I _Y n 
1/2 HYn+I 

_ 
1 

n 
11 

1/2 

2kc3(SI 
S-1/2 

1un jjynjj lyn+l - yn (with (1.1) and (2.22)) 

< 4 nIY - Yn 2 + 4k 2C32( 
- 

)-1UnI2 ll n,12, 

where S1 = S1(h) and S1 = S1(h) (see (2.22)).6 Similarly, 

2k1b(y' Zn ,Y n+ 
Yn), 

< 2kc3 lyn 1 1/2 1 lyn 11 1/2 11 zn I I lyn+ I _ Yn 1 1/2 1 lyn+ I _ Yn 11 1/2 

< 2kc3(S0-1 lyn, Hjznjj Iyn+I -ynI 
< gYn+l - n12 + 4k2C2(S 1) -2 yn 12 11 zn 112 4 3~~~~~~H 

2k lb(y, 
n 

y, zn+ - Z ) I 

< 2kc 3yn 1/2 I lyn3/2 zn+l - znl1/21 zn+l _ z n 
1/2 

? 2kc3(SIS1) -1/21ynj jjYn11 lzn+l _ zn- 

< iZn1l - znl 2+ 2k2c2(S 1-S lyn12n n 2 

Collecting these inequalities, we obtain 

(Iyn+l12 + Zn+112) (Iyn,2 + Zn,2) 

+ I Yn+I Yn 2 + I 1zn+I - zn 2 + kc ,,Un+l 112 

(4.4) k Ifn12 2C2n-2-1 n I11 
< 2 + 4k3SS)l H 

+ 4k 2C3(51) IY 1 Zn 112 + 2k2c2(S S1 Y- I yn 12 Il n 112 

Because of (2.3), 

H1Yh + Zh h = 1Yh h + H1Zh h + 2(Yh Zh))h 

(4.5) ? H11H + 1HZh2 - 2(1- HhHHhHh (4 5) ~~~~~~~> 11Yh lh + 11 Zh lh-2 1-) 11Yh 11h 11 Zh 11h 

> (5yh h + H1Zh h). 

Also, 

Uh h = lYh + Zh h 
? 

2(yh h + IZh h)' 

6Although we dropped the indices h, we recall that jyn+1 _ynj = jY/n+1 _Ynh and jjYn+l _yn 

= yhn+1 - Yh n1h h 
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and (4.4) yields 

yn+2 n+112) n2 n2 1 n+1 n 2 (Lv K+Iz I )-(jyn I +z j~I2 )+ Iy -y 

(4.6) +1 Izn+l _ 2+ kc j(,,Yn+l 12 + lZn+1 112) 

< kCI Ifni2 + kA(Iyn,2 + IZnI2)(IIYn 12 + I Zn112) 

with 

(4.7) A = 2kc 2(9(S S1 0- 
+ 2(3 2 

We now prove 

Lemma 4.1. We assume that 

(4.8) k < 2cl2/c55 

and 

(4.9) A = 2kc 2(9(SI (h)3I (h))71 + 2(S1 (h)) ?2 c5/2M, 

with 

lAY!= ( + kc S1(hY-2)(IY112 + IZOI 
2 M (1 4 2 C5S^ )lh h lhlh) ' 

(4.10) - 4C41 2 
(4.10) M = M +jIJ2 If ILO(R+; Vh I 1ath) 

Then, for every n > 0. 

(4.11) An I 
h Zn 1 < M. 

Proof. We proceed by induction; (4.10) is obviously true for n = 0. Assuming 
it has been proved up to order n, we want to establish it at order n + 1 . 

We observe that the induction hypothesis and (4.9)-(4.1 1) imply that Agan < 
Ic5. . We then set 

(4.12) On = Iyfl2 +IznI2 +Ikc53(IlynII2 +I5zzn112 

and we infer from (4.6) that 

(4.13) n+1 -$n + 1kc5(yn+l112 + 11Zn+12) < kC If 

where 

Ifo =IL L(R+; Vh I 11h) 
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But, by (1.1), 

n+l112 + 11Zn+112 

> 1 (I n+112+ I n+112 1 (11 n+1 12 + 11 n+1 2 

2c 2 

(4.14) > 1 n+1 2 + Zn+1 2) +C2( IYn+1 2+ IIZn+1 2 
(4.14) ~z K~c(~y H Iz II 

> n+1 (thanks to (4.8)), 

and (4.13) yields 

(1+ kc5c) <n+i < + kc I 

(4.15) ( ~~~4C2 )c( C2 ) L 
n+1 kc 

_ ___ 

+ 
kc 3 -1 

2 

(4.15) <n+ I (+k<5 c 1(i+ 4c VI 

The analogous relations are also valid for the previous values of n, and thus 

( kc a)I ( kc a)2 kc 2 c J a)2 (1+ 2 ) ny (< + 52 n-1 + '5 (12+k52) f|L 

By adding all these relations, we obtain 

4nC2 4C1 2 ) + 2a If 2 if ILO 

n+ 1+ 
1 

2 ~ 

(4.16) 5 < ?'0 + I I c I? 

In particular, 

44n+1C 2 + 4n+122 

02+1 < 0 +k 1 +c z02) c 
5 + I~~~~~~~~~ 

(4.17) 012 1 01~~42 If IL-(l~l2+|Z| +2 fl? 

4(1 + nkc Is2) 0y012 + z012) + 2C= M. 
TeidcinicopeeadLma41iprvd 5 

The17 inuto2scmlt n em 4. i2roed 
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Remark 4.1. For the study of convergence, in passing to the limit k -O 0, h 
0, the bound (4.10), (4.1 1) is effective provided 

(4.18) kS1(h) 2remains bounded 

(by any finite number). Condition (4.9) requires A = A(k, h) to be smaller 
than a specific constant. o 

We associate with the elements yh, zh , and uh some approximating step 
functions defined as follows: 

n 
Yh : + 3Vhl Yh~t = yh ' t E [nk , (n + l)k), 

(4.19) zh:R+ 3nWh, Zh(t)=Zh te[nk,(n+l)k), 

uh: R+ V* h uh(t) Yh(t) + Zh(t) . 

Lemma 4.1 can be interpreted as follows: 
Under the hypotheses (4.8)-(4.10), 

(4.20) 
12 

+ Iz 2 < M, 

and with (4.18), 

(4.21) Uh, Yh' 
and Zh remain bounded in L (R+; VhJ 'Ih)K 

as k and h -O 0. 

With the same hypotheses we can derive further estimates on Y*h zh and 
Uh . 

Let T > 0 be fixed, let Nk < T < (N+ 1)k, and add the relations (4.13) 
for n =0 ...., N. We find 

(+1 + 1kc 6E(Hyn+1l 2 + 11zn+1 112) < XO+ kNC f 2 

C5 
< ( + kC5 )(lyh2 + lzh'j) + TC ( If K 

Tc 2 2 < M+ I If IL??(R+; Vh I 1 1h ) 

Hence, 

under hypotheses (4.8)-(4.10), 

(4.22) Iyh L T; ) + I ZhIL2(? T; Vh ll u h) - 
M 

Ml' = c (M + ~C iff 
L-)(R+; Vh 1 1h) 

or, with (4.18), 

(4.23) uh Yh 5 Zh remain bounded in L 2(0, T; Vh, 11 *1h) 
VT>O, ask andh-*O. 



494 R. TEMAM 

Scheme I' . The analysis is very similar to that of Scheme I, but some simplifi- 
cations and improvements occur. 

We replace 9h by 2ky n+I in (3.5) and Zh by 2kzhn+l in (3.6); after adding 
the corresponding relations, we obtain the analog of (4.3): 

(Iyn+l12+ jzn+112) (lyn12 + jzn12) + jYn+1 Yn12 

(4.24) + I zn+1 _ zn 2 + 2ka(Un+1 n+1 Un+I 

= -2k(fn, un+I)-2kb(yn Yn )Y2n+ kd n) 

- 2kb (zn+i 5yn 5y n+I _ Y n) - 2kb (Yn zn+I 5Yn+I _Yn. 

We reproduce the computations following (4.3): 

2ka (un+ 
5 Un+l) + 2kd (Un+ 1 Un+l ) > 2kCs Ij n+i1 2 

2k(fn, Un+l < kc5 Iun+l 112 + kc Ifn 12 
C5 

2klb(ynynyn Y -+IfY )I 
< 2kc jYnj1/2j Ynjj3/2 Yn+I _ yn l/2 Ily 

n+I _n 1 /2 

? 2kc3 (3n 1 lyn 2 2lyn 1- jYn+I _ Yn n 

< jYn+y _ yn 12 + 4k 2C2(S1)-2jYn 12yn 2 

2kjb(z ,n y , y -Y )nI 

< 2kc3 jzn+1 I1/2 1ln+1 _1/21n n+I nl1/21n+ n 1/2 

- 1/2--I ln, ln+i IIjn+I nI 
?<2kc3(S2/SI) (S 1) y z y -y (with (2.4) and (2.22)) 
< I nl+l yn12 + 4k 2C2(S2/S )(S )-2jYnj2jjzn+1112 

2kb(yn ,zn+l Yn+l - Ynl 

< 2kc3 jYn1/2jHYnjj1/2j zn+1I jYn+I _ 
ynl1/21 yn+1 _ yn1 1/2 

? 2kc3()- 2 lynHI zn+l H Yn+l _ YnI 

< 
i 

yn+I -Ynl2+4k2c2(S )-2lyn12HZn+ 1 2 

With these inequalities, (4.24) yields 
n+I 12 + IZn+ 12) _ (lYn12 + IZn12) 

+ Iyn+I _ n 2 + izn+I _ zn12 + kc 5lUn+112 

(4.25) C2 n 2 n+1 2 
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Lemma 4.2. We assume (4.8) and 

(4.26) 4kC2 (g I(h)) 2 (I +S2(h)13j(h))Mj < 1ca,J 

8c4 2 
Ml = M + ilf lL?(R+; V*,I 1l*) 

with M as in (4.10). Then for every n > 0 

(4.27)n2 n1<M (4.27) A~~~~~n = lyh 1h + I Zh |h - I1 . 

Proof. The proof is similar to that of Lemma 4.1, and we consider the same 
expression An as in (4.12). 

We proceed by induction; (4.27) is true for n = 0, and, assuming that it has 
been proved up to order n, we want to prove it at order n + 1. From (4.5), 
(4.25), 

n+- + + kc5 (,y 11 + jjzn+1 2) 

(4.28) kc k2 +i 
C 

(4.28) ~~~~< It If n+ 1l 2 < k I 2 
C5 

Using (4.14), we find, in place of (4.15), 

(4.29) ~ n+1 ~ 1 kc 3 >n kc~ 2 kc3 -1 f2c 

(4.29) A < (1+ 8 2 )I C( + 5C ) ItLOO 

With the analogous relations valid for the previous values of n, we obtain 

(4.30) < 1+ 523) n + 2 fjl, 
1 ~~53 

and we conclude as in Lemma 4.1. 0 

Remark 4.2. Under the hypotheses of Lemma 4.2, (4.28) implies the coercivity 
of the linear system (3.5), (3.3) defining yhn+l, Zjn+ for Scheme I'; hence, the 
solvability (yet unproved) of this scheme by the Lax-Milgram theorem. 

Remark 4.3. The stability conditions (4.9) and (4.26) will be discussed and 
compared in ?5. 0 

We define the functions Y*, Zh , and Uh as in (4.19), and from Lemma 4.2 
we infer that 

under the hypotheses (4.8) and (4.26), 

(4.31) lYhILoo(R+;VItI h) + I hIL-(R+;Vh ) I M1 

122(0 { + IZhL2(0,T;, < 2M VT> 0 

(M1, M' as in (4.26) and (4.22)), and with (4.18), 

(4.32) auh, h and Zh remain bounded in L (R+; Vh, I Ih)' 

and inL (0, T; Ve 1 H1h) VT>0, ask andhh 0. 
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Scheme II. We now proceed with the stability analysis for Scheme II; some 
steps will be the same as for Scheme I, and some will be different. 

We replace 9h by 2ky' in (3.6) and Zh by 2kzhn+l in (3.7). Dropping the 
indices h, we find thanks to (1.3): 

n+i2 2 n1 n 2n+ n l_ yn 12 _ yn+l y + 2ka(yn + zn+l ,yn 

+2kd(yn + zn+l ,yn) + 2kb(yn, zn+l yn) = 2k(fn, Yn) 

n+12 _ lzn,2 + lzn+i _ zn,2 + 2ka(Yn + zn+l n+l) 

2kd( n+ n+l zn+l)+2kb(ynyn, zn+l )=2k(fn, z n+l). 

We add these relations, using again (1.3), 

yn+l12 + jzn+112) (,Yn,2 + lzn,2) + lzn+l n,2 

(4.33) + 2ka(yn + zn+l yn + zn+l )+ 2kd (yn + zn+l ,y'n + zn+l) 

2k(fn 
n + n 

+z yn+l -yn I2 

Thanks to (1.1) and (1.6), 

( n n+l n + zn+l + 2kd(Yn + zn+l yn + zn+l) > 2kc5 Iyn + z 112 

2k(fn yn + n+l) < 2kIfnI lyn + zn+l < 2kc Ifn I jYn + znI 11 

< kc5 ,yn + zn+l112 + kEiIfn12 
C5 

In order to majorize the term -yn+l _ yn 12 in the right-hand side of (4.33), we 
return to (3.6) and replace Dh by k(yn+l - yhn); thus, 

,yn+I _ Yn12 ka(yn + zn+l Yn+l _ n kd(Yn + zn+i Yn+l _ n 

(4.34) -kb(yn ,yn + zn+l Yn+l - yn ) 

_ kb(zn+l ,Yn Yn+l yn) + k(fn yn+l - Yf) 

Because of (1.2), (1.4), and (1.5) we can majorize the right-hand side of this 
relation by 

kC21Y 
n + zn+l 1I jjyn+l _ Yn + kc Ilyn + zn+l 1lHyn+l _ yln 

+ kc3 
Yn 

I1/2 lYn , 1/2 lYn + zn+l 1I yn+l _ Yn 11/2 Iyn+l - y n 
111/2 

+ kc lZn+l I1/21,zn+l 11 1/2,,Ynil jYn+1 _ yn~i/2,,Yn+1 _ yn 11/2 

+ k Ifn, Iy n+l _ yn I 

In view of (2.4) and (2.22) this expression is bounded by 

k{(c2(S1)-1 +c5)Ilyn + zIn+11 +c3 (SE1 -IynI Ilyn + zn+l 11 

+ C3(S2/S )/ (S1) 
1 
IynI llzn+l 11 + IfnI}Iyn+l 1n1. 
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Hence, with (4.34), 

Yn+ -n < 5k2 c2(3 -2 +C2 +C2(3 0-2 nI2 n + n+n112 
3 -y 2?5k 1 II,3 +z 

+ C(S2/S1)(Sy2 lynI211 Zn+l 112 + IfnI2} 

With these relations we infer from (4.33): 

yn+l12 + Zn+112) _ (,yn,2 + IZnI2) + IZn+1 _ zn 2 + kc ,Yn + Zn+1 12 

(4.35) < k (c + 5k) IfIL + 5k ((c2 + 5 +c5)I1y + 1 

+ 5k C3 (S2() ( l) IY Z 112. 

Lemma 4.3. We assume that (4.18) holds and 

(4.36) 5k((c2 + c3 M2)(S1 (h))2 + c5) < 4 

5kc3 (S2(h) (SI(h)) M2 < 

1 / l2 =7M + 8 c4 + Ic) If0C 2(R; ,kIh) 

M as in (4.10). Then, for every n >0, 

(4.38) n= 2YI + IzhIh < 
2 

2 

Proof. Relation (4.38) is obvious for n = 0. We assume that it has been proved 
up to order n and we want to prove it at order n + 1. Because of (4.5) and 
(4.36), we infer from (4.35), 

n+I12 + n+112) (Iyn12 + IZnI2) + IZn+1 _ Zn 2 3 kc5 (,,Yn ,2 + Zn+1 2 

k i + 5k) If IL + 5k c3 (Sl) M21Z 112 

< k C, + IfIL0 + -kC53IIZn+1 12 (by (4.8) and (4.37)). 

Hence, 

yn+l12 + Zn+112) _ (,yn,2 + IZnI2) + Izn+1 _ zn 2 

(4.39) (,n2 In 112 C 2 + + liz II) < k - + I) if I2 2k (~yh2C5 C51J 

Setting 
(4 40) X~~n = y n 2 + IZn 12 + 1kc ,(,,Yn,,2 + IIZn+l1 2 

(4.40) = 42 n+1 2 
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we rewrite (4.39) in the form 

n+1 n 1 n 2 n+1 2 c1~~~ 1OC11 
,'n+1 - 

n + Ikc53(,Iy III +Hz H) < k IC + _ ) If 12 C5 c53 

As in (4.14), using (1.1) and (4.8), 

n 112 + 1I Zn+1 1 2 n2+ n+1 2 1 ( 1yn 112 + 11 Zn+1 112) H +Hz H ?-~7(Oy )+(H I2I 
1 n2 n+1 2 2(1,yn 12+ 1Zn+1112) 1 n+1 

> T 
I~112 +c~y z 

Thus, 
(+kc 3' n+1 

2 
___2 

( 8cl )(5 5) 
and also, for j=O, ...,n, 

( kc535 
- (n-j) -+ c55(n+l-]) j + k 2 1C2 2 

1 + < 8 ) + (< ( + - ) ci) f ) 

By adding these relations for j = 0 ... , n, we obtain 

kc 
- (n+ 1) 

0 C4 0 2 

Xn+l <(+kc 
0 8cI (1+ if If2 

(4.41) $n+1 < (IY02 + Iz0 2 1 ) c!k3 IYO( 2 + IIZ0112) 

+ 
--I 

(1 + if) IfLO 
- 

5 

The induction is complete, and Lemma 4.3 is proved. 0 

For N fixed, we add the relations (4.39) for n = 0, ..., N; this yields 

N 

k L{lyn 112 + IIZn 112, 

(4.42) /=2 

2 (IYO12 + I012 2kN ( 2 
lOc 2 

5 5 5 5/ 

We associate with the elements yh, Zhand Uh the functions Yh Zh, and Uh, 
defined by 

Yh :+ Vh' Yhh(t)=yh' te[nk,(n+l)k), 

(4.43) Zh :R+ Wh t Zh(t)Zh , te[nk,(n+l)k), 

Uh:R + >Vh, Uh(t) = Yh(t) + Zh(t). 
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In terms of yh, Zh, and uh we reinterpret the previous results as follows: 

under the hypotheses (4.8), (4.36), and (4.37), 

Y~~~oo~~+ IzI 2' ( 4. 44) Ilyh I L'- (R+; Vh 1 1h ) + h I Lo (R+; Vh I NOh 
< M2 

Yh L2( ,T; Vh ,I1Ih) + IZhL2(, T; Vhu I111h) 
< V 

(M2, M" as in (4.37), (4.42)), and with (4.18), 

Ush Yh, and Zh remain bounded in 

(4.45) L??(R+; Vh h | * 1h) and L 2(O. T; Vh H 11 ih) 
VT > 0, as k and h -O. 

Scheme III. The first steps of the analysis of Scheme III are the same as those 
of Scheme II. We replace 'h by 2ky n in (3.6) and Zh by 2kzhn+1 in (3.8). 
The terms corresponding to Zhn+ - zhn disappear and thus, in place of (4.33) 
we have here: 

i n+ 12 _ lyn12 + 2ka(yn + zn+1 yn + zn+1 

(4.46) + 2kd(yn + zn+2a yn + zn+y ) 

2k(fn yn + zn+l) + Iyn+l _ Ynl2 

The analysis following (4.33) can be repeated without any change, up to (4.39), 
which now becomes 

lyn+112- lyn2 + Ikc53(llynfl2 + 11zn+112 

(4.47) ( c2 1 0c2 2 
< k 1l+ 1Uif ILc. 

c5 c53 L 

Instead of (4.40) we set 
n = lYn12 + 1kc (llyn 12 + 1zn+l 112) 

and under the hypotheses of Lemma 4.3 we arrive at 

(4.48) n+1 < ly | + I-kc53yO2 + 8c (1 + + ) If IL0 

Therefore, under the assumptions of Lemma 4.3 we have, in place of (4.38), 

(4.49) h h M2 Vn > 0. 

Then (4.44) remains unchanged, while the first estimate in (4.44) is replaced by 

12~ ~ 2 lyh IL?(R+; Vh I 1.1h) 
< M2 

In order to recover the estimate of Zh in L??(R+; Vat I h), we proceed as 

follows: we set Zh = Zhn+1 in (3.8). This yields 

a(zn+l zn+l)+d(zn+l zn+1) 

-= a(y 
n zn+l )_d(yn , zn+l) - b(yn , yn, zn+l) + (fnzf+l ) . 
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With (1.2), (1.4)-(1.6), and (2.4), we deduce that 

C5 z, 11 2< C 2I1yn 1zn+ 1/2 +C 1/yn 2 Izn+1+ 

+ C lynI1/2Iyn 3/2 z n+1 112 n+Ilz ll11/2 + Ifnl I Zn+ 

< {(c2 + C4) IY 1 + C3(S2)1/2 Iyn11/2 Ilyn 113/2 + S2 Ifn I}11 Zn+ 111 

Using (2.4) again, and (2.22), we see that 

n+1 IS y,+ S 32y 
Iz Il < - 

t(C + C S2) (_2) ~l S2) |y +S3|f I} 

and thus, for every n > 0, 

(4.51) 1z ~~~~~~n+1 (4.51) |Zh I < M25 

- 

C (S2 (h) 1/M~2 
2 c{ (c2 + c4S2(h)) S1 (h) ) M2 

(4.52) (S2(h) 3/2 ) 
+ -\l )) M2 + (S2 (h))2If ILj 

We define the functions Yh ' Zh, and Uh exactly as in (4.43) and we state: 

under the hypotheses (4.8), (4.36), and (4.37), 

(4.53) lYhILO(R+; VI I 1 1h) 
< M2 5 lZhILO(R+; Vh I 1 

< ) 2 

YhIL2(O,T;Vh, II.^h) + IZhL2(O T; Vh I11h) < M VT> 0 

(M2, M", M2 as in (4.37), (4.42), (4.52)), and with (4.18), 

Yh remains bounded in L? (R+; V0' I Ih)' 

(4.54) uh, Yh, Zh remain bounded in L 2(0, T. Vh , 11 11h) 

VT, ask and h -O . 

If, furthermore, 

(4.55) S2(h)/SI(h) remains bounded as h -0 , 

then 

uh, Zh remain bounded in L??(R+; Vh I Ih) as k and h - 0. 

Remark 4.4. It follows from (2.4) that, for all the schemes presented here, Zh 

converges to 0 as k and h converge to 0. We have indeed 

(4.56) IZhIL 2(OT;VI.) S2(h)IZhIL 2(0 ,T;Vh I11h) < const.S2(h) 

and we recall that S2(h) -* 0 as h -* 0; (4.56) implies that 

(4.57) IzhIL2(0 T; VI.1h) -+O as k, h -O VT > 0. 
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Furthermore, for many examples, the norm I ' 1h of Vh is that of L 2; then 
(4.56), (4.57), and the bounds on Zh in L?? (Rl+; Vh I' Ih) imply that 

| Zh ILP(0, T ; h, 1.1h) 
0 as k, h -O , VT > O , Vp, 1 < p < oX. o 

As a conclusion to this section we summarize the results that we have proved: 
for the Schemes I, I II, III we have obtained some a priori estimates on 
the yh, Zh which demand some restrictive conditions on k and h, namely 
the classical stability conditions. The a priori estimates are completed and 
reinterpreted for the different schemes in the statements (4.20)-(4.23), (4.31) 
and (4.32), (4.44) and (4.45), and finally for Scheme III in (4.53)-(4.55) (see 
also (4.56), (4.57) in Remark 4.4). 

5. APPLICATIONS 

The object of this section is to make explicit the hypotheses and results of 
the previous sections on some examples. For the space discretizations we will 
consider those of ?2 and also some finite elements and finite differences in 
space dimension 2; two evolution equations of the Navier-Stokes type will be 
considered. 

We start by making explicit the constants S1 (h), S1 (h), and S2(h) for vari- 
ous spaces. In particular, we show that the ratio 

(5.1) S2(h)/S1 (h) 

that appears in the stability conditions for certain schemes remains bounded. 
(i) Spectral discretization. The framework is that of ?2. We have seen in 

(2.6) that 

(5.2) S2(h) = (A m +i) 1/2 

For estimating S1, we note that, for every uh in Vh, Uh = ZJ1 l1w1,and we 
have 

2 

IIuh Ih= E AWJ = E I Chl =Am, IhIh 
j=1 j=l j=1 

Thus, 

(5.3) SI (h) = (Aml 

Similarly, for S1 we just replace ml by m2 in (5.3): 

(5.4) Sl1(h) = (Am2 i 

We have 
S21S1 = (Am2/jm2+l) < 1, 

and this ratio is obviously bounded as mi 00. 

Some indication of the advantage of using decompositions of the space Vh 
of type (2.1) can be obtained by comparing the stability conditions appearing 
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above with those appearing when no decomposition is used, i.e., Wh = {O}, 

Si =SI. 
For example, for the case of the Dirichlet problem in space dimension D, 

i cm2!D as m-x 

If we consider a decomposition with ml = 4m2, then 

-lID -lID2 2D S cm-D2 S1 c(4m2) , (1/Si) 2 42/D 

so that Scheme I', for example (see (4.26)), allows a time step 42/D times larger. 
Note that this is only an indication about stability, since the stability conditions 
are only sufficient ones. However, such improvements can be rigorously proved 
in the linear case, where the stability conditions are necessary and sufficient 
[24]; they are also broadly supported by numerical experiments [5, 13, 14]. 

(ii) Finite elements (ID). 39 -finite elements in space dimension one have 
been discussed in ?2. With, for instance, h2 = 2h1 = 2h, we have seen that 

S1(h) = h/2x/_, S2(h) = h/IV. 

Of course, replacing h by h2, 

S1(h) = h/V and S2(h)/S1(h)=1, 

so that this ratio is obviously bounded. In the present case, 

(SI (h)1Sj ())= 4, 
and for Schemes I', II, or III, the stability conditions (4.26), (4.36), (4.37) allow 
a time step four times larger when this decomposition is used. 

(iii) Finite differences (ID). We have seen in ?2 that 

S1(h) = h/2, S2(h) = h. 

Then, by Remark 2.1, 

S1(h) = S1(2h)/v/2= h/V2" and S2(h)/SI(h) = V, 

so that this ratio is indeed bounded (constant) as h -* 0. 
For h 1=h=2h2, 

=2, (SI (h) IS, (h = 2, 

and for schemes I', II, or III the stability conditions (4.26), (4.36), (4.37) allow 
a time step two times larger when this decomposition is used. 

(iv) Finite elements (2D). In space dimension 2, decompositions of the 
space Vh based on 91 -elements and other finite elements have been studied in 
[19]. The description of the spaces Vh, V2, Wh will not be reproduced here. 
We only borrow from [19] (see (3.10)) the fact that S2(h) = Ph , where Ph is the 
supremum of the diameters of the triangles in the corresponding triangulation 
,T. One can show also (see [21, p. 376]) that S1 (h) is of the form S1 (h) = Cph, 
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where Ph is the smallest of the diameters of the inscribed circles in the triangles 
T of the triangulation S. 

If the triangulation S is associated with the triangulation 7h by dividing 
each triangle T of 7h into four equal triangles (congruent to T), then 

h2 

S1(h) = S1(2h) = CP2h = 2Cph = 2S1(h). 

Thus, 
S2(h) /S1 (h) = Ph /(2CPh)' 

and this quantity remains usually bounded as h -O 0, although this is not an 
automatic assumption. Also, we note that (S1 (h)/S1 (h))2 = 4. 

(v) Finite differences (2D). Decomposition of the space Vh for finite differ- 
ences in space dimension two have been presented in [24]. It was shown (see 
Lemma 2.3 in [24]) that S2(h) = h, where h > 0 is the space discretization 
mesh in both directions. Also (see (5.17) in [24]), SI(h) = h/2V'_, and by 
Lemma 2.2 in [24]: S1(h) = h/2. Hence, S2(h) = 2S1(h), and this ratio is 
constant, thus bounded. We have 

2 

(S1(h)/S1(h)) =2. 

We conclude this section by describing two equations which lead to an equa- 
tion of the form (1.7) by space discretization. As mentioned before, the Navier- 
Stokes equations, and the thermohydraulic and magnetohydrodynamic equa- 
tions in space dimension two lead to equations of the form (1.7), but these 
specific and very important cases will be treated in a separate work. 

Example 1. Burger's equation. Let Q = (0, L), L > 0; we set V = Hl (0, L), 
H= L 2(0, L). For v > 0 and f given, the equation is written as 

-- - + a U a = f in Q x R+, 

u(O, t) =u(L, t) = 0 u(x, t) = U0(x). 

The variational form of this evolution equation consists in finding a function 
u: R+ * Ho(Q) = V such that 

(5.5) dT(u, v) + v((u, v)) + b(u, u, v) =(f, v) v E V. 

Here, 

, q= Cdx ,((p, ))d))= dYdx Vqi , 
3x -dx 

and b is the antisymmetrized form of the nonlinear term [20] 

b(qp, qi 6) = 1L (d6 - o d dx. 
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By using a discretization of (5.5) by any of the methods (i), (ii), (iii), we obtain 
an equation of the form (1.7) with d = 0. The hypotheses (1.2)-(1.6) are 
satisfied, c2 = C5= V, c4 = 0, and c3 is an appropriate constant. 

Example 2. An equation of Navier-Stokes type. Let Q c R2 be an open bounded 
set. We consider a modified form of the Navier-Stokes equations where the pres- 
sure and the divergence-free conditions have been removed, while the nonlinear 
term is modified as in [20]. Namely, u = u(x, t) satisfies 

au - vAu+(uV)u+ I(divu)u f, xeQ, t>0, 
u=0 onaQ, u(x, 0) =uO(x). 

This problem is equivalent to finding a function u: R+ V= H (Q)2 satisfy- 
ing an equation similar to (5.5), now with 

In i l~~~l In axi axi 

b (oP5YI 5 6) = -Ej (P i 
J . .j dx. 

X2ij1 In axi i Xi 
By using a discretization of (5.5) by one of the methods (i), (iv), (v) above, we 
obtain an equation of the form (1.7) with d = 0. The hypotheses (1.2)-(1.6) 
are satisfied, and again c2 = C5 = V, C4 = 0, and c3 is an appropriate constant. 
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