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NONCONFORMING FINITE ELEMENT METHODS 
FOR THE EQUATIONS OF LINEAR ELASTICITY 

RICHARD S. FALK 

ABSTRACT. In the adaptation of nonconforming finite element methods to the 
equations of elasticity with traction boundary conditions, the main difficulty in 
the analysis is to prove that an appropriate discrete version of Korn's second 
inequality is valid. Such a result is shown to hold for nonconforming piecewise 
quadratic and cubic finite elements and to be false for nonconforming piecewise 
linears. Optimal-order error estimates, uniform for Poisson ratio v E [0, 1/2), 
are then derived for the corresponding P2 and P3 methods. This contrasts with 
the use of C finite elements, where there is a deterioration in the convergence 
rate as v -- 1/2 for piecewise polynomials of degree < 3. Modifications of 
the continuous methods and the nonconforming linear method which also give 
uniform optimal-order error estimates are discussed. 

1. INTRODUCTION 

The finite element approximation of the equations of linear isotropic elas- 
ticity may be accomplished in a variety of ways. The most straightforward 
approach is to use the pure displacement formulation and conforming finite 
elements. The analysis of this method is well understood. It works well if 
the elasticity tensor is positive definite, but suffers a deterioration in perfor- 
mance in some cases as the Poisson ratio approaches 1/2 (i.e., as the material 
becomes incompressible). Specifically, as discussed in [19], for piecewise linear 
elements, the method may not converge as the Poisson ratio approaches 1/2, 
and for piecewise polynomials of degree 2 and 3, the error in the method may 
be of order one less than the optimal approximation in the finite element sub- 
space. For piecewise polynomials of degree > 4, optimal-order error estimates 
are obtained for most meshes (cf. [18]). 

A second approach is to use a mixed finite element method based on the 
Hellinger-Reissner variational principle. In this approach, both stresses and 
displacements are approximated and a stable combination of finite element 
spaces must be found to approximate these variables. While several pairs of 
stable spaces ([17 and 9]) are known for scalar second-order problems, the sym- 
metry requirement on the stress tensor does not allow the direct use of these 
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spaces for the system of linear elasticity. Several approaches to circumventing 
this difficulty have been analyzed and all of them have the important feature 
that the accuracy of the method does not deteriorate as the material becomes 
incompressible. 

One of the mixed finite element approaches is to use macro elements. In this 
technique, the basic finite element mesh is subdivided and certain interior de- 
grees of freedom are eliminated so that the resulting macro element will satisfy 
some additional constraint (in this case symmetry). In [15] a piecewise linear 
macro element is proposed and analyzed and in [3] a family of higher-order 
elements is developed. 

Another approach, developed in [2], is to modify the Hellinger-Reissner vari- 
ational principle by introducing a Lagrange multiplier to enforce the symmetry 
constraint. When this variational principle is discretized, the symmetry condi- 
tion is partially relaxed and a stable triple of triangular finite elements is devel- 
oped for the modified variational principle (which now includes an additional 
variable to approximate the multiplier). This idea has been extended in [16] to 
higher-order and rectangular elements and to elements for the three-dimensional 
equations of linear elasticity. 

In [4], the problem of symmetric stress tensors is overcome by the devel- 
opment of a new mixed variational formulation of the elasticity equations in 
which the spaces no longer have any symmetry constraint. Thus, standard pairs 
of stable finite element spaces developed for the scalar problem may be directly 
applied. The method is quite simple in the case of displacement boundary 
conditions, but must be modified for pure traction or mixed boundary condi- 
tions due to the fact that the original stress variable does not appear in the new 
formulation. 

One drawback in the use of mixed methods is the large number of variables 
involved, although this difficulty may be partially circumvented using techniques 
presented in [1]. The basic idea is to reformulate the discrete equations as a 
generalized displacement method in which the stress variable has been elimi- 
nated. In the simplest case of the approximation of Poisson's equation by the 
lowest-order Raviart-Thomas elements, it is shown that the method is equiv- 
alent to a slight modification of the approximation of Poisson's equation by 
nonconforming piecewise linear elements. Since this is the case, it is natural to 
ask whether nonconforming finite elements may be used directly in the approx- 
imation of the elasticity equations and whether the use of such methods would 
have any advantages over conforming or mixed finite element methods. For 
the case of scalar second-order equations, a detailed analysis of nonconforming 
methods is given in [17], and for the stationary Stokes problem, the use of such 
methods is analyzed in [12]. The case of nonconforming quadratics for both 
the scalar second-order problem and the stationary Stokes equations is consid- 
ered in [1 3]. Since the stationary Stokes equations are closely related to the 
displacement-pressure formulation of elasticity, the extension of such methods 
to the equations of elasticity (involving displacements and the full stress tensor) 
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would appear to be straightforward. In fact, the boundary conditions imposed 
play a crucial role, and it is only in the case of pure displacement boundary con- 
ditions, that an extension is obvious. The reason for this is that in the case of 
homogeneous displacement boundary conditions, the continuous problem may 
be transformed so that one works with a bilinear form involving the Dirich- 
let form fo gradu: grady, instead of the more natural form fo e(u): e(v) . 
The problem with this second form is that it is not at all clear whether the 
discrete analogue of Korn's second inequality, used to establish the coercivity 
of the form, holds for nonconforming finite elements. In fact, we show in ?6 
that it fails for nonconforming piecewise linear functions. The result of this 
failure is that the straightforward application of nonconforming piecewise lin- 
ear elements to the approximation of the elasticity equations with pure traction 
boundary conditions leads to a discrete problem with a large space of solutions, 
while the solution of the continuous problem is unique up to addition of the 
three-dimensional space of rigid motions. This problem is completely avoided 
in the analysis of the Stokes problem in [12], since the basic problem is given 
in terms of the Dirichlet form, and only homogeneous Dirichlet boundary con- 
ditions are considered. 

In this paper, we consider the approximation of the equations of elastic- 
ity with pure traction boundary conditions by nonconforming piecewise linear, 
quadratic, and cubic finite elements. For the piecewise quadratic and cubic 
cases, we use the straightforward extension of the nonconforming methods dis- 
cussed in [12, 13, and 17]. For piecewise linears, we propose a slightly modified 
version in which a local projection is added. We then derive optimal-order er- 
ror estimates for these methods in which the constant remains uniform as the 
material becomes incompressible. The keys to this analysis are the proof of 
appropriate discrete versions of Korn's second inequality and the equivalence 
of the displacement formulation of the elasticity equations with a Stokes-like 
formulation involving displacements and a single stress variable. 

The nonconforming schemes we consider are equivalent to trivial mixed 
methods, where the stresses are discontinuous piecewise polynomials which are 
easily eliminated from the system. Since these methods share with other mixed 
methods the property that they do not deteriorate in accuracy as the material 
becomes incompressible, they raise the question whether the large number of 
variables present in the mixed methods mentioned previously contribute in any 
way to a better approximation. For one-dimensional problems, the results of 
Babuska and Osborn [7] prove that for rough coefficients, certain mixed for- 
mulations do perform better. In the case of two-dimensional problems, there 
are presently no general theoretical results of this type. Also relevant to the 
choice of methods for the numerical approximation of the elasticity equations 
is the remark made in the last section, that using ideas developed for the Stokes 
problem, the loss of accuracy near incompressiblity for conforming methods 
using piecewise polynomials of degree < 3 is easily fixed. The number of 
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unknowns for the modified methods constructed require less for linears, the 
same for quadratic, and more for cubics than the corresponding nonconforming 
methods. As mentioned previously, for piecewise polynomials of degree greater 
than three, the standard displacement method using conforming elements suf- 
fers no loss of accuracy. Since it uses fewer unknowns than other methods, it 
thus appears preferable. 

An outline of the paper is as follows. In the next section, we include the 
notation to be used along with some preliminary results useful in the paper. In 
particular, a statement of a continuous version of Korn's second inequality is 
given along with a proof which allows generalization to nonconforming finite 
elements. Section 3 describes the approximate problems and ?4 contains the 
statement and proofs of the discrete versions of Korn's second inequality needed 
for the analysis of these methods. An error analysis of the methods is presented 
in ?5. In ?6, we examine the case of nonconforming linears, showing why 
Korn's second inequality fails and proposing a modified method to deal with 
this difficulty. This method produces a nonsymmetric approximation to the 
stress tensor a and is shown to be equivalent to a mixed formulation (similar 
to that in [2]) in which the symmetry of the stress tensor is relaxed through 
the use of a Lagrange multiplier. In ?7, modified forms of the standard finite 
element method for conforming piecewise polynomials of degree < 3, which 
alleviate the problem of deterioration of accuracy for nearly incompressible 
materials, are discussed. 

2. NOTATIONS AND PRELIMINARIES 

We will use the usual L 2-based Sobolev spaces Hs. An undertilde to a 
space denotes the 2-vector-valued analogue. The undertilde is also used to de- 
note vector-valued functions and operators, and double undertildes are used for 
matrix-valued objects. The letter C denotes a generic constant, not necessarily 
the same in each occurrence. We will use various standard differential operators 
defined as follows: 

gradp = plax curlp = ( ay 

di _&av1 aV2 av1 &v2 divv = <9 + ,) rotv=- , +O 

grady= (v?v/lx a9i/0) curlv= (vvJly -av2/&x) ' 

diVT = l1X + a12/1a ) e (v) = -[gradv + (gradv)']. W a aefine laxo + na22/&y 2 

We also define two constant tensors 
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and for any tensor r 

tr(T) = T:, as(T) = : X, 

where 
2 2 

Ca: Tr Z a T,1 :T=E E aij fi 
i=1 j=1 

An easy calculation shows that 

(2.1) e(v) = grad - - rotvX. 

The traction boundary value problem for the equations of plane strain linear 
isotropic elasticity may be written in the form 

(2.2) =1u[e(u)+ v divu(l inQ, (2.2) ~ ~ ~~ L~'~~1- 2v ~ 

(2.3) -diva =f in Q, 

(2.4) an = g on &Q, 

where a denotes the stresses, u the displacements, f the body forces, g the 

boundary tractions, E is Young's modulus, v the Poisson ratio, and we have 
set u=E/(l+v). 

In order for a solution to exist, the data f and g must satisfy the compati- 
bility condition 

jf vdx+ g.vds=O forall v ERM, 

where RM, the space of rigid motions, is defined by 

RM= {v: v = (a+by, c-bx), a, b, cE ER}. 

When this compatibility condition is satisfied, the solution (a, u) will be unique 
2 in L x V, where 

V= {V E H(Q): vdx = O. rotvdx=O}. 
r1. 1 

1Q.Q 

A weak mixed formulation of the elasticity equations is 

Problem E. Find a E H and u E V such that 

JAu:Tdx-f (u):Tdx=O forallzeH , 

a: e(v)dx= f vdx+ g vds forallVE , 
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where 
An a1 - vtr(a)6] 

and 
H =T{ E L 2(Q): T12 =T21} 

For 0 < v < 1/2, a may be easily eliminated from the elasticity system 
(2.2)-(2.4). The resulting pure displacement problem has the following well- 
known weak formulation: 

Problem P. Find u E V such that 

B(u,v)= ffvdx+j g.vds forall v E V, 

where 

B(u, v) =,u (fe(u): e(v) dx + 1 divudivv dx). 
r0 r1. ;Zt, ^. - , 1 - 2v Q 

Using the identity (2.1), we may also write 

B(u, v) = u grad u: gradv dx - - Jrot u rot v dx ~~~~~^ Q v 2 ^a 11. 

+ i divudivvdx). 

If we define 
P -tra - divu, 

l -2v 
then 

(2.5) a =ue(u) - vp, 

and the equations of elasticity may also be written in the form: 

Problem S. Find u E V, p E L' (Q) such that 

ai e(u): e(v)dx-v pdivvdx 
(2.6)6 

=f vdx+ jg vds for all v E V, 
J1. 10Q rJAQ.Or-. 

(2.7) fdivuqdx = - 1(1 - 2v)J pqdx for all q L2(). 

This formulation is valid even in the incompressible limit v = 1/2 (the sta- 
tionary Stokes equations). 

The proof of existence and uniqueness of the weak solution to Problem E, 
P, or S depends on the use of Korn's second inequality, which insures the 
coerciveness of the bilinear form fQ e(u) : e(v) dx for u E V. One version of 
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this result may be stated as follows: 

Theorem 2.1 (Korn's second inequality). For all u E V, there exists a constant 
K independent of u such that 

11 8 (u) H10 > K11 grad ulo. 

Unlike the proof of Korn's first inequality, which establishes the above result 
for u E Ho (.0), the proof of Theorem 2.1 is not elementary, and many proofs 

have been given in the literature. Since a discrete version of this inequality 
will be the essential ingredient in the analysis of the nonconforming finite el- 
ement approximations to the elasticity equations given in the next section, we 
now present a proof of Theorem 2.1 which may be generalized to the case of 
nonconforming finite elements. 

The key fact used in the proof is the following lemma (cf. [14] for smoothly 
bounded domains and [6] in the case of a polygon). 

Lemma 2.2. Given p E L2(Q), with fA p = 0, there exists v E Ho (Q) such 

that 
divv = p in Q 11v111? l CIIpII 0, 

with C independent of v and p. 

Proof of Theorem 2.1. Using (2.1), we have for all z E L 

f8(U): Tdx - |(grad u - 2 rot ux) Tdx. 

Using Lemma 2.2, we may choose T = grad u - curl z, where z E H 

satisfies 
divz = rotu inQ, JQzJJ1 < CJ1rotullo. 

Then 
I11Hlo < 11 grad ujo + 1H curl zH10 < C11 grad uHO. 

Now using the L orthogonality of grad u and curl z, we obtain 

e(U): zdx = (grad u: grad u - rot u[rot u - divz]) dx 

= 11grad ul0. 

Hence, 
fj8(u): Tdx 

8e(u)H0 > > Kll gradullo. D 

3. APPROXIMATION SCHEME 

In this section we consider nonconforming finite element methods based on 
the variational formulation of Problem P. In the case of cubics, we use the 
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straightforward generalization of the method analyzed in [ 17] for scalar second- 
order problems, and for quadratics, we use the ideas in [13]. Unfortunately, 
this straightforward generalization does not work for nonconforming piecewise 
linear elements. The reason for this, to be made more precise later, is that a 
needed discrete Korn's inequality fails for this space, and thus the form B(u, v) 
is not coercive. Some modifications of the basic method which get around this 
problem are discussed in ?6. 

We assume henceforth that the domain Q is a polygon, which is triangu- 
lated by a triangulation Sh. As usual, the subscript h refers to the diameter 
of the largest triangle in - , and the constants in our error estimates will be 
independent of h, assuming that a minimum angle condition is satisfied as 
h --, 0. 

Denoting by Ai the barycentric coordinates of a triangle T and by &Ak(T) 
the set of functions on T which are the restrictions of polynomials of degree 
no greater than k, we define the following finite element spaces with respect to 
the triangulation 'T: 

Mk1 - {?1 EL2(Q): qIT Ek(T) for all T E h} 
k k 

0 k k 1 
MO =M, nnH0(Q), 

k = M k 
M = {q e M_: is continuous at the k Gauss points 

on each edge of S;}, 

B k= { E E spanjx , 
k < i < k-3}}, 

B 2 = {a E M2 q equals zero at the two Gauss points 

on each edge of T}. 

Note that Mk are the usual nonconforming approximations of H1(Q). For 
1 Mk 1HI0 e eiega 2 
E M~k + H1 (Q), we define gradh , to be the L (Q) function whose restriction 

to each triangle T E 3 is given by gradyulT. Analogous definitions hold for 
rot h, gradh , divh, curlh , and _ih .Note that 

(3.1) h(U) =grad - 1rot U%. 

Finally, define 

VJ = {v E M*: jvdx = f rot vdx = 0 

The nonconforming finite element approximation schemes for Problem P are 
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then given for k = 2 and k = 3 as follows: 

Problem P h . Find uh E Vh such that 

Bh(uh, v)= f vdx+ ] g v ds for all v E Vh' 

where 

Bh(U v) =( h(U):e h(v) dx+ vjdivhudivhv dx) 

= ,u (f gradc u: gradh v dx - 2 f roth u roth v dx 

+ I div u div v dx). 1 - 2v h h ' lj 

Note that since divVJh C Mk 1 , it it easy to see that Problem P h is equiva- 
lent to the following discretization of Problem S: 

Problem S . Find uh e J7, E h E Mkl such that 

(3.2) ~ 8| h(Uh): eh() dx-V f hdivh V dx 

= f vdx+ f g vds forallVE V e 

(3.3) jdivhuhqdx = - 1 
(1-2v)jPhqdx forall q E M<1 

If we define 
Hk {EH :T E ?k (T) } S, h ~ s ijITkkJ 

then, since e (V) C H' ' it is also easy to see that Problem P h is equivalent 
to the following discretization of Problem E: 

Problem Eh . Find 0h E H h and uh E Vh such that 

n A h : dx eh(uh): zdx = 0 for all T E H k 

Ch h: eh(v) dx = f vdx+ jg v ds for all v E Vi . 

Note that the above approximations also make sense in the incompressible limit 
v= 1/2. 

Once an approximation uh to u has been computed, an approximation ah 
to 

=y [E(u)+ 1 div u6y]e=(u)-vp6 

may be computed from the formula 

(3.4) 9ih = It [eh(Uh) + _2vdivh hl = h(Uh) vPh 
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4. DISCRETE KORN'S INEQUALITY 

The essential difference between the analysis of nonconforming finite element 
methods for the system of elasticity and the analysis of the scalar second-order 
problem studied in [17] is the need in the elasticity equations for a version of 
Korn's second inequality to insure the coerciveness of the bilinear form. Since 
the nonconforming spaces are not in H1 (Q), this fact does not follow from the 
continuous case. In this section, we address this problem by giving a proof of 
a discrete version of Korn's second inequality. 

Theorem 4.1. For all V E V , k = 2, 3, there exists a constant K independent 
of v such that 

(4.1) 11Ih(W)IIO > KI1gradhvII0. 

To prove Theorem 4.1, we use a discrete version of Lemma 2.2., which states 
a result about two well-known stable pairs of conforming finite elements for 
the Stokes problem, i.e., (Wh, Rh) = (Mo U B3, M ) and (Wh, Rh) = 

(Mo U B4, M2 l) . We include a proof for future reference. 

Lemma 4.2. Given p E Rhk (k = 2 or 3) with fQ p dx = 0, there exists Vh E 

W k such that 

f divvhq=dx pqdx for all q E R h, IIVhIl < CIIpII0, 

with C independent of h and p. 
Proof. For v E [H (T)]2 , define an interpolant 171v E [.$i2(T)]2 by the follow- 
ing: 

HIlvi(a) = Ihvi(a) for each vertex a of T, 

j(I1 vi - v1) ds = 0 for each edge e of T, 

where IhVi denotes the Clement interpolant of vi (cf. [14, pp. 110]). Then 
3 

div(v - 
=v) 

dx (Hv-v) * nds = 0, 
j=1i 

and it is well known that 

11111v111 < Clllll1 

Using the ideas in [12] and [10], we next define for w E [H1(T)]2, with 

fT div w dx = 0, an interpolant 112w with H2wi in the space of bubble func- 
tions of degree k + 1 (i.e., E A A2A3yk_2(T)), and defined by the following: 

div(TIw -w)qdx = 0 for all q E .Dk_1(T) 
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and for k = 3 by the additional condition 

IT[X -2W) x2(H2W)1]dx = f[xJ(w)2-x2(w)] dx. 

Note that since 1712w vanishes on the boundary of T, 

J 2w *Vq dx = divwq dx for all q E 9k 1(T). 

It can then be shown that H2w is well defined and satisfies 11I12wll < C1wH11. 
Choosing vh = HV + H2(v - H v), where v is given by Lemma 2.2, we get 

that 

Jdiv vq dx div vqdx = pqdx forallqE9k_1(T), 

|vh1||l < C11vH11 < CIIPHo0, 
which establishes the lemma. 0l 

Proof of Theorem 4.1. Using (3.1), we have for all z EL2 , 

J h(U) : Tdx = J gradh u -roth Ux) Tdx. 

Using Lemma 4.2, we may choose T = grad u - curl z, where z E W5k satisfies 

(4.2) f div zqdx = ]rot uqdx for all qE Rh , 

lzI 1 < C11roth u0. 

Then 
JIT11 z <I Igradh ullo + curl z ?10 < C11grad h u%.0 

Now observe that 
z 

J grad, u curl z dx = 'ds=U, fgradh 
~~ETJaT 

since on boundary edges z = 0 and on interior edges, contributions from 

adjoining triangles cancel. The cancellation occurs since the integrand along the 
edges involves only tangential derivatives of z which are polynomials of degree 

< k - 1 (occurring with opposite signs) and moments of u of order <k - 1 

on each edge which are continuous across edges. Using this L2 orthogonality 
of gradh u and curl z and (4.2), we obtain 

JnZ~h eW: Tdx = J ( dh: gadh u-rothu[rothu- divz]) dx 

= 11gradh uH1. 
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Hence, 
fn 9h (,) Tdx 
f~~~~ ~~~~h(Q ~~~~~~~~~ dx ~~~~~~~~ KlIgrad~ ujj0. 

Ilgh(U)110 Il>Ih 

5. ERROR ESTIMATES 

In this section we give estimates for the errors 

IIU - UhI1kh gradh (U - Uh)II0 and - hIO 

Note that the estimates obtained do not deteriorate as the material becomes 
incompressible (i.e., v -+ 1/2). The techniques of the proof use the ideas de- 
veloped in [ 12, 17, and 13], and the saddle point analysis developed by Babuska 
and Brezzi. The discrete Korn's inequalities derived in the previous section are 
used to establish the coercivity of the bilinear form. Although the general ap- 
proach to deriving error estimates for mixed finite element approximations is 
now fairly standard, the analysis of nonconforming finite elements is not as 
widely known. Hence, we provide a derivation of the error estimates. For more 
background on this subject, the interested reader is advised to consult the gen- 
eral treatment of error estimates for mixed finite element approximations given 
in the recent book of Brezzi and Fortin [10]. 

Theorem 5.1. Let (u, p) and (Uh I Ph) be the solutions to Problems S and S , 

respectively (k = 2 or 3). Then there exists a constant C, independent of u 
and h, and uniform for O < v < 1/2, such that 

IlU- hlllh + VIjP PhII0 

< Cinf IIU- VhII1,h + lIp - qhIIO 

ET fLT an .Wh ds -Lf g *Whds"8 
+ sup IIWhI l1,h 

where the inf is taken over all Vh E Vh and qh E M , and the sup is taken 

over all wh E h 

Proof. The key ingredient in the proof (e.g., see [8]) is the stability condition 

f* divh v qh dx 
(5.1) inf Sup >Y. 

()q Mk7 I 0Vh V -EVh lllhlqh | O 

For the case k = 3, such a condition has been established (for most commonly 
used meshes) in [11] in the stronger case when vh E M3 vanishes at the Gauss 
points on aQ and p is replaced by p - p, where T denotes the mean value of 
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p on U. Using that result, we can find Zh E M3 and vanishing at the Gauss 
points on OQ satisfying 

divhzh PhP 1Zh1 1,h < C11P -Pl0 

Setting vh = Zh - + 2 (x - X, y - j7), it is easy to check that vh E 37 and 
satisfies 

divh Vh = P, IVhH1 ,h < ClIP11, 

from which (5.1) follows. In the case k = 2, (5.1) is established by first noting 
the result of [13] that the space of nonconforming piecewise quadratics consists 
of conforming piecewise quadratics plus the functions c , where BT is the 
piecewise quadratic vanishing at the two Gauss points on each of the edges of 
the triangle T and is zero outside of T. The proof of (5.1) is now almost 
identical to that given in Lemma 4.2 for the choice of conforming quadratics 
plus cubic bubble functions for velocities and discontinuous piecewise linear el- 
ements for pressure. We need only replace the cubic bubble function 212223 by 
the function B 2. To see that the nonconforming version of the I'2 interpolant 
is well defined, note that fT 4 dx # 0 and 

fdivh (CTB2)qdx = f TBVq dx, 

for all q E M1 1, which follows from the facts that the two-point Gauss in- 
tegration formula is exact for polynomials of degree < 3 on each edge and 
B2 vanishes at these points. The modification given above in the cubic case 
to produce orthogonality to rigid motions can also be applied in the quadratic 
case. We remark that the result obtained in [13] does not directly establish (5. 1) 
since the interpolant constructed uses point values, although it is sufficient for 
the optimal-order error estimates given in Theorem 5.3 below. 

To simplify the exposition of the remainder of the proof, we define 

ah(U, V) = ' |f h (,U,) 
: h (v) dx. 

Multiplying (2.3) by vh E V , integrating by parts, and using (2.5) and (2.4), 
we obtain 

ah(U, Vh)-V Pdivh Vh dx= fvh dx + gvh ds + Gh(Vh) 

where 

Gh (V E | an * vh ds- g.v ds 

is the error due to the use of nonconforming elements. Hence, for any u E V 
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and any pI e M l, we have 

ah(UI I Vh)-f | PI divh h dx 

= ah(uI - UI Vh)- | (p--p) divh Vh dx 

+ fVh dx + fgVh ds + Gh(Vh). 

Subtracting (3.2), we then obtain 

ah(UI - Uh Vh) - | (PI -Ph)divh Vh dx 
(5.2) Q1. 

ah(uI u, vh) v (PI -P p)divh hdx+Gh(Vh). 

Using (2.7) and (3.3), we easily obtain for all q E Mkl I that 

f divh (UI - uh )q dx 

(5.3) = -,u (1 - 2v) (PI - Ph)q dx + divh (uI - u)q dx 

+ ,u (1 - 2v) (pI - p)q dx. 

Choosing vh = uI - Uh in (5.2) and q = P- Ph in (5.3), and combining these 
results, we obtain 

ah(UI-Uh, UI-Uh) + V-I (1-2v) (PI-Ph)2 dx 

=ah(UI - U, UI - Uh)-V(pI-p)diVh(UI -Uh)dX 

+ Gh(uI-Uh) + |(PI Ph) divh (UI-u)dx 

+V U (1 - 2v) (PI - P) (PI - Ph) dx. 

It then follows from the discrete Korn's inequality and the Schwarz inequality 
that 

/IKH|uI-Uh I, h + V 2v) (pI-Ph) dx 

<Gh (UI- Uh) + PH U - Uh 11 1 h 11UI U 1115h + 2vI1pI PIIOIIUI UhIII 5h 

+ 2vIIp, Ph llo 11 UI - 11 1, h + VP/ ( -2v) Ip,- Ph llo IIP-.P 11 

Next, applying the stability condition (5.1), and using (5.2) and the Schwarz 
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inequality, we get 

VII-1PI?V Q fndivh Vh(PI-Ph) dx 
V IIPI -Ph llo- Y O# V spV h IIhII1,h 

< y 0|UIU | hlu + Alu-11 + 2v lip, P10 

Gh (wh) 

E, h, 
h 

Combining these results and using the arithmetic-geometric mean inequality, 
we obtain 

I||i - UhI|lh + ViIIPI Phil0 

spGh(Wh)~ < C 0|U - U111,h + IIP, _PII0 W SUP ll1 I h 
WhEl h 

Theorem (5.1) now follows directly from the triangle inequality. El 

Corollary 5.2. We have 

Il hllo, h < C inf (11,- Vh lll, h + IIP- qh llo 

ET faT Tfl Whd g ds - 
+S~~~p- 

ll1WhI 1,1h) 

Proof. This follows immediately from (2.5) and (3.4). 0 

Using again the results in [12] and [ 13], we then obtain the following optimal- 
order error estimates. 

Theorem 5.3. Let u and u be the solutions to Problems P and pk. respectively 

(k = 2 or 3) and a and ah defined by (2.2) and (3.4). If u E Hk+l (Q) and 

U e H(k(Q), then 

IIU - UhIl ,h + Ila - ahI10 < Chk(IIuIIk+l + IllaIk), 

where C is independent of u and h, and uniform for 0 < v < 1/2. 

6. NONCONFORMING PIECEWISE LINEAR ELEMENTS 

As mentioned previously, inequality (4.1) does not hold for the space V1 

of nonconforming piecewise linear elements. To establish this fact, we use 
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a dimension-counting argument. First observe that the subspace of J7h with 
ch(U) = 0 has dimension > 2e - 3T - 3, where e and T denote the number 
of edges and triangles, respectively, in the triangulation 3h. This follows from 
the facts that the dimension of Jh is 2e- 3, and since e is constant 
on every triangle, the constraint 8h(U) = 0 imposes at most 3T independent 
constraints. But 2e - 3T - 3 = eB - 3, where eB denotes the number of edges 
lying on 0 0 . As soon as h consists of more than one triangle, this dimension 
will be positive. On the other hand, the dimension of the subspace of Vh with 

grad, u = 0 is clearly zero. Hence, there must exist functions in Vh for which 
(4.1) fails. 

We now consider a possible remedy for this problem, in which we make 
a slight modification of the basic piecewise linear nonconforming method by 
introducing a local projection in one of the terms. To describe this projection, 
we assume that the domain Q has been first triangulated by a triangulation $, . 
The triangulation T is then created by adding three interior edges per triangle 
formed by connecting the midpoints of the sides of each triangle T' E Sh, . We 
then define with respect to the coarse triangulation Th, the finite element space 

Gh/ = {f EL 2(Q)): /I T' E o(TT) for all T' E J , } 

and let P0 denote the L2 projection into Gh/ . 
In order to establish a discrete Korn's inequality, we next replace the operator 

9h satisfying (3.1) by an operator c defined by 

(6.1) ch(u) = grads u- .Poroth uX. 

The approximation scheme is then given by: 

Problem P 1 . Find u E I such that 

B (u v)= f vdx+f g.vds forallvEVh 

where 

B*(u, ) =u (f ch(u): c(V)dx? 1 2Vf divhudiv vdx) 

= ,i (f grads u: grads v dx - - f Po roth u roth v dx 

+ 1-2v f divh u divh v dx 
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Note that since PO div Vh C Gh/, it is easy to see that Problem P 1 is equivalent 
to: 

Problem S h . Find uh E Vh, Ph E Gh/ such that 

f I *(uh) h) (v) dx- v phdiv v dx 

= f vdx+f g-vds forallv E V, 

fdivhuhq dx=-/1 (1 - 2v) Phqdx forallqe Gh. 

Note that the above approximation also makes sense in the incompressible limit 
v = 1/2. The approximate stress ch is then defined by 

(6.2) a1h = k L[grad u- -Poroth uhX + 1 2 divh UhA1 

- ,i [gradh ,h 
- -POroth hX1] VPhJ. 

The result of this change will be that the analysis will now depend on a 
modified form of the discrete Korn's inequality given in Lemma 4.1 in which 
the operator eh is replaced by the operator e* . Specifically, we shall prove: 

Theorem 6.1. For all V E J7 , there exists a constant K independent of v such 

that 

(6.3) Jjhe(v)jj0 > K11gradh U%. 

To do so, we again need a discrete version of Lemma 2.2, giving a pressure 
space which, together with continuous piecewise linear finite elements, forms 
a stable pair of spaces for approximating the Stokes problem. A proof of the 
following lemma may be found in [14]. 

Lemma 6.2. Given p E Gh/ with fip = 0, there exists v E M' such that 

fdiv vq dx = pq dx for all q E Gh/, H1 1 < CHpH0, 

with C independent of v and p. 

We now prove Theorem 6.1, using an argument similar to the one used in 
the proof of Theorem 4.1. 

Proof of Theorem 6.1. Using (6.1), we have for all z E L2 

f c (u): rdx = (grad u - Poroth ) :U z dx. 
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Using Lemma 6.2, we may choose z = gradhu - curl z, where z E M4 satisfies 

(6.4) fdivzqdx = froth uqdx for all q e GhI, lz1ll < CI1roth ulO. 

Then 

IITIJO < 1idh g IIa + IIcurl zIIO < ClIgradh I 

Now observe that 

] grad u: curl z dx = E ds 0A 
TV~~~ since on boundary edges z =0 and on interior edges, contributions from 

adjoining triangles cancel. The cancellation occurs since the integrand along 
the edges involves only tangential derivatives of z which are polynomials of 
degree 0 (occurring with opposite signs) and average values of u on each edge 
which are continuous across edges. (This argument is given in more detail in 
[5].) Using the L2 orthogonality of grads u and curl z and (6.4), we obtain 

fe*(u): zdx 

=Q (grad u: gradh u -Po roth u[rothu - divz]) dx = Ilgrd u1O. 

Hence, 

11<11Tllo 

The analogue of Theorem 5.1 holds for this modified approximation scheme, 
and we again get the following optimal-order error estimate. 

Theorem 6.3. Let u and uh be the solutions to Problems P and Ph. respectively, 

and a and ah defined by (2.2) and (6.2). If U E H2( ?) and a E H' (Q), then 

Ilu - uhI1h + II5- 7hIIO ? Ch(11U112 + 1Ia1II), 

where C is independent of u and h, and uniform for 0 < v < 1/2. 

It is interesting to note that ch, defined by (6.1), is not a symmetric matrix 
because of the presence of the projection PO. In fact, it is possible to give an 
interpretation of this scheme as a mixed finite element method involving both 
stresses and displacements, which relaxes the symmetry of the stress tensor 
through the use of a Lagrange multiplier. Thus, it is similar in spirit to the 
method proposed in [2]. Using a slight modification of the ideas in [2], we 
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consider the mixed formulation: 

Problem M. Find a E L u E V, y E L2(Q) such that 

/Au: rdx - grad u : rdx + y yas(z)dx = O for all z E L2(o), 

a :gradv dx= f vdx+f g vds forallv E V, 

fas(u)fl dx =O for all fl E L2(Q). 

2 -~2 It is easy to see that if E L , u E V, y E L solve Problem M, then u E V 

solves Problem P and a E L2 satisfies (2.2). Conversely, if u E V solves 

Problem P and a E L2 satisfies (2.2), then (2.1) implies that a E L 2, u E 

2 V, y = rot u/2 E L solve Problem M. 

To give a reformulation of the approximate problem P h we first define an 
approximate space of nonsymmetric stresses by 

Hh = {' :ijT E o(T) for all T E h, i, j = 1, 2}. 

The approximate mixed formulation is then 

Problem Mh . Find ah E Hh Uh hh' such that 

( Auh: T dx - gradh uh : rdx + Yhas() dx=O 

for all z E H C 

(6.6) |a :grad vdx f vdx+| g vds forallvEV1 

(6.7) fas(uh)/= O for all fl E Gh. 

We now show the equivalence of Problems P1 and M'. 

Lemma 6.4. Problem M' has a unique solution a E Ho, Uh E Vh, EGh G 

where uh is the unique solution of Problem Ph a is given by (6.2), and Yh = 

1POroth uh 

Proof. To establish existence and uniqueness, we show that zero is the only 
solution to Problem M' with zero data. First set z = Uh, V = Uh'fl=Yh* It 
follows immediately that 

o = fAuh: 9ihdx = ,u(Il 112 - vo j tr( h1)H) 
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and hence that 

91h = 

Inserting this result in (6.6), we get 

2E tr(h) div dx = 0. 

We now let z = gradr, where r satisfies A r = tr(ih) in Q, r =0 on OQ. 

Define zh E M satisfying for each edge e of Th the condition fe(Z - Zh) ds = 

0, and set v = Zh - Zh, where we again use the notation b to denote the 

mean value of b on Q . Then it is easy to check that v E J7 and satisfies 

divh v = tr(crh). With this choice of v, it follows immediately that tr(uh) = 0, 

and hence Uh = . Inserting this result and choosing z = e (u ),we get that 

1H6(Uh)o10 = 0, and hence from (6.3) that Uh = 0. Finally, choosing z = YhX 

implies that Yh =0 ?It is now easy to check that Uh, the solution of Problem 

P1 , a and 2'h~2Porothh solve Problem Ml . 01 Ph S ah given by (6.2), and hh = th Uh h 

7. MODIFIED SCHEMES FOR CONFORMING ELEMENTS 

It should be noted that if a slightly different but analogous modification is 
made to the usual continuous piecewise linear approximation of the displace- 
ment formulation of elasticity, then one also obtains optimal-order error esti- 
mates, uniform for v E [0, 1/2). The modified approximation scheme is: 

Problem Ch . Find Uh h such that for all v E Wh, 

8 (fQ e (Uh : e(V) dx + 1 fPo div Uh Po div v dx) 

f vdx+f g vds, 

where 

WV = {V E MI: fvdx = f rotvdx = O 

The loss of accuracy occurring for continuous piecewise quadratic and cubic 
approximations to the elasticity equations near the incompressible limit can also 
be eliminated by adding the bubble functions Bk+l to the spaces M k (as done 
for the Stokes problem) and then replacing the div u term by Pk- 1 div u, where 
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Pk- Idenotes the L2 projection into Mk_1 . Note that without this projection, 
the divergence of the bubble functions will not be 'in this space. We are thus 
led for k = 2 and 3 to the following approximation schemes: 

Problem Ch. Find u E WJ such that for all v E W h .1h ~ h . r.h 

(Uf (uh): j(v)dx+ vj Pk-,divUhPk- Idivvdx) 

= ffd v dx + g v ds, 

where 

W= {v E M + : vdx = f rotvdx =O}. 

The approximate stress ch in each case is then defined by 

V 
(7.1) ah = ' [e2(Ah) + 1-_ 2PkUldivUhCJJ 

To get optimal-order error estimates for these schemes, we first introduce 
an approximate pressure Ph = -U i Pk-, div and write the schemes in a 

form analogous to Problem Shk where q E G for k = 0 and E M7k1 for 
k = 2, 3, and we use the spaces Wh for the velocities. Following the proof of 
Theorem 5.1 (without the extra term to account for the use of nonconforming 
elements) and using a slightly modified form of Lemmas 4.2 and 6.2 (since now 
v E Wh instead of Mo or W ) to replace (5.1), we obtain a result analogous 
to Theorem 5.1. Optimal-order error estimates for u - uh and a - ah follow 

directly from this result, (7.1), and standard approximation theory. 
Finally, we compare the number of unknowns used by these methods with 

the nonconforming methods of the same order. Let v, e, and T denote the 
number of vertices, edges, and triangles in the triangulation gh, respectively. In 
the case of linears, the conforming method has 2v - 3 unknowns as compared to 
2e- 3 unknowns for the nonconforming method. Since by Euler's formula, e - 
v = T - 1 , the conforming method is simpler. The projection into Gh/ involves 
the same amount of work for both methods. In the case of quadratics, it is a 
choice of adding to M2 the nonconforming space B 2 or adding the conforming 

space B3 and then using the projection P1 . The number of unknowns is the 
same. In the case of cubic elements, the conforming method has 2(v +2e+3T) - 

3 unknowns, while the nonconforming method has 2(3e + T) - 3 unknowns. 
Using Euler's formula, we find that the nonconforming method uses 2(T + 1) 
fewer unknowns. Since no projection is required, the cubic nonconforming 
method seems simpler. 
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