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ON THE CONTINUITY IN BV(Q) OF THE L -PROJECTION 
INTO FINITE ELEMENT SPACES 

BERNARDO COCKBURN 

ABSTRACT. We show how to obtain continuity in the BV(Q)-seminorm of the 
L 2-projection of u E BV(Q) into a large class of finite element spaces. 

1. INTRODUCTION 

In this paper we prove that the L -projection (into a large class of finite 
element function spaces, Vh ) of u E V = BV(Q) is continuous in the BV- 
seminorm. The set Q will be taken to be a bounded domain of R' with 
Lipschitz-continuous boundary. The space BV(Q) is defined to be the set of 
functions of bounded variation in Q [13]. In this paper we shall take n = 

1, 2, 3. For some special spaces Vh we can take n E N. 
In the case in which Vh is the space of functions which are constant when re- 

stricted to each of the elements of the triangulation $9 (obtained by a Cartesian 

product of one-dimensional partitions), the continuity of the L -projection in 
BV (Rn) is a well-known result. It has been used by several authors [14, 6, 16, 
4] in the error analysis of schemes for numerically solving conservation laws. 
For more general discontinuous finite element spaces Vh no results seem to be 
available. The need for this kind of results was prompted by the recent error 
analysis of monotone schemes defined in general triangulations [5]. In [5] the 
case in which the finite element space Vh is a space of piecewise constant func- 
tions is considered. In this paper a general approach which works for a large 
class of finite element spaces is presented. 

In the two-dimensional case, Crouzeix and Thom&e [7] have obtained the 
2 

continuity of the L -projection into Vh for V = W1 P(Q) for 1 < p < oc, 
where Vh c F?(Q) is a standard finite element space of the Lagrangian type. 
By taking p = 1 and using a density argument [ 13], their results can be trivially 

proved to hold for V = BV(Q), the space of functions of BV(Q) whose trace is 
identically zero [ 13]. This is the single result of the sort available for continuous 
finite element spaces. 
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The technique used in [7], see also [8, 9, and 10], is based on a careful study 
of the decay of the L 2-projection outside the support of the projected function. 
Our technique is rather different in nature. It is based on the following three 
basic ingredients: 

(1) definition of the BV-seminorm by duality, 
(2) the use of the Ilh-projection introduced in the framework of mixed fi- 

nite element methods for second-order elliptic problems (see [1, 2], and the 
bibliography therein), and 

(3) the classical approximation results in the theory of finite element methods 
for second-order elliptic problems [3]. 

In ?2 we state and prove our basic continuity lemmas. They give sufficient 
conditions which ensure the continuity of the L -projection in the BV(Q)- 
seminorm. In ?3 we consider the case of triangulations made of simplexes. 
In ?4 we consider the case of a fairly large class of triangulations. Our main 
results, Theorems 4.1 and 4.2, are obtained as a slight generalization of the 
corresponding results of ?3. We end with some concluding remarks in ?5. 

2. THE BASIC APPROXIMATION RESULTS 

Let Q be a bounded domain of R' which can be expressed as the finite union 
of n-simplexes. (This implies that the boundary of Q is Lipschitz continuous.) 
The total variation of a function u E L1 (Q) is defined to be [13, Definition 
1.1], 

(2.1) IDu= sup (u, divw) 

Thus, the space BV(Q) is the space of functions u E LI (Q) with bounded vari- 
ation in Q, i.e., such that fu IDul < oc. When Q has a Lipschitz-continuous 
boundary, the trace operator, y, is well defined over BV(Q) [13, Theorem 
2.10]. We shall need the following density result. 

Lemma 2.1 (Density of W?'(Q) in BV(Q)). Let Q be a bounded domain of iRn 

with a Lipschitz-continuous boundary. Then, for every u E BV(Q) there exists 
a sequence {u }jEN in W' (Q) such that 

(1) y(uj) = y(u) Vj E N, 
(2) 11 u - uiIILI(Q) )- 0 as j )D 

(3) j1gradui IIL'(Q) -f f IDuI as j - oo. 

These results follow from [13, Remark 2.12]. 
We now make our main assumption: there exists a finite-dimensional space 
c H (div; Q), and a projection Hh: W (Q) -t %h such that 

(2.2a) (uh, div w) =(uh, div fhw) V uh E Jh, 

(2.2b) tracee(Hhw) n,,=0 VwEo(Q;R R) 
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where n., is the outward unit normal to 00, and 

(2.3) div c Vh. 

Spaces 'Yh and operators rh satisfying these properties have been introduced 
in the framework of the analysis of mixed methods for second-order elliptic 
equations, see [1, 2] and the bibliography therein. Our first result is the follow- 
ing. 

Lemma 2.2 (First Basic Continuity Lemma). Suppose there is an operator nh 

satisfying the conditions (2.2) and (2.3). Then, for u E BV(Q), 

JIDPEVh uI < Ci JDul, 

where PI: L1 (Q) -* Vh is the L2-projection into VhJ 

Condition (2.3) strongly restricts the class of spaces Vh. Indeed, in [1] and 
[2] the space Vh is always a space of discontinuous functions. To consider 
spaces Jh included in W?(Q) we proceed as follows. Let us denote by Th a 
triangulation of Q of which $ is a refinement. We ask that the following 
inverse estimate be satisfied: 

(2.4) || div rhWIIL (T) ?C2hi11hWIIL(T) V w E F1(T) V T E T? 

and that the finite element space Vh satisfy the following approximation prop- 
erty: 

(2.5) || u - iVhU 1IL'(T) < C3hT 11 gradu IIL'(T) u E F (T) V T E Th 

where hT = max{diam K: T D K E $} . We have the following result. 

Lemma 2.3 (Second Basic Continuity Lemma). Suppose that there is an operator 
Ih and a finite element space Vh satisfying (2.2), (2.4), and (2.5). Then, for 
u E BV(Q), 

J|D Vh U I < (C1 + C2C3) D u1. 

Notice that the only requirement on the space Vh is that it satisfies the ap- 
proximation property (2.5). A large class of finite element spaces satisfy such 
a property [3, p. 1 1 1 and ?3.1]. It is important to point out that the continuity 
of the L 2-projection PI from L 1(T) to L1 (T) is implicitly required for (2.5) 
to hold. In [10] such a property has been obtained under the assumption of 
quasi-uniformity of the triangulation {K E h: K c T}. Using this assump- 
tion, the global inverse estimate (2.4) follows easily from the usual local inverse 
estimates (obtained by a classical scaling argument [3, Theorem 3.1.2]). 

Proof of Lemmas 2.2 and 2.3. First, let us prove Lemma 2.3. Pick an element of 
BV(Q), say u. By Lemma 2.1 there is a sequence { uJ}jiEN in F'(Q) converg- 

ing to u strongly in L1 (Q). Since Vh is a finite-dimensional space, the sequence 
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{o Uj1 }jEN converges to P u strongly in LI (Q). Thus, by semicontinuity [13, 
Theorem 1.9] 

XID Ph u I < lim inf JQID Ph Uj 1 

But, by (2.2a) and (2.2b), 

(P v U1, div w) = (P V Up, div fhw) 

= (Uj, div Hlhw) + (IPV U -Up, div Hlhw) 

=-(grad uj, Hhw) + ( IUj-UjI, div Ilhw) 

=-(grad uj, Hhw) + Z ( hUj-UjI, 
div hw) T W 

TETh 

and by (2.2c), (2.4) and (2.5), 

J|DPVh Uj I < (Cl + C2C3 )grad jIIL(Q) 

Lemma 2.3 follows by combining the two above inequalities and using (3) of 
Lemma 2.1. 

Now, let us prove Lemma 2.2. We proceed as above, and notice that if 
condition (2.3) is satisfied, 

(IPVhU -Uj, div flhw) = 0. 

Hence, in this case the hypotheses (2.4) and (2.5) are superfluous. This proves 
Lemma 2.2. D 

3. TRIANGULATIONS MADE OF SIMPLEXES 

Let Sh be a triangulation of Q c eRn. In this section and in ?4 we require 
that for every K1, K2 E h 

(3.1) if the (n - l)-dimensional Lebesgue measure of S = K1 n K2 is not 0, 

(3.1) then S is a full (n - l)-dimensional face of both OKI and OK2. 

Set 
hK 

ch = max 
KEh PK 

where hK = diam K, and PK = SUP{p: a ball of diameter p is included in K}. 
If cih is uniformly bounded, then the family of triangulations {f}h>o is called 
regular [3, p. 132]. Many of the constants C that appear in our continuity 
results do depend on lh. It is implicitly assumed that if ch is uniformly 
bounded, i.e., if the family {f}h>o is regular, the constant C can be taken 
to be independent of h. In this section we shall only consider triangulations 
made of simplexes. 
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Theorem 3.1. Let VJ be the space offunctions whose restriction to each K E 9 
is constant. Then, for u E BV(Q), 

JID Vhul 
< C IDul, 

where C = n3/2ch . 

The dependence of the constant C on ah is sharp. To see this, consider the 
2 two-dimensional case and take u to be the characteristic function of [0, 1] 

2 
Take, for example, Q = (-0.5, 1.5) . It is well known [13, Example 1.4] that 

J IDul =4. 

Consider a family of triangulations {f}h>o made of triangles, see Figures 1 
and 2. Let Vh be the space of functions which are constant when restricted to 

FIGURE 1 

A typical triangle of triangulation h. The size of the biggest 
side is h, and the height is (1 - h)/(2n). Note that for this 

triangle ah+= V 2+ where v = nh/(1 - h). 

FIGURE 2 
The relevant triangles of a typical 3 . The 'O' represent the 
vertices of the square [0, 1]2. The function Pv u is equal to 1/2 
on the triangles displayed. It is equal to 1 inside the remaining 
of [0, 1]2 , and equal to 0 elsewhere. In this case h = 0.4 and 
n = 10. 
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each element K E X. A straightforward computation shows that 

fjDIEDhuI = f(h, ah) h IhDuf 

where 

f(h, h)= h + (1-h) 1+ 

Theorem 3.1 is a particular case of the next result; see also [5]. We shall 
denote by Pk-i (K) the space of polynomials (defined on the interior of the set 
K ) of total degree equal or smaller than k - 1 . 

Theorem 3.2. Let n be either 1, 2, or 3. Let Vh be thefinite element space whose 
elements belong to P k-i (K) when restricted to the elements K E ghk, for some 
integer k > 1. Then, there exists a constant C > 0 such that for u E BV(Q) 

f IDIhul < Cj IDu. 

The constant C depends solely on k, n and ah 

Note that Vh is a space of discontinuous functions. We shall prove the result 
for n = 3. The other cases are proven in an analogous way. 

Following Brezzi et al. [2, equations 2.4], we define the operator r1h on 

ol (Q) as follows: 

(fhw)IK = HK(WIK) VK E 

where n1K : WI (K) _ pk (K) (pk (K) is the vector analogue of P k(K) consist- 

ing of three copies of Pk(K)) is defined by the following relations: 

(3.2a) ((w - lKw) * neK I P)e = O VP E pk(e), e E OK, 

(3.2b) (w- Kw, gradw)K = O Vw E k-I(K), 

(3.2c) (w-FIKWV)K=O VvEB (K), 
where 

B ((K) = {u E P (K): u ne K= O Ve E OK, 

and (u, grad w)=O Vw E P (K)}. 

Lemma 3.3 (Brezzi et al. [2]). The projection 'n h defined by (3.2), (3.3) satisfies 
conditions (2.2a) and (2.3). 

Lemma 3.4. The projection 1'h defined by (3.2), (3.3) satisfies the condition 
(2.2b). 

Proof. If e E AfQ then (IlKw * neeK eP)e = ?, VP E Pk(e), by (3.2a). Since 
trace e(FIKW) * ne K belongs to P k (e), the property (2.2b) follows. U 

Lemma 3.5. The projection 11h defined by (3.2), (3.3) satisfies the condition 
(2.2c) with a constant C1 which depends solely on k, n, and ah . 
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The proof is obtained by classical scaling arguments [3, Theorem 3.2.1] and 
the properties (3.2). 

Proof of Theorem 3.2. The assertion follows immediately from Lemmas 3.3, 
3.4, 3.5, and 2.2. a 

We now extend Theorem 3.2 to the case in which Vh is a general finite 
element space. Set 

hT 
KhT= hm Kh= mWaTxKh, T. 

TDKE.7h-hK'T~ 

Recall that hT = max{hK: T D K E h} . Notice that Kh depends on both tri- 
angulations 

- 
and T Let us consider the families of triangulations {I}h>o 

and {Th}h>o. If Kh is uniformly bounded, we say that {f}h>o is quasi- 
uniform with respect to {ah }h>o . Let us justify this terminology. If Th = fo} 
and if Kh is uniformly bounded, it is customary to say that the family {f}h>o 
is quasi-uniform. On the other hand, if T? = h, then KhT- 1 and Kh-l 

for all h > 0; in other words, h is always quasi-uniform with respect to it- 
self. The interesting case is when Th is neither {f} nor Th ; in this case the 
boundedness of ch is an indication of a sort of 'local quasi-uniformity' of the 
family {5h}h>o . It is implicitly assumed that if Kh is uniformly bounded, i.e., 
if the family {5h}h>o is quasi-uniform with respect to {Jh}h>O' the constants 
C appearing in some of our continuity results can be taken to be independent 
of h. 

Theorem 3.6. Let n be either 1, 2, or 3. Let Vh be a finite element space 
whosefunctions belong to pki (K) when restricted to K e Sh, for some integer 
k > 1. Suppose that Vh satisfies the approximation property (2.5). Then there 
is a constant C > 0 such that for u E BV(2), 

fJDIPvhul < Cf Dul. 

The constant C depends solely on n, k, Kh I ah, and C3. 

Proof. We proceed as in the proof of Theorem 3.2 to show the existence of a 
projection H h satisfying (2.2). By a classical scaling argument, 

|| div FIhW IIL(K) < ChK' l HhW IIL(K) VK E Si 

where C depends solely on ah k, and n. Property (2.4) is thus satisfied 
with C2 = CKh . Finally, the result follows from a direct application of Lemma 
2.3. a 

4. GENERAL TRIANGULATIONS 

The results of ?3 can be proven to hold for triangulations made of rectangles 
by using the finite element methods of Brezzi et al.; see [1, Lemma 5.1] for the 
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case n = 2, and [2, ?3] for the case n = 3. In this important case it can easily 
be proven that the continuity constant C does not depend on the regularity 
of the hypercubes, i.e., on the quantity ch. This is in sharp contrast with the 
simplexes case in which the continuity constant blows up when the simplexes 
become flatter and flatter. 

The case of general quadrangles can be considered by using the finite elements 
of Girault and Raviart [ 12]. Also, triangulations made of prisms can be handled 
by using the elements introduced by Nedelec [15, ?2.3]. We now show a unified 
approach devised to handle more general triangulations. 

Let Th be any triangulation of n for which there exists a refinement gh 
(made only of simplexes) satisfying (3. 1) (notice that the triangulation g need 
not satisfy condition (3.1)). In other words, T is any triangulation whose 
elements are a union of simplexes. We set 

hk 
dlh= maxK 

kE?~F Pk 
hK V aS~ = hK mx hK 

KDKEgh/' 

Kh = max/hK, 
KE54h 

where hK = max{hk K D K E h}. Notice that the refinement T is not 
unique, and hence the quantities ch and kh could be rendered smaller by a 
suitable choice of Sh. The following result is a generalization of Theorems 3.1 
and 3.2. 

Theorem 4.1. Let n be either 1, 2, or 3. Let Vh be the finite element space of 
functions which belong to Pki1 (K) when restricted to K E 5h, for some k > 1 
(if k = 1, then n can be an arbitrary natural number). Then there exists a 
constant C such that, for u E BV(Q), 

fJDIVhul~ < cfDul, 

where C depends on n, k, ch ,andKh. 

Proof. First, notice that since u E Jh, its restriction to K E S belongs to 
Pk l(K). Thus, Vh c Vh, where Vh is the set of functions whose restriction 
to K E Th belongs to Pk (K). Proceeding as in ?3, we easily see that the 
conditions (2.2) are satisfied (notice that (2.2a) holds for every uh E D Jh !). 

The condition (2.4) is satisfied with Th = g and a constant C2 which 
depends on dh. Moreover, since 

C2 h' < C2 Kh 'K , 

condition (2.4) is also satisfied with Th = h, with the "new" C2 depending 
on kh and -h 
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To obtain condition (2.5), we proceed as follows. From the continuity of 
the (restriction to each element T E 'h ) L2-projection in L' and classical 
interpolation results [3, Theorem 3.1.4], we get 

|u| IPVhU 11L1(K) < CKhK || gradu IL1(K), V K E S, 

where the constant CK depends on the shape of the element K. If all the 
elements are affinely equivalent to a single reference element, all the CK can 
be taken to be equal to each other. In this case, C3 = supKEg CK is thus 
independent of h. This fact remains true if the number of reference elements 
is finite. However, since the elements K are constructed as general unions of 
simplexes, the number of reference elements could grow unboundedly as h goes 
to zero. 

To deal with this case, we can use the approximation results obtained in [ 11]. 
We shall only outline how to use such results: First, we write the projection 
PV 1K as a convex combination of local projections defined on the restriction of 
u to open sets which include only one or two adjacent elements K. Second, 
we apply [1 1, Theorem 3.2] to each of those local projections. Third, we apply 
[11, Theorem 7.1] with our local projections playing the role of the operators 

in [1 1]. (Notice that K is connected, and that the number of elements K 
is finite (and depending on ah and kh ).) Finally, we use the triangle inequality 
to obtain the estimate for the initial projection. In this way the constant C3 
can be proven to depend solely on n, k, 5h' and Kh . 

We can now apply Lemma 2.3 to obtain our result. 0 

Our final result generalizes Theorem 3.6. Its proof is similar to the proof of 
Theorem 4.1. 

Theorem 4.2. Let n be either 1, 2, or 3. Let Vh be a finite element space of 
functions which belong to Pki1 (K) when restricted to K E Sh, for some k > 1 
(if k = 1, then n can be an arbitrary natural number). Suppose that Vh satisfies 
the approximation property (2.5). Then there exists a constant C such that, for 
u E BV(Q), 

fJDIEhvul < Cf Dul, 

where C depends on n, k, h kh and C3. 

We end this section by pointing out that all the results of this paper can be 
extended to the case in which the domain n has a curved boundary, provided 

0 

u E BV(n); see [1, equations (2.4)] for the use of triangles with one curved 
edge, [1, equations (5.5)] for rectangles with one curved edge, [2, equations 
(2.2)] for tetrahedra with one curved face, and [2, equations (3.6)] for cubes 
with one curved face. The reason for taking u E BV(n) is as follows. When 
n has a curved boundary, the condition (2.2b) does not hold for the (known) 
operators H h .Notice that if e E &Q, then the function tracee(,hw) * nK e is 
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not a polynomial in general; moreover, the argument in the proof of Lemma 3.4 
cannot be used because the definition of the projections rIh in [ 1], [2] is different 
from the definition (3.2) in that (3.2a) holds now only for e E AK \ an. The 
missing condition is replaced by a condition involving values of w in the interior 

0 

of K. If u E BV(n), i.e., if y(u) = 0, the condition (2.2b) is unnecessary for 
our Basic Continuity Lemmas to hold. 

5. CONCLUDING REMARKS 

In this paper we have shown how to obtain the continuity of the L2-projection 
(into a large class of finite element spaces) in the BV(n)-seminorm of functions 
u e BV(n) . We use a new technique based on duality. It involves the use of the 

flh-projection used in the framework of mixed methods for second-order elliptic 
problems [1], [2], [15]. Our basic results are Lemmas 2.2 and 2.3. Our main 
results are Theorems 4.1 and 4.2. This continuity result has already been used 
(with k = 1 ) in the analysis of the convergence of monotone schemes (defined 
in general triangulations) for scalar conservation laws [5]. We believe that the 
results of this paper will be useful in the framework of the error analysis in 
L?? (LI) of discontinuous or continuous finite element methods for conservation 
laws. 
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