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MIXED FINITE ELEMENT METHODS FOR COMPRESSIBLE
MISCIBLE DISPLACEMENT IN POROUS MEDIA

SO-HSIANG CHOU AND QIAN LI

ABSTRACT. A differential system describing compressible miscible displacement
in a porous medium is given. The concentration equation is treated by a
Galerkin method and the pressure equation is treated by a parabolic mixed fi-

nite element method. Optimal-order estimates in L? and almost optimal-order
estimates in L™ are obtained for the errors in the approximate solutions under
the condition that hﬁk +2(log h, ! ) 12 _, 0. This condition is much weaker than
one given earlier by Douglas and Roberts for the same model. Furthermore, we

obtain the L°°(L2(Q))-estimates for the time-derivatives of the concentration
and the pressure, which were not given by the above authors. In addition, we
also consider newer mixed spaces in two or three dimensions.

1. INTRODUCTION

We shall consider a two-component model for the single-phase, miscible dis-
placement of one compressible fluid by another in a reservoir Q C R? of unit
thickness. Let ¢; denote the concentration of the ith component of the fluid
mixture, { = 1, 2. Assume that the density p, of the ith component and the
pressure p satisfy the equation of state in the form d p;/p; = z,dp, where z,
is the constant compressibility factor for the ith component. The Darcy veloc-
ity of the fluid is given by u = —%Vp , where k = k(x) is the permeability of
the medium and u = u(c,, ¢,) is the concentration-dependent viscosity. Let
D bea 2x2 matrix, D=¢d, I, where ¢ = ¢(x) is the porosity of the rock,
I is the identity matrix, and d,, is the coefficient of molecular diffusion. The
model we consider is governed by the following differential system:

oy @ d%—’jw.@;:d(d‘g—f— (a(e)Vp) = 4,
(b) 95; +b1(c)8_t +u-Ve—-V-(DVc)=(¢-c¢)q.
Here,
c=c¢ =1-g¢, a(c)=a(x,c)= k()c),u(c)_1 ,
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2
bi(c) =b\(x,c)=p(x) {21 - szcf} ’
=1

2
dic)=d(x,c)=p(x))_ 20,
Jj=1
g = the external volumetric flow rate,
and
¢ = the concentration of the 1st component in the external flow.

We impose the no-flow conditions on the boundary:

(1.2) (a) u-0=0 on 99,
’ (b) (DVc—cu)-v=0 ondQ,

where v is the outer normal to Q. In addition, the initial conditions are

(@) p(x,0)=py(x), x€eQ,

(1.3) (b) c(x,0)=cy(x), xeQ.

The differential system (1.1) under the conditions (1.2) and (1.3) has been care-
fully derived by Douglas and Roberts [4], using sound physical reasoning. In
[4], two numerical schemes for approximating the solution of the system (1.1)-
(1.3) were given. In both procedures the concentration equation (1.1b) was
treated by a parabolic Galerkin procedure. In their second scheme the pressure
equation was treated by a parabolic mixed finite element technique. The error
analysis of the procedures was carried out under the assumptions that the so-
lution is smooth, i.e., g is smoothly distributed, the coefficients are smooth,
and the domain has at least the regularity required for a standard elliptic Neu-
mann problem to have H 2(Q)-regularity, and more, if the piecewise-polynomial
spaces used in the finite element procedures have degree greater than one. Fur-
thermore, the coefficients a, d, ¢ are assumed to be bounded below positively.

The mixed space used in [4] is that of Raviart and Thomas. In this paper we
also consider the newer spaces such as the BDM space [3] in two dimensions,
the BDFM space [2], and the Nedelec space [8] in three dimensions.

Optimal L*-estimates and quasi-optimal L*°-estimates for the errors have
been given in [4] under the conditions that the maximum diameters 4, and
hp for the “concentration finite element space” and the “pressure finite element
space,” respectively, satisfy certain restrictions [4, relations (4.18) and (4.28)].
One of the purposes of this paper is to show that one can replace these restric-
tions by a much weaker condition (see (4.31) below) and at the same time obtain
optimal L*-estimates and quasi-optimal L*-estimates. In addition, those opti-
mal results hold for the newer spaces of [2, 3, 8]. Our analysis differs from that
of [4] in one fundamental aspect. The mixed elliptic projection [4, equation
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(4.1)] is replaced by a nonlinear version of the elliptic projection presented in
[6].

The rest of this paper is organized as follows. In §2, we give the weak for-
mulations of the system (1.1)-(1.3) and discuss the associated finite element
spaces. Section 3 is devoted to the error estimates for the concentration equa-
tion. The error estimates for the pressure equation are derived in §4, and the
main results of the paper are contained in Theorem 4.1. In §5 we extend our
results to three dimensions. A relation (5.1) relating discretization parameters
is found, and optimal results are proved under this relation.

2. WEAK FORMULATIONS AND FINITE ELEMENT APPROXIMATIONS

We begin by putting (1.1b) into the following equivalent form:

dc

(2.1) 057

—V-(DVe)+u-Ve—-5b(c)V-u=g(c),
where b(c) = bl(c)d(c)_l. Let (-, -) denote the inner product in LZ(Q) or in
L2(§2)2 . Using Green’s formula and (1.2), we have

ob ob
—(b(c)V -u, z) = (b(c)u, Vz) + <%u-Vc, z) + <5§ ‘U, z) .
Thus, the weak form of (2.1) isto find amap c: J — H 1(Q) such that

dc
(2.2) (“’57’ Z) +(DVe, V2) + (b(c)u, Vz) + (e(c)u- Ve, 2)

+(B(e)-u,2)=(g(c), z), zeH'(Q),

where e(c) = 28(c)+ 1, B(c)=% =0,and J =10, T].

Let H(div, Q) = {v:v e L}(Q)*, V.v e LXQ)}, V = {v:v € H(div, Q),
v.0=0on 9Q}, and W = LZ(Q). Then the pressure equation (1.1a) is
equivalent to the saddle point problem [4]: find'a map {u,p}:J - V x W
such that

(2.3) (a) (d(c)g—lt),w>+(v-u,w)=(q,w), weW,
(b) (alc)u,v)—(V-v,p)=0, vevV,

where a(c) = a(c)—1 .
To handle the nonzero initial conditions imposed on p and ¢, we introduce
the following transformations:

cx, ) =c"(x, ) +cy(x),  p(x,1)=p"(x, 1) +py(x),
24)  ux, 0 =[-a(c"+c,)V(D" +p,) +alc,)Vp,l — alc,)Vp,
w(x, 1) + uy(x).
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The reason for introducing these transformations is to validate equations (3.16)
and (4.22) below. Now (2.2) can be written as

(q)%—ct, z) +(DVC", Vz)+ (b (c)u", Vz) + (b"(c")uy, Vz)

(2.5) + (e"(c *)u* Ve, z)+ (e (M uy - V', z) + (A7 (c7) U, 2)
=(f*(c"), 2) - (DV¢,, Vz), zeH'(Q),
where
' (c)=b(c"+¢y), e =e(c" +¢p),
AT(c") = B(c" +¢p) +e(c” + ¢ Ve,
(") = g(c" +¢y) —[e(c” + ¢y)Vey + B(c™ +¢y)] - .-
Similarly, (2.3) can be expressed as
(a) ( ,w) +(V-u',w)=(r,w), wew,
(2.6) ) (o *)* v)— (va)
=(V-v, py) — (« *(c* YUy, V), vev,
where

d' (") =d(c"+¢), o (¢)=alc"+¢), r=qg-V-u,.

The initial conditions for ¢*, p*, and u" can easily be seen to be

(a) ¢"(x,0)=0,
(2.7) (b) p'(x,0)=0,
() u*(x,0)=0.

Consequently, solving (1.1)—(1.3) is equivalent to solving (2.5)-(2.7). For ease
of notation, we shall drop the superscript * in (2.5)-(2.7) for the time being.

Let h=(h,, h,), where h, and h, are positive. Let M, = th cwhe(Q)
be a standard finite element space associated with a quasi-regular polygonal-
ization of Q and piecewise polynomials of some fixed degree not exceeding
[. Thus, all standard inverse relations hold on M, and the approximation
property

. ! I+1,
(28) jinf llz =z, , <Mzl . ze W@, 1<g <o,

holds, where |z||, , is the norm in the Sobolev space W "’(Q). In the fol-
lowing we also use ||z||k for ||z||, , and |z|| for [z][, ;.

Suppose that Q is a polygonal domain. Given a quasi-uniform decompo-
sition of Q into triangles or rectangles of diameter less than 4, there exist
V,=Vf cV and W, =W} c W for k>0 such that the elements have di-
ameters bounded by hp . The boundary condition v-v =0 on 9Q is imposed
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on V), . Assume that the following approximation properties hold:

inf ||lv — = inf|lv—-v
(a) v,,GV,,”U Uh“ v,,GV,,” h||L2(9)2

< Mh"|v|| l<m<k+1,
(2.9) . p 1 m
(b) inf [V (v —vy)ll < Mh, (Jvll,, + V- ll,,) 1<m<k,
h h
() whiggyhllw—whllsMh,',"llwllm, l1<m<k.

The spaces ¥ and W) can be the spaces of Raviart and Thomas [10]
for k > 0, or the spaces of Brezzi, Douglas, and Marini [3] for k > 1. If the
Raviart-Thomas spaces are used, (2.9b) and (2.9c¢) are also valid for m = k+1.
The discrepancy in the range of the index m makes any attempt at handling
the two spaces of the same index k simultaneously rather awkward. Hence,
we will carry out the error analysis only for the Raviart-Thomas space of index
k. From now on we shall assume ¥, x W, to be the space of [10]. To obtain
results for the BDM space of [3], one needs only to replace every occurrence of
k by k—1 in Theorem 4.1. This is so because the error analysis below depends
only on (2.9) and (4.6) (with obvious modifications on the range of the index
when the BDM space is used). Hence, any result in Theorem 4.1 obtained for
the Raviart-Thomas space of index k is also valid for the BDM space of index
k — 1. In other words, the error analysis for these two spaces are identical.

The semidiscrete finite element approximation for problem (2.5)-(2.7)
amounts to finding amap {C, U, P}: J — M, x V, x W, such that
(a) (q)% , z) +(DVC,Vz)+ (b(C)U, Vz)

+(b(C)yy, Vz) + (e(C)U - VC, 2)
+(e(Cu,-VC, z)+ (A(C)- U, 2)

= (f(C), z) - (DV¢,, Vz), zeEM,,
opP

(bi) (d(C):a—t,w> (VU ,w)=(r,w), wewW,

(bii) (a(C)U,v)—-(V:v, P)
=(V-v, py) — (a(Cluy, v), vev,
(¢) C(0)=0, P(0)=0.

From (2.6) and (2.7), we have

(2.10)

(2.11) (V-v, py) — (a(0)u,, v) =0, vev.
Then, setting ¢ = 0 in (2.10bii) and using (2.10c) and (2.11), we obtain
(2.12) U(0) = 0.

3. ERROR ESTIMATES FOR THE CONCENTRATION EQUATION

In the analysis below, all functions of ¢ are assumed to be extended outside
[0, 1] in some smooth fashion,
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Let us introduce an elliptic projection of the solution of (2.5) onto M, , which
isamap ¢: J — M, defined by

3.1) (DV(c—c), Vz) + ((e(c)V(c —¢)) - (u+uy), 2)
' +AMc—c,z)=0, zZEM,,

where A will be selected large enough to ensure the coerciveness of the bilinear

form on H 1(Q) . By standard results on the finite element method for elliptic

problems, and by [5, 7, 12, 13], we know that

l a(c—c) 8? _
@ o=l + |2 +‘6 (- “+h 19—l
(3.2) I+1 dc 8¢
< Mh c + || = — ,
c ” ||l+1 ot I+1 3t2 ol
() lle=cllg o0 < MK (logh7 ") llell sy oo
where

{0 when !/ > 1,
r =
1 whenl/=1.

Using the inverse relations on M, , we know for z € M, that

I
Sth_z %(E “ atc—z) +HV£
5Kh;2<’%(é—c)+“%(c-—z)> “ (c—z N
+”V%c

Choosing z as the interpolant of ¢ in M, , we see from the above inequality

that
c + ”V2
I+1,00

This shows that ||V iCllo, o 1is bounded. In a similar fashion one can show that
lell, o and ||Z¢||, ., are bounded.

9
ot

ac /|| 0
37 +h

“V ||az

-1
c < Kh, (IIC||1+1
0,00

I+1
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Write £ =C —¢, { =C —c, subtract (2.5) from (2.10a), and apply (3.1) to
obtain

((og—f, z) + (DV¢, Vz)

= (€)= 100, 2) - (055 2) = (B - b(eyw, V2)

= ((b(C) = b(c))uy, Vz) — (e(CY)U - VC —e(c)u- Ve, z)
- ((e(C)VC —e(c)Ve) - uy, 2)
—(A(C)-U—-A(c)-u, z)+ A, 2), ZEM,.

Differentiate equation (3.3) to show that

2
((o%f—, z) + (DV%%, Vz)
8 8*
— (F(© = e, ) - (cogt—f z)

(b(C)U - ble)u), VZ)

(3.3)

o5

|
N N N
| 3

Do 2@

(3.4)

t(b(C) —=b(c))uy, Vz)

(e(CYU-VC —e(c)u-vVc), z)

(e(C)VC —e(c)Ve) - uq, z)

o5
~

(2o v-ae)w.2)+4(8.2) . zem,
(at ) (3t )

By selecting the test function z = %‘?, and using the boundedness of |ic||,
and [|%|l, ., it follows from (3.2) that

1d o0& 0o¢ ok lil4
3q (“’57’ :a»—t) + (DVE’ V57)

<K {Ilé||2 ¥ H%f—||2 n hf’“} - (v -bemw. v5)

|
AN TN AN N

S 2> I

0 ¢
5160 = by, V5

(3.5)
(e(C)U-VC —e(c)u-Ve), g_f)

(e(C)IVC —e(c)Ve) - u, %—f—)

(A(C)-U - A(c) - u), g—f) .
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Next, observe from (3.2) and the inequality ab < ea® + b> /4¢ that

|(§t<b<c>u ble), 35)\

ot
¢ ¢
l(ac(c)azw “)’Va_t>
(SO -w+ 302,

ab ab a(U —u)
+ (EE'(C) - 5-6'—(6)> 6—tu + b(C)-—at

0& o¢
<o { (|5, “)”U‘“”

e+ H H \

l+1
L‘

2
<e vg—‘f +K{||¢||2+“E +(”E +1> U - ulf?
dU-w|* . a2
ol o)
Similarly,
o o 0¢
<8t( (C)U-VC —e(c)u-Ve), E)
de, . 8C de, . 0C
= <a_c(C)W(U u)- VC + = (C)5ru- V¢
de, .. 0(E+ Q) e de dc _ 0¢&
Tila A IR +<8C(C)—8—c(c)>—8—tu-Vc,a>
(37) # (e 5 rec) W -u) v
+e(C) - e(ehu-vE, 52
+ <e(C)a([gt_ 9 .ve ve) v

+(e(C) - e(c))a—u ve, 86)
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where
(Geo5rw-w-ve, 3))
<|(GeerFsw-w-ve, 5|+ | (Feerew - ve. 5]

+ l(a—c(C)g—f(U u)-ve, gé>l

38 ’(%(C)g—f(U —u)-ve, %f)l

coo- a5, _wao|5],_ (o515
(H +1>{|Vé||+H +||U—u||2},

oo (g ) e (51 e 57}

A
+K{“a +|% OwnU—unz},

(e(C)a(Uat_ “ .ve, %f)l
(3.11) SKHB(U IVéII+H EH}
0é l (U-u)

o 2
SK{HE at ot }

Iven? +
The remaining terms of (3.7) may be treated the same way as above. Hence,

(‘9( e(C)U -VC — e(c)u — Ve), ac)

(3.10)

ot

+

ot ot
a¢|? 2
<e Vg,t- +K{||§|| + (Hm . oo+1)
(3.12) ) 2 )
-(nv:n + |5 +||U—u||)
AU =) |\ o 242
H - }th .
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An argument similar to that used above can be applied to the remaining terms
n (3.5) to show that

2 ari (“’aé gf) * 2D

at

2
o¢ 0 +1) (nvanH%

(3.13) SK{IIéII2+ (Hat

2 2
+IU = u]l )
+h21+2}

where D, is a lower bound of D. Integrate the inequality (3.13) with respect
to time ¢ to show that

g

2 t 2
Hg—f ; Vg—f ds
o& P L [ ez o (119C]
SK{lW(O) + [ e +(”50w+1>
(3.14) )
- (nv:n2 |5 +1e- u||2)
+H3(U—u) 2] ds+h2’+2} .
ot ¢

Set ¢t =0 in (2.5) and (2.10a) and use (2.7), (2.10c), and (2.12) to obtain
0
(3.15) <(oa—t(C—c)(0),z) =0, zeEM,.
Let z = %:(0) in (3.15); then
aé 3( I+1
316 |2%0)] < k| %o < kb

Adding the following inequalities

Y

2 d .2 !
(3.17) e = [ Zeras < [

t t 2
@18 Ivel = [ giverds<e [ |5
0 at 0

2
}ds,
t
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to (3.14), we obtain
2

O (12 el [ 5
R e I A
! 2 A& ||?
< _
_Kl{/0 e+ (|55, _+
(3.19) 2
2 o9& 2
-(nvan +|5 +||U—u||)
+ 2-(U-u)2 ds +h**?
Bt ¢ (>
where
ac oc 8%c
K =K (el o 125 el 155 |22 .
1 l(n oo |32, o Wb 57, |52

4. ERROR ESTIMATES FOR THE PRESSURE EQUATION

In this section we first give error estimates for the pressure equation. These
estimates are then combined with the estimates obtained in §3 to yield the main
theorem of the paper.

To estimate the errors in the approximation of the pressure equation, we
again introduce an elliptic projection in the sense of Johnson and Thomée [6].
Let (@, p) € V), x W, be the solution of the system

(a) (V'(l_l—u),’l,U)‘f'(p_—p,’LU):O, ’U)GW,
(4.1) ®) (alc)@m—u),v)-(V-v,p-p)=0, wvEeV,
(¢ @, )=,
where (c, p, u) is the solution of (2.5)-(2.7).

To show the uniqueness and existence of the solution of (4.1), it suffices to
show that the associated homogeneous system has only the trivial solution. The
associated homogeneous system is
(@ (V-u,w)+ (@, w)=0, wew,

(b) (a(c)u,v)—(V-v,p)=0, vev,.

Choosing w = p and v = @ in (4.2) leads to

(4.3) 0<a/(a,a)<(alc)u,u)=(V-u,p)=-(p,p)<0,

where o, is a positive number such that a, < a(c). Hence, # =0 and p =0.

In the analysis to follow we shall employ three linear operators: the L
orthogonal projections r, : H 1(Q) — M, and r, : W — W, respectively de-
fined by

(4.2)

(@ (p-r,p,m=0, meM,
=0

(4.4) (b) ((0 _rhp(aa ’l.U) ’ wew,
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and the linear operator T,: V — V, having the property
(4.5) (V-(v-Tyw),w)=0, wew,.

From [6] the following results are standard:

(@ lo—r, 0l < ME M oll,, 121,
we O o=l SMh§+‘|L¢||k+1, k>0,

© Nl =7y 0llo,0o < Mh* (0ghy ) P9l K20,

(d) v = Tyl < Ma ol k>

Choosing w = p—r, p and v = #a—T,u in (4.1) and adding the two resulting
14
equations, we have

(a(c)@—u), u—T,u)— (V- (@—Tyu),p-p)

(4.7) +(v.(a_u),p—rhpp)+(17—p,17—";,p17)=0~

Use the properties of r, and 7}, to show that
P

(V-(@a—Tyu),p—p)—(V-(a—u), p—rp)
=(V'(a_Thu)’ﬁ_rhpp)_(V'(a_Thu)9p__rhp)=0'

Then from (4.7),

(afc)(a—u),a—u)+@B—-p,D—p)
=(a(c)(@—-u), Hiu—u)+ /P -p, 1, p-p)

< Sela—ulP + K| Ty~ ull* + 5115~ oI + 5l 0~ oI,
and from (4.6),
48)  lla—ull+ 15— pll < Khy " {ullyy +1Plsr}s K >0.
Now we derive the L™ -error estimates. By (4.1b) and (4.4),
(4.9) (a(c)(u—u),v)+(rhpp—ﬁ,V-v)=0, vev,.
Thus, from [6, Lemma 1.2] and (4.8) we have

] B )
7y 2 = Pllg, oo < Klogh, "[la(c)(@ — u)|

(4.10) Kl .
< Kh," logh, {[[ull, + Pl }-
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Consequently, from (4.6¢)

18 = Pllg, 00 S 18 =13 Pllg, oo + 117 P = Pllg, o

(4.11) k1 1
< Kh, " logh, {lullgsy + IPllesa}, k20,

As for the L*-estimates for Z(n—u) and (—%(p —p), we differentiate (4.1)
in time to show that

(a) <V-%(u—u),w>+<§(ﬁ—p) w>=0, weWw,,
(4.12) (b) (a(c)%(a—u),'u) + <5E(c)‘—9—t—(a—u),v)
(V v,a(ﬁ—p))=0, vev,.

ap

Select w = ;9% - rh 2

(4.8) to obtain

and v = %% — T, %% in (4.12) and proceed as in deriving

(at0rgpa =, %(a— W)+ (300 5:0-0))

ou Ou Oa, Oc,_ 0
< ) Thgy W) - (%(c)é—t(u— u)s 57(@ = u))
da, Oc,_ ou Ou o, _ op 9p
_<—5E(C)E(u_u)’E_Th57>+<6t(p_p)’ h B W)

1 ||o 2 1Ha 2

(4.13)

< (@ —u)

3% |57 t3 E(ﬁ-l’)
2
+K{‘6u ou

T 8p 8p
From (4.6) and (4.8), we have

_ 2
+ || —u||” + rh 57 51

at “har

|2
BT, 5P P
(4.14) ! ou ap
<Kh ' oL >0.
- K {||u||k+l * “p||k+l * (9t k+1 H ot k+1} ’ k - 0
Similarly,
Ch < th+1 ou
?(ﬁ —'p) ”u”k+1 + “p”k+1 + 6t
(4.15) X
op 8%u o°p
+ E +|== — .
k+1 ot k+1 ot k+1
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Now we can turn to the estimate for the pressure equation. Let
n=P-p, n=p-p, o=U-u, p=u-u.

Combine (2.6), (2.10b), and (4.1) to show that

(a) (d(C)%’t‘-, w) +(V-o,w)

=, w) - (405 w)

- (@ - den %, w), wew,

(b) (a(C)a,v)—(V-v,7)
= ((a(c) = (C)#, v) + ((alc) —a(C))tyg, v), v EV,.

(4.16)

Differentiate (4.16) with respect to time to show that

(a) (d(C)%, w) + (v-‘z—‘;, w>
-(5tv)- (5205 50 v)
9

2
od oC o
a2, w) - (%(6)797 Tow)

(4.17)

+ (i[a(c) o)y, v

ot
da,, . 0C
_(%(C)—(ﬁa,v> , vev,.

Select the test functions w = 2% and v = 42 in (4.17), add the two equations,
and use the equality

d on on o’n on ad . 0Con on
7 (405 5) =2 ("(C’a—tz’ E) + (36 %80 31)
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to see that
{2 (acp. ) (et 2
- (3.30) -4 (ot ) (w02, )
- (o5 55) - () -den. 5F)
- ([d(C) ~aenZ2, g—’;) + (Flate) - a(Otm, 57)
([a(c) (NG5, 52) + (FHate) - alOlug. 57 )

gt
(4.18) o
b1
<e‘9—" i 220 e+ 28] 2
< o1 |t
2
’n 2 ||8¢ |’
o IR

od, ..0Con On od, ..0Con on
_E(%( ) St az) (a 5@ _>

otot ° ot
Oa oC oo
- (%(C)?)T"’ E) :

Note that by the triangle inequality
ocC 0¢&
- < ||=

51, .= 15

By the boundedness of || %% llo, o and the known estimates of # and ¢, it follows
from (4.18) that

_l_i 67: 67t +
2 dt %

L +K{MH+“

P .<

0,00

a_a 2
ot

(4.19) T

2
()

2 2 2k+2
-wﬂ)+ﬁ”+@“},

on

ot
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which upon integration gives

oxl, ['foo]"
ot ET

LN A P 114 ¢
SK{ or o) + [ e+ 5| + (5] _+

(4.20)
on

ot

2 2
+ gl )] ds

2[+2 2k+2
+h " +h, } .

{

Choose ¢ = 0 in (2.6a) and (2.10bi), and subtract the resulting equations, to
show that

(4.21) (a0 (55 - %) @.w) =0, wew,
and
on on k+1
(4.22) E(O)” <K H—a-t—(O)“ <Kh, .
Using (2.7), we see from (4.1) that p(0) = 0 and #(0) = 0. Thus, n(0) =0

and ¢(0) = 0. The techniques used in deriving (3.19) from (3.17) and (3.18)
can be applied to (4.20) to show that

an | A CLA
It + |55 | + 1ot + [ |57 s
2 ||8¢|® ., (||o¢ om|® . 2
(4.23) SK{/O [||é|| +“E +(”5; “)(E ol )| ds
2042 2k+2
+h "+ h, }

Take a (1 + K, )-multiple of (4.23), add it to (3.19), and use (4.8) and (4.14) to
have

2

2 ||o¢ 2 ||ox|? 2 ! 2 oo
N a1 e L T N 2 991" as
t 2 2
<K{/0 jer+ (|, _+1
24) 2
2k+2
(nvcn HZ 22 s o 4 a2 )]ds

¢ p

+ h21+2 + h2k+2} )
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To estimate (4.24), we make the induction hypothesis that

o¢
(”Vf“L“(J;Lz(n)) + "5{

27, L®(Q) L®(J;LA(Q))

(4.25)

k+1
+||0'|| <) 2 +h
Ot ll=(s, 12(@) LR

<KW R, 121, k20,

Thus, from Gronwall’s lemma we can derive that

eI +|5 +la + |5
o 7.2 .
L®(J;H(Q) ot Lo @) L*™(J; LA(Q)) ot L™ L(Q)
(426) + ||a'|| . 2,012y + ”Vié— 90
L= LHQ)) At 2. 2 0t || 2 12ap)
SKB(h[+l+hk+l) 121’ kZO,
where
ou
K3 =K3 (Kl’ Kza ”u”k+1’ ||p”k+1’ _67
k+1
7. |5, 151.)
T s | A2 a2 '
ot k+1 ot k+1 ot k+1

Now we turn to the justification of the induction hypothesis (4.25). Obvi-
ously, (4.25) holds for ¢ =0. Since

F(t) = “ IVE g o 12 +”
(427) Ot l120,1; 1) ERO6L@0 1ot || e, 1, 1)
+]27 + ol R
Ot L=, 12@) L0670

is a continuous function in ¢, there exists some ¢* > 0 such that

(a) F() <KW +H*,  o0<t<t,

(4.28) b) F() =K, +h*h, =1

We want to show that t* = T. By the well-known imbedding inequality [11]
for two space dimensions,

—1,1/2
(4.29) Illy, o0 < Ko(logh, ) *l0ll,, v e M,,
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and using (4.26) and (4.27), we can derive

wan TOS KK, (logh” ") (4K 2" + (8K, + DA hE!
+ (@K, + DRy, o<t
Suppose that the relation

(4.31) R logh)'? — 0 ash—0

holds. Then 4 can be selected to be small enough so that

* K I+1 k+1
F(t)g—zl(hc +h).

Hence, t* = T, and the proof is completed.
The desired Lz-optimal error estimates now result from the combination of
(4.26), (3.2a), (4.8), and (4.14):

)
IC = ell =y 220 + ’—(c —¢)

+ ”P - p”L‘x’(_];LZ(Q))

ot Lo L)
d
+”—(P—p)’ +||U—u|| (1. 72002
(4.32) ot L(7; L2(Q) Lrsr@n
0
+ H—(U —u)
ot L2 LAQ))
<Kt +mth, 021, k20,
where
_ oc
Ks=Xs (”C||L°°(J;W"°°(9)) E7) PO L
oc o' Il
—_— , — s oo . prk+1 )
ot L=(J; H*Y(Q)) ar 2 HY Q) LT H @)
2
o'p [
8t L™ Hk+l(Q) 8t L H @) L®(J; HN(Q))
ou 82u
) _2 .
at L= @) | 08 |[ 2 oo )

Combining (3.2b), (4.26), and (4.29) results in

I+1 k+1 —1
IC = cll ooy, gy < Kelha™ + by ) (logh Y

(4.33) I=1,

I>1, k>0, B= { /> 1

1,
1
2
where

Ko = Ko(Ks, llcllpoos, i o= (qy) -
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Applying a similar argument as in deriving (4.10), we see from (4.16b) that
_ -1
7y, o0 < Klla(C)a + (a(C) — a(c))(@ + up)|| log h,
I+1 | pk+l -1
<K(h~ + hp )loghp ,

by (4.26) and (4.32). Then the L>-estimates for the pressure follows by this
estimate and (4.11):

(4.34) 1P =pllwyy =gy < Ko +h Y loghy ', 121, k>0,

where K, = K,(Kj).

Finally, we can return to the error estimates for the original dependent vari-
ables ¢, p, and u, which are the solution of the system (1.1)-(1.3). The
reader is being reminded that the error estimates obtained before pertain to the
transformed system whose variables have “*” superscripts. Now define

(4.35) C=C"+n.c, P=P+rp, U=U +Tu,

where (C*, P*, U") is the solution of the semidiscrete system (2.5)-(2.7). By
(2.4), the triangle inequality

IC =l <NC™ =™l + lIry €0 = ol
and (4.32) can be combined with (4.6) to show that
IC—cll <K®! +HT, 121, k>0,

By repeated use of (4.6) and (4.32) in the way shown above, we obtain the
main theorem of this paper. For the case of using the Raviart-Thomas space of
index k, k > 0, we thus have

Theorem 4.1. Let (c, p, u) be the solution of the continuous problem (1.1)-
(1.3) and (C, P, U) be defined by (4.35). Suppose that the relation (4.31) on
the diameters h, and h, holds. Then the following estimates hold:

(1)

i
IC = ll o=y 12 + “E(C ~¢)

+ 1P =pllyo ;. 2
L®(J;LA(Q)) LR @)

0
+2p-p)

+||U - u”Loo(_,;Lz(Q))z

(4.36) L=(J; L¥(Q))

g

LY(J; L}Q)?)
<K (TR, i1, k>0,
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where the constant Ky depends on

el oo g oo @) » ? » elle=giman
; e w' =@ ’
ac 82(2
5 » |l== s Pl e gty
L®(J H*Y(Q)) ot LY(J; HN Q) ’
ap 9%p
I%... ... |5 '+ Wleeuiiay:
L®(J; H'(Q)) LY(J; H Q)
du 62u
_8_ , and 3 .
t L% s H* Q) ot L2(J H Q)
(ii)
I+1 k+1 -1\ 8
IC = cllpe(s. o) < Ko(h,  +h," )logh )",
(4.37) L, =1
lzl,kzo,ﬂ={1 Is1,
2 ’
Whe.’te.' K, depends on Kg and ||C||L°°(J;W’+"°°(Q))'
(iii)
I+1 k+1 -1
(4.38) ||P_p”L°°(J;L°°(Q)) < K y(h, +hp )loghp , [>1, k>0,

where K, depends on Kj.

As for the case of the BDM space of index k, k > 1, replace every occur-
rence of £k by k— 1 in (4.36)-(4.38).
5. EXTENSIONS TO SPACE IN THREE DIMENSIONS

In this section we indicate possible extensions of the analysis in the previous
sections to three dimensions. The pressure equation can be approximated using
the spaces of [2, 8]. The error analysis can be carried out in the same way,
assuming different relations between the discretization parameters.

Theorem 5.1. Suppose that the mesh parameters satisfy the relations

(5.1) W -0 ash -0,

Then the estimate (4.36) holds.

Proof. We follow the proof of Theorem 4.1, making changes when necessary.
It suffices to prove that the induction hypothesis (4.25) holds.
Using the imbedding theorem for Sobolev spaces in R® , we get

1,2
(5.2) lvllg. e < Kllvll,, ve W (Q),
and then, by the inverse inequality in the space M, ,

(5.3) Wllg o < KA Pvlly 4o vEM,.
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Hence,
(5.4) Wy o0 < Kb~ Plvll,,  veM,.

It follows from (5.4), (4.26), and (4.27) that
(5.5)  F(1) < KyKoh, P {aKhE ™ + 8Ky + DA bt + (4K, + DR

c c

By (5.1) and (5.5), the induction hypothesis (4.25) is verified. O

As a final remark, we point out that the relation (4.31) or (5.1) in the paper
is much weaker than the condition

min(h* A7, BT — 0 ash — 0 forall &,

and
< hht<y, fork=0

given in [4].
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