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APPROXIMATION OF SOME DIFFUSION EVOLUTION 
EQUATIONS IN UNBOUNDED DOMAINS 

BY HERMITE FUNCTIONS 

DANIELE FUNARO AND OTARED KAVIAN 

ABSTRACT. Spectral and pseudospectral approximations of the heat equation 
are analyzed. The solution is represented in a suitable basis constructed with 
Hermite polynomials. Stability and convergence estimates are given and nu- 
merical tests are discussed. 

INTRODUCTION 

Many physical models involve the determination of the solution of a partic 
differential equation in an unbounded domain. The conditions at infinity are i 
general given by a certain asymptotic behavior for the solution. This could b 
obtained, for instance, by requiring a prescribed rate of decay at infinity. Front 
the point of view of numerical approximation, it is not an easy task to give 
constructive interpretation of the behavior at infinity. Among the techniques 
one of the most widely used is to restrict the computation to a finite domain 
and impose some relations on the "artificial boundary" according to the physic 
of the problem. 

As to the approximation by spectral methods, the literature for this kin( 
of problems to our knowledge is quite sparse. We may quote three papers 
The first by C. Canuto, S. I. Hariharan, and L. Lustman [1] deals with the 
approximation of an exterior elliptic problem in two dimensions by imposing 
an appropriate farfield condition at the artificial boundary in order to recover 
spectral convergence. In the second by Y. Maday, B. Pernaud-Thomas, and H. 
Vandeven [13], the solution of 

ut + UX = ?, (t , x) E (O., T) x (O., +oc) , 

is approximated by a truncated series of Laguerre polynomials. Finally, 0. 
Coulaud, D. Funaro, and 0. Kavian [3] consider the numerical approximation 
of the solution to 

-Au + Au = 

in the exterior of a ball or a square, using Laguerre polynomials. 
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In this paper we are concerned with the approximation of parabolic (or ellip- 
tic) problems by expanding the solution in the basis of the Hermite functions, 
i.e., Hermite polynomials multiplied by a Gaussian. This kind of approach is 
suggested when the decay at infinity is at least like exp(-ax 2) for some a > 0. 
For a certain class of evolution equation, when the initial data satisfies the re- 
quired decay condition, one can prove that the solution has at each time the 
same decay. As we show in ? 1, Hermite functions are a very natural choice for 
the approximation of solutions to diffusion PDE's, after an appropriate change 
of the space and time variables (the so-called similarity transformation). In ?2, 
we study the spectral Galerkin approximation, we prove the convergence of the 
scheme and we give error estimates. Section 3 is devoted to the analysis of the 
pseudospectral approximation for the case in which the domain is Rd, d > 1 . 
Collocation is imposed at the zeros of the Hermite polynomial of degree N + 1. 
We note that, since the zeros of Hermite polynomials spread all over the infinite 
domain with increasing N, no restriction in the size of the domain of approx- 
imation is required, and an artificial boundary does not exist. In ?4 the results 
are generalized to cover the case of problems in unbounded domains which are 
Cartesian products of intervals; the case of approximation on a half straight 
line is also investigated. Finally, in ?5 we give and discuss several numerical 
examples in one and two dimensions. Also we briefly indicate how to adapt the 
previous analysis to other situations. 

1. STATEMENT OF THE PROBLEM 

In the study of qualitative properties and the numerical approximation of 
solutions to equations such as: 

(Ut-Au+F(u)=0 inQ, 

(1.1) 4 u(O, x) = uO(x), 

I u(t, *) satisfies certain boundary conditions on 9Q, 

a crucial role is played by the fact that the operator A := -A associated with 
the specified boundary conditions on the space L 2(Q) has, or does not have, 
a compact resolvent. For instance, if the prescribed boundary condition is the 
homogeneous Dirichlet condition u(t, *) = 0 on OQ, and the domain Q is 
bounded with OQ Lipschitzian, then the domain of A is contained in Hl (Q), 
and by Rellich's theorem the resolvent of A is compact. Now, as is well known, 
for the numerical approximation of the solution by a spectral, pseudospectral, or 
a finite element method, the compactness assumption is particularly important. 

When Q is unbounded, say Q = R d or Q = d-1 x R+, the operator A no 
longer has a compact resolvent. In this case, as we shall see in the sequel, one 
may use the whole structure of the linear operator 9t - A. In order to make 
this idea more transparent, we consider as an example the following Stokes 
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evolution equation: 

tu -AU+ Vp=f, t>O xER d, 

(1.2) u(O, x) = uo(x), 
V V u(t, x) = 0, 

where u = (u1, ... , Ud) E Rd. d = 2 or 3, and f and u0 are given in suitable 
spaces. Here, since the domain is Rd , the inclusion H (R d) c L 2(R d) is not 
compact. As suggested in M. Escobedo and 0. Kavian [6] and 0. Kavian [9] in 
the study of the parabolic equations 

ut-Au?jut - u =o, 

one can associate with the function u and the operator (9t-A) another function 
v and another operator (Ot + L) such that the new elliptic operator L (in an 
appropriate Hilbert space) has a compact resolvent. Moreover, the functions u 
and v are related in a simple way. More precisely, if u and p are given by 
(1.2), define v, q, and g by 

u(t, x) =: vlog( 1 + t), 
x 

AH 

(1.3) p(t, x) =: (1 + t)-1/2q (log(l + t), a 

f(t, x) =:(1 + t)g (log(l + t), 1U) 
Now setting 

(1.4) s:= log(1 + t), Y:= RUTH 

one checks easily that (v, q) satisfies 

v + Lv + Vq = g, s>O, yeR, 

(1.5) { v(O,y)=uO(Y), 
V v(s,y) =0, 

where in the first equation of (1.5), instead of the elliptic operator -A, we have 
the elliptic operator L defined by 

(1.6) Lp := -Atp 2 
V 

* 

By the results in [5] this operator is selfadjoint in the weighted Lebesgue space: 

(1.7) L2(R d) := {f; f f(y) 1w2(y)wdy < o} 

where w (y) := exp(ly 2/4), and has a compact inverse. Furthermore, in the 
special case considered here, i.e., Q = Rd , the eigenvalues and eigenfunctions 
of L are known, namely (we denote here, for a E N d, Jaj := a1 + * + ad): 
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where the jth eigenvalue Ai is 

(1.8) 2 = + forj> 1, 

and the corresponding eigenfunctions are 

( 9j,)a(y) = (-l D exp ( 4 
1 

d 1 a 9 9 
a EN , IalI=i-1I, 

These eigenfunctions are nothing but the Hermite functions, and can be written 
in terms of Hermite polynomials. We define these by 

(I.10O) (m( 
X 

2) dxm (x 4_2 

for m E N and x E R. 

Then setting 

(1. I 1) H (y) := h (yl)... h(yd), 

we have 

( 2) Ci(Y) = I h ,(yi) exp (Y - H (y) exp ( ) 

Y=(Yl,. ..Yd) E Rd, a=(al, ... , ad) ENd, IaI=i-1. 

Note that definition (1.10) differs slightly from the one used in the literature 
where, instead of exp(-x 2/4), one has exp(-x 2/2) or exp(-x 2). Now the 
resolution of the elliptic equation 

(1.13) ~ ~ ~ LV L= f, f E L2(R d), 

or of the parabolic equation 

(1.4) + LLp = 0, 

( )(0, ) = f(E) e L2(Rd) 

an terms of the above eigenfunctions is quite simple. Indeed (here a! 

11<i<-d(a j!)) : 

(1.15) yi(y) S + d -l /4 

aENdIIdcH(e 

and 

([.16) ~ o(s, y) = > c exp(-Al+lls)H (y) exp(-lyI2 /4) 
lENd 
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where the coefficients c,, are 

(1.17) c~~ = fRdf(y) H~(y) dy 2 Ial- (1.17) Ca f d IH (y)I2 exp(-yI12/4) dy = lrd/2at! df(y) c(y) dy 

This suggests, as we shall develop in the next sections, a numerical approxima- 
tion of Vt or 0 using a truncation of the expansions (1.15) or (1. 16). 

Remark 1.1. The so-called similarity transformation (1.3) introduced for the 
study of the linear system (1.2) can be modified to be applied to the nonlinear 
Navier-Stokes equation. Indeed, if (u, p) is a solution to 

(1.18) Ut-Au+(u-V)u+Vp= f, V*u=0, 

then we define (v, q) and g by 

u(t, x) =:(I + t)- 1/2v (log(1 + t), ,/ ) 

(1.19) p(t, x) =:(1 + t)Iq (log(l + t), 1x?) 

f(t, x) (1 + t)-312g (log(1 + t), x 

Setting s and y as in (1.4), one checks easily that (v, q) satisfies 

(1.20) VS + Lv+(v.V)v+Vq-lv=g, V.v=0, 

where L is the operator defined in (1.6). In [10] this equation is studied in the 
space L2 (Rd ). 

Remark 1.2. For f _ 0, J. Leray in [11] seeks a self-similar solution u to 
(1.18) (which blows up at time, say, T = 1) by setting 

u(t,x) = (It)- 1/2z x ), < t< 1 

It turns out that such a function Z would satisfy 

(1.21) -AZ? ? Z +(Z.V)Z+Vq+ 1Z=0, V.Z=0. 
2 

Actually, one can prove that if d = 2, and if Z E H1 (I2) satisfies (1.21), then 
Z _ 0 (cf. [10]). For d = 3, as far as we know, it is an open question whether 
(1.21) has a nontrivial solution or not. On the other hand, one can look for 
self-similar solutions of (1.18) which are global in time, i.e., such that 

U(t X) = t- 1/2'k (x ) t>0 

~~~~~~~~~~~~ t 

i.e., Z would be a steady state for the evolution equation (1.20). When Z E 
H I(Rd) and d > 2, one can prove that Z-0. 

2. GALERKIN APPROXIMATION 

For the reader's convenience we begin by recalling some well-known proper- 
ties of Hermite polynomials. Let a > 0 be a fixed parameter. For n E N we 
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define the nth Hermite polynomial on R by 

2/42 dn x242 
(2.1) hn a(X) =(l)nex'4a d n(e-X 14a 

We shall denote as in (1.10) hn hn,1 . These polynomials have the following 
properties (cf. for instance [4, 14]): 

(2.2) 2a 2hna +nhn a =Xhn, 

hOa(X) = 1, 

(2.3) hl ,a(x) = x/2a2, 

I 4a2hn a (X) = 2xhnl ,a(X)-2(nf 1)hn-2,a(X) for n > 2, 
and satisfy the orthogonality relations 

(2.4) fhn a(x)hm a(x)ex /4a dx = 21 a'2nn!x/73m for n, m >0 

Our aim is to approximate the solution of the following parabolic equation 
(u(t, x) eR): 

atu - a2Au=f, t < 0, x E Q 

(2.5) 1 u(0, x) = u0(x), x E Q 

u(t, *)90Q = ?, t > 0, 

Q oRd oRd1 (0, ). 

Defining v and g as in (1.3), and s and y as in (1.4), one checks that 

( sv - a2Av - y * Vv/2 = g, s>0, yEQ. 
(2.6) v(0, y) = u0(y), y E Q, 

V(S,9 .),an = 0 S > 0. 

In the sequel we shall use the following notations and functional spaces: 

(2.7) Wa(Y) := exp (2) 

(2.8) La O:= -a2 Af- 2 W a2-V (w (p), 

(2.9) LW, (Q) = {o: Q-4 R measurable; j k(Y)I2Wav(y)dy < oo} 

For integers m > 1, 

(2.10) Hwm(fo) r9 E L 2(Q); D f E L2 (Q) |Q!I < m,} 

(2. 1 1 Hwa?,(Q) := {f E Hwm (Q); D'9 = O on an , for jal < m-1} 
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On, L2 (Q) we denote the scalar product and norm by 

(2.12) (o | V)o, a /9 (() Y) (Y)Wa (y) dy, 

(2.13) 1/2oa 1/2 

and for m > 1 and Ap, E H~ m(0): 

(2.14) (9 |)m,a :=E (Do DOY/)oaS 
Ici<m 

(2.15) 1/2 

For 0 < T < 1 , we introduce the interpolation spaces 

Hw" Q): [Hw Q) Hw () 

in the sense of [12]. When a = 1 and Q = R d, it has been proved in [6, ??1 
and 2; 9, Lemma (2.1)] that L1 is a selfadjoint operator acting on L2 (Rd) and 

-1~~~1W 
that its inverse L1 exists and is compact. Using these results and a change of 
scale in the variable y, one can easily prove the following. 

Lemma 2.1. Let Q be as in (2.5) and set D(La):= Hwj (Q) n H 0 (Q) . Then: 

(i) La is a selfadjoint operator on LW (Q) whose domain is D(La). 

(ii) VIP E H1 (Q)< 2klo0,a ? 1V2O ,a=(La(P 

(iii) L 1 exists and is compact on La (2 ). 

Lemma 2.2. Let Q be as in (2.5). 

(i) The embedding H7m (Q) c HJ (Q) is compact. 

(ii) eo E HI (Q) X~ W '2 = Way,44 e H1(Q) and 
2 

2t E , 

(Here, H1 (Q) denotes the classical Sobolev space, and I is the function y H-* 

IYl ) 

The eigenvalues and eigenfunctions of La on D(La) can be written explicitly 
in some cases. We denote by Sp(La) := {Aj; j > 1} the spectrum of La on 

D(La), and by (pj the normalized (in L 2) eigenfunctions corresponding to A 

Proposition 2.3. Let d = 1. 
(i) If Q = X, for j > 1 each eigenvalue A? is simple, j = j/2, and the 

corresponding normalized eigenfunction (Oj is given by 

2jP 2a 2j3 =1/2 _ - 12) 

p1i(y) :=hj Ia (y) exp 2 
(4a 2 
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(ii) If Q = (O, oo), for j > 1 each eigenvalue Ai is simple, i= j, and the 
corresponding normalized eigenfunction (pj is given by 

(p1(y) =2 ( a22 3 1/2 h2j _ a(Y) exp (2) 

Proposition 2.4. Let d > 2 and Q= Rd .For a = (a a... ad) E Nd l 
j- > O, the jth eigenvalue is Ai :=ja := (Ial + d)/2 = (j + d - 1)/2, with 
multiplicity (j+d- 1). The corresponding normalized eigenfunctions are 

a c_1 2a_1) 1/2 (2) (pi, <Z~ (, (/fY) )i ha,a(yi) exp 42 

For other domains such as R d- x (0, oc) or ((0, oc))d one can find the 
eigenvalues and eigenfunctions by a suitable combination of the above. 

We are now in a position to consider the Galerkin approximation of equation 
(2.6). Let N > 1 be a fixed integer; define the subspace XN of L2 (Q) by 

(2.16) XN := span{f(i ; 1 < i < N, a E Nd i-1. 

Note that, if n = Rd, then the dimension of XN is 

dim(XN) = Z(il)=Nd. 

For instance, if d = 1, i.e., Q = R, by Proposition 2.3(i), an element of XN 

is a polynomial of degree at most (N - 1) multiplied by exp(-y 2/4a 2). If 
Q = (0, oc), by Proposition 2.3(ii), an element of XN is an odd polynomial of 

degree at most (2N - 1) multiplied by exp(-y 2/4a2) . 
We approximate the solution v of (2.6) by VN E XN, the unique solution to 

| d (VN() I ')PX a + (LaVN(S) I =)Oa (g(S) I ()O,a a 

( 2 . 1 7 ) 1?~~~~~~~V E XN~ Vs > ? S 

VN(O) = UON, 

where UON E XN is the L2 -projection of u0. One has the following conver- 
gence result: 

Proposition 2.5. Let T > 0 be given, and suppose that 

g EL (O. T; Hw-a (Q)), u0 E Hwa(Q) n Hw 0(Q), 

Then there exists a unique solution v E C?(0, T; Hw (aQ) n Hw a(Q)) to (2.6). 
The solution VN is uniquely defined by (2.17), and the following error estimate 
4olds: 

{for 0<,u<c, c> 1, and0<s<T: 

1|V(s) - VN(S)11,u a N+ I a + 1g1L2( THw-))' 

vhere C is independent of N, s, and T. 
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Note that by Propositions 2.3 and 2.4 one sees that AN is proportional to 
N; therefore the error behaves like N_ (a -)/2 . 

The proof of Proposition 2.5 is classical and can easily be done by writing 
the Hilbert series for (v(s) - vN(s)) in the basis (I j9IQ=j_ ,j>1 . 

Now returning to the original equation (2.5), it is natural to define an ap- 
proximation of u by uN(t, x) := V(log(1 + t), x/vTT-). As a result of the 
previous proposition we can state the following: 

Proposition 2.6. Let T > 0 and vN be given by (2.17). Define for t > 0 and 
x E xe~~~~~~~? ~ ~ 

UN(t I X) := VN (log(1 + 0) I la V . 

Then for 0 < y < a, a > 1, there exists a constant C > 0 independent of 
N, t, and T such that for f and uo satisfying 

f EEL (O TT; Hwa(Q)), uo E Hwa(Q) nHw0a)(Q) 

we have for 0 < t < T and u satisfying (2.5) that 

||u(t) - UN(t)|H'(n) < CN (u)!2((1 + t)YN/2U 0aa + HfAL2(0, T,H - (0)) 

3. APPROXIMATION BY THE COLLOCATION METHOD IN THE WHOLE SPACE 

In this section we analyze the pseudospectral approximation of equation (2.6) 
via the formulation (2.17). We begin with the case d = 1, Q = IR and the 
elliptic version of (2.6) and (2.17). Namely, for given A > 0 and g E Hw (R) 
a > 1, we consider 

(3.1) Av -a v - YV = g for y E R, v E HwR+2) yJ' 2 ae~(R 

and its pseudospectral approximation in the space XN+1 (defined in (2.16)); 
here, gN is a suitable projection of g defined below in (3.5): 

(3.2) A(VN I ')0,a + (LaVN I ')O,a = (4N I 0)0,a VtP (E XN+l , VN E XN+1l 

We know that VN is uniquely determined and that there exists a polynomial 
PN of degree (at most) N such that 

2) 

VN(y) = PN(y) exp 4 a 
Therefore, finding VN is equivalent to finding PN or its values at (N+ 1) points, 
which we choose to be the zeros of the Hermite polynomial hN+l a defined in 
(2.1). For the reader's convenience we recall some integration formulae (see, 
for instance, [4, Chapter 3], where the results are given for a = 2; a change of 
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scale in the variable yields the general result). Define Yk N+1 a and Wk N+1 a 
by 

(3.3) Wk~a (N + 1)! V 
(k33 )(a 2N+ la22N+3 (hN+2 a (Yk N+ l, a))2 

for 1 <k <N+ 1, hN+, a(Yk, N+1, a) = 0 When it is not ambiguous, we shall 
write Yk tk instead of Yk,N+?1,a' WOk,N+1,a' 

The following integration formula holds for any polynomial P of degree 
< 2N+ 1: 

+00 2 N+ 1 

(3.4) 
f 

P(y)exp ( 4a2) dy E 
N k,+N+ ap(ykN+la) 
k=1 

For a given function g E Hw (R), with a > d/2, we define the pseudospectral 
projection of g onto XN+l by 

P SN(g) = gN = QN/Wa E XN+1 

(3.5) QN is a polynomial, deg QN < N. 

QN (Yk, N+1, a) =Wa (Yk, N+1, a) 9(Yk, N+1, a)' < k < N + 1 . 

The collocation method to solve (3.2) is defined by 

f find a polynomial PN, deg PN < N, such that for 1 < i < N + 1: 
(3.6) -a 2P1/(y ) + Y 

i.p' PN(Yd) 
- N(yd) + 2' PN(Yi + APN (Yd 

= 
QN (Yd) 2 N )+ 2 

which is obtained from (3.2) by using relation (3.4), after VN is substituted by 

VN = PN/Wa . Introducing the Lagrange interpolation polynomials 

(3.7) t(y) = hN 1 < j < N + 1, 
N+ 1, a(Yj) & -Yj) 

one can write 
N+1 

N(Y) = PN (Yj)K (Y). 
j=1 

(In fact, <,, depends on N and a; but for simplicity we drop these indices as 

we do for yj.) An easy computation (using (2.2)) shows that 

f 
h1+ia(Yi) 1 

if i + j 

1 2 if i j, 4a 

hI,+ ,(yj) (Yi ((_ ) Y2 -2) if 1$] 

3a2 (4a )if i = j. 
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Therefore, problem (3.6) can be written as a linear system in the Lagrange basis. 

Remark 3.1. The eigenvalues relative to the pseudospectral approximation of 
the operator La are explicitly known. They are the same as in the Galerkin 
approximation, i.e., 

Aj = j/2 for j = I,... N + 1 . 

Let us note that they do not depend on a. 0 

In the following we denote by &' the Fourier transform of u, and by p the 
function p(y) := (1 + Iyj2)1/2 defined on iRd - R+ By classical results and 
techniques in Sobolev spaces (see, for instance, [12]) one can state the following 
proposition (cf. [10] for a detailed proof): 

Proposition 3.2. Let d > 1 be an integer and a > 0 real. Define 

5?(1Rd):= {u; u E H7(Rd) and & E H7(R d)}. 

Then 5t9 (Rd ), equipped with the norm 

I Ull5C := ( 11 U A2 + 11-112A 1/2 

is a Hilbert space, and the following holds (we denote by [a] the integer part 
of a): 

(i) uE 5gpa (Rad) all, pa u E L2 (Rld) and pa &' E L2(Rd) 
d)_ Va 2E Nd aauE 2 d)aa 

(ii) uES (R )p u ( E ,al < an, p EL (R and p( D E 
L2 (IR ). Moreover, the norms are equivalent. 

(iii) u E 92a(Rd) X /, 0 < ,U < a ,p(,pIi( ) E L2(LRd). Moreover, the 
norms are equivalent. 

(iv) u E H. X w1/2u E 59"a(lld). Moreover, the norms are equivalent. 

Using this proposition, one may prove the following: 

Proposition 3.3. Let a > d/2 and 0 < u < a - d/2 be given. For any u E 

59a(Rd) one has pu E CO(Id) and there exists a constant C (depending only 

on a, u, and d) such that 

11piull0 < Cllullya. 

Proof. In order to see that puu E Co(lRd), it is sufficient to have (pI u) E 
LI(Rd). Indeed, Vx E 1Rd 

py(X)U(X)= L e2ix (P /)() d , 
pd 

1p'U(x)u(x)1 < 11(pyUAL', 
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where in the last inequality we use (iii) of Proposition 3.2, noting that 

fRd pa-8(,)72 d, is finite for 2(a - u) > d. E 

Combining Proposition 3.3 and (iv) of Proposition 3.2 yields: 

Corollary 3.4. Let a > d/2 and 0 < /u < a-d/2 be given. For any u e H7 (1Rd) 

one has puw /2U E CO(Rd) and there exists a constant C (depending only on 

a, ,u, and d) such that 

IIP"W 2Uloo < CIIUII,7, 
Next we prove the convergence of psN(g) to g (in appropriate norms) as 

N -oc. 

Theorem 3.5. Let e > 0 and a > 1 + e. For any a > 0, there exists a constant 
C (depending only on a, e, and a) such that 

a)/2~~~~~~~~~~ ligPS~g)ll a< CN(1+ a)2HglKa, V 'g e H;j(IR). 

Proof. For g E L 2 
(R) denote by prN(g) the orthogonal projection of g onto 

XN+1I i.e, 

prN(g) : (g 1(Pda(i 
1<i<N+1 

where (pi)i>1 is the sequence of the eigenfunctions of La . We have 

(3.8) 1g -psN(g)10, ? a g -PrN(g)%1, a + lPrN(g) -psN(g) 10,a 
But psN(prN(g)) = prN(g), and using (3.5), (3.4), we may write (note that the 
function IwapsN(prN(g) - g)l2 is a polynomial of degree 2N) 

IPrN(g) PSN(g)O,a = IIPsN(PrN(g) - 
g)loa 

2 
00~ 21 2 N+I 2 2 

= |] eY a E eYJ14a (prN(g) - g)(yj)1j(y) dy 
-oo j=1 

N+1 N1 (2) 2 

= E k 1:exp Kif prg) 9Yjlyk 
k=1 j=1 \4a}(rN )g)y)y) 

hence by (3.7), 

N+I (2 \2 
|~~~ ~~ IPYk S .a ,6v le Pr Y _ PrI(g) -PS(g)W =a ( WCk exp (Pr(g) - )(yO) 

k=1 4a 
N+I 2 

(3.9) ~ Lo(1+8)/2 1/2 (prN(g) _ g)11L S0kep Yk (k~ 
Wa ~~~~k=1 4 

N+I1 

<Cpr(g) - H+g ~a Ewkexp 2)P p(Yk) 
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(we use here Corollary 3.4 with ,u = (1 + e)/2 and a = 1 + e). Now following 
J. V. Uspensky [15] and using (3.4), we have 

N+1 / 21 

l 
myo E 9k e 4a 2 P (yk) = (Y y 

Therefore, combining (3.8) and (3.9), we have 

II - 
PSN(g)ll0,a < C1g -PrN(g)i11+, a CAN+1 iiia 

and AN+1 = (N+ 1)/2. 0 

We are now ready to give the rate of convergence. 

Theorem 3.6. Let g E Hw (aR) be given with a > I + e (and e > 0). If v 
and VN are given by (3.1) and (3.2), then there is a constant C independent of 
N > 1 such that 

(3.10) liV - VN1I2 a < CN( 11,7, a 

Proof. By Lemma 2.1 and Banach's closed range theorem, La: Hw (R) La (R) 
is an isomorphism. On the other hand, we have 

La(V - VN) = g - gN = g -PSN(g) 

Therefore, there exists C > 0 such that 

IIV - VN112 a < CIg - PSN(g)I I0,a 

The proof is concluded in view of Theorem 3.5. 0 

Remark 3.7. As a corollary of Theorem 3.6, we can obtain an L?' estimate of 
the error on (v - vN), since we have the inequality 

sup h (y) exp 2 ?diihiii,a, VhEHw (1R) .0 
yER 8aJ a 

For the case of dimension d > 2, we consider the elliptic problem 

AV +L LV = g in d, 
(3.11) a v inl(d, 

V eHw' (Rd) 

where g E Hw (lRd) is given and a > d/2. The pseudospectral approximation 
to (3.11) is 

(3.12) { 
VN (E XN+l, 

where XN+1 is defined in (2.16), dimXN+l = (N+ 1)d, and 

gN := PsN(g) = QN/Wa E XN+l, 

(3.13) j QN is a polynomial whose degree in each variable is < N, 

t wQn = wa(yYJ g(y9,), a E {1, *., N+ 1}d 

(we denote y. := (Ya I *.* Yad) ) Yk := Yk, N+1, a for 1 < k < N + 1) . 
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We can state the following convergence theorem: 

Theorem 3.8. Let e > 0 and a > d + e. There is a constant C > 0 such that if 
g E H. (Rd) and v, VN are solutions to (3.11), (3.12) for any N > 1, one has 

l l WVN 1 12,a < CN (d11 -)/2 1 l g a 

Proof. We have 11v - VNI2,a < C11g - PSN(g)f0,a . The conclusion follows, 
using the analogue of Theorem 3.5 in Rd,namely: 

Theorem 3.9. Let e > 0 and a > d + e. For any a > 0, there exists a constant 
C (depending only on a, e, and a) such that 

ad ig PSN(g)HlO a ? CN(d+C)/ |Hgila a Vg E Hw (IR ). 
We skip the proof of this last theorem, since it is an easy adaptation of the 

one given above for Theorem 3.5. 

4. APPROXIMATION IN SOME OTHER UNBOUNDED DOMAINS 

For domains which are Cartesian products of intervals (possibly unbounded) 
one can use appropriate pseudospectral approximation on each interval. For 
instance, one can combine Chebyshev or Legendre approximation (cf. [2]) on 
finite intervals and Hermite approximation on unbounded intervals. In this 
section we detail two examples: the first for the domain Q = (-1, +1) x IR, 
the second for the case Q = (-oc , 0) . 

We begin with 

(4. 1) IAV + Lav =g in (-I1, + 1) x R1t, 

(v(?1, )=0, IE1R, 
and y := (E, a) e (-1, +1) x IR. Let 

v , 1) :=v (iY, 1) exp ( 2 ) g* (S, r1) = g(S, X 1) exp( 2) 

Then v * satisfies 
A 

* 
-a2A 

1* ** 

(4.2) i I - -q+2V* + 
2{V* 

= g* 
v*(?l, 0)=E Ren. 

Now we approximate v* and g* by collocation at the Chebyshev nodes in 
The variable 4 and at the Hermite nodes Yk M+1, a in the variable a. More 
precisely, let 

ci:=4i, N:= cosN, 0< i<N) 
be the Chebyshev Gauss-Lobatto nodes. Denoting by TN the Nth Chebyshev 
polynomial, we have TN(oi N) = 0, 1 < i < N - 1, and 

I d17 N-1 N, 

(4.3) Q() Q(i, N)+ 7 (Q(1)+Q(- ))=: 
7 

Ei Q(~iN) 

or any polynomial Q of degree < 2N - 1. 
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Denote by PNM a polynomial of degree at most N in 4 and of degree at 
most M in 1. We seek such a polynomial satisfying 

(APN, M a APN, M 2 201 PN, M + 21 102 PN, M + 2 PN, M) (i I Yk) 

(44) = g *(i i Yk)' 

I PN(?,Yk)=O, 1 <k<M+1,1? < i<N- 1. 

A proof of convergence can be given for this collocation procedure. We prove 
first: 

Proposition 4.1. There exist C1, C2 > 0 and No > 1 such that, for any N > No 
and polynomial q (in one variable) satisfying q(+ 1) = q(- 1) = 0 and deg q < 

N. we have 

Cl | jqxj < N E (( q44 -2 )q) (4') 

(4.5) 2. < C2| q2 , 

Proof. We write q =: aNTN + q0, where degq0 < N - 1 . Then using (4.3), 

(4.6 j)) J 1 (-) q ( ) - 

and it is well known (cf., e.g., [2]) that the right-hand side is uniformly equiva- 
lent to 

j+1 q 2 dX 

11 -/ 

On the other hand, 
N N 

-N E Xjq (4i)q(4i) =-aN E i N(4i) 
i=0 = 

+1 d~~~1 + aN |( TNqo + T~ q0) \ 

(4.7) +1 , _ 
d_ 

_ 

+ / 0 q0q0 J-1 j11 - 

+dc~ 27r N = q q d + 2a7cN 

where we use the fact that 

-=0 1-TN(4i)TN(4i) 2 T T =N. 
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Now, 

If 2 Id f d~ ~ 1 2 d__ 

? < 2 q2 44V =- q~q < ca qx - -O2] q~2)3/2 - 

12 1 i _2 

while the remaining term on the right of (4.7) can be bounded as follows: 

7rN 2 <C 1 2 dX 
2 N-NJ I 1 - 

Therefore, for N large enough, we obtain (4.5). 0 

By the previous proposition and the results in ?3 it is straightforward to prove 
the next theorem. 

Theorem 4.2. There exist C1, C2 > 0 such that, for any polynomial PN, M of 
degree N in the variable 4 (N sufficiently large) and of degree M in the 
variable a, we have 

C1 ) IVPN 2 
dM I 

d 
J (-1, I) xR 1 - e2Wa?) 

<-E E (a APNMO- 2O1PN, M + 02PN, M + PN, M) 
(4.8) - i=O k=1 

X (4i Yk)PN, M (4i I Yk)] (tk 

< C2 f IVPNMI2 d~ d1 
(-1, I)xR 4 

eWa(i) 

Stability for problem (4.4) is now a direct consequence of the above result. 
The estimates which show the spectral convergence are easily obtained by sep- 
aration of variables and then applying Theorem 3.5 and the estimates on the 
Chebyshev interpolation projectors (cf. [2]). 

Next we consider problem (1.1), when Q = (-oc, 0), with the boundary 
condition u(t, 0) = 0, t > 0. After the substitutions proposed in ??1 and 3 
the problem becomes 

Us- 2Y * + 2v = g*, y < 0, s > 0, 

(4.9) < v*(s,0)=0, s>0, 

(v(4. y) s(y)) y < >0. 

Suppose now that g* and v* are the restrictions of certain functions g and 
VO defined in IR. Then v* can be considered as the restriction of the function 
0: IR -11 R which solves the problem 

ID D+I yER-{O}, s>0, S s yy +2YV + 2V = g, yE 1-0,s>O 

(4.10) iD(s,0)=0, s>0, 
. ?(O(,y) =fiO(y), y E R. 
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For a given function Ao, we denote by A+ and (o respectively the even and 
the odd part of (0. As the space of odd (resp. even) functions is stable under 
the action of the operator (0 -ay + ly , it is easy to check that the solution 
v = v+ +V - of problem (4.10) can be obtained by solving 

V5 - Vyy + -fy + 2V = yER-{0}, s>O. 

(4.11) i v(s,0)=0, =S>?0 

v (O ~y) v 0(y) , y lE, 

according to the determination of the even or the odd part of v. 
We want to approximate the solution v' + of (4.1 1) (similarly we shall argue 

for v') . For this purpose, consider the nodes Yj, N+1, a ' = 1 , . . ., 2N + 1 . 
We have YN+1, 2N+1, a = 0 and Yj, 2N+1, a = -y2N+2-j, 2N+1, a I = = 1, ... , N. 
Denote by XZ the space of the even polynomials pZ of degree at most 2N 
satisfying pZ(0) = 0. One has dim(XZ) = N. 

Therefore, an element of XZ is uniquely determined by its values at the 
nodes Yj,2N+l a XI = 1, ... , N. Then we approximate v + by a polynomial 
N E XZ such that 

J (PZE-PN,s Y + 2YPZY + N P2)(YN N+ a ) (Yj,2N+1, a), 
(4.12) j=l,...,N, s>O, 

1 Pk(O yj,2N+la)=V (Yj,2N+la) j N. 

Using the fact that pZ is even, the equations in (4.12) also hold for the 
negative nodes. An analysis of stability and convergence for (4.12) can easily 
be carried out. In particular, by the theory developed in ?3, for the steady state 
version of (4.1 1) and (4.12) we obtain the estimate 

(4.13) Il(Vf -+p)wl 2H'(( 00oO)) < C(2N)(l+6 )/2IIjIIc (R)' a > 1 +e. 

A similar technique is used to approximate the solution v' - in (4.11). This 
time, X; will denote the space of odd polynomials PN of degree at most 
2N - 1 (thus satisfying pN(O) = 0). Again, we have dim(XJ) = N, and the 
corresponding collocation scheme is obtained by writing pj, 4> and vi 

- 
in 

place of p4 +, and V^+ in (4.12). The approximation of v* in (4.9) is 

P4 +P restricted to (-00, 0). 
This kind of approximation involves the resolution of two different N x N 

differential systems. On the other hand, N does not need to be very large in 
application since, as shown by (4.13), the rate of convergence is in general very 
high. 

An approximation of v* in (4.9) can also be given in the following way. We 
write again equation (4.10), but this time g is such that 4(y) = g*(y) if y > 0 
and 4(y) = g*(-y) if y < 0. Therefore, the corresponding solution PN to 
(4.12) is already an approximation of v' without evaluating pNI. In this case we 



614 DANIELE FUNARO AND OTARED KAVIAN 

only solve an N x N differential system. Nevertheless, the last procedure yields 
results that are not very good in general. This can be explained by noting that, 
even if g* is a very regular function, its even continuation can be an irregular 
function. This may affect very badly the convergence, as observed by numerical 
experiments. This difficulty may be avoided by using the first approach. 

For the reader's convenience we give the expressions of the entries of the 
matrices associated with the discretization in (4.12). The Lagrange interpolation 
basis in XZ is the following (here, for simplicity, we take a 1): 

GO+(Y) 2yh2N+l(y) IjYa y1A 

Then we get 

(<~)v1) | 2} e1 / i 

-1 +2 (Y d if j+ 

Similarly, in XJ one has 

/ 2yt h NA (yi) _ = ., 

g-)~ h)N1l-yI)(y ,-. if 1$]j, 

(_t _ + _t _+ (yd ) 
2N+I 1 

i 
y 2 fi+j 

= y2 

t -Yj24 ) 2(+442 if i = Jo 

I4yjiiJ 
4yh2hN +1(Y(Y1 Y) if 1$], 

5. NUMERICAL TESTS 

We devote this section to the discussion of several numerical experiments. 
We begin with some examples with d = 1 . Consider the problem 

(5.1) | 2I - 

u(O, x) = (sinx)aexp(-x/4), x E R, 
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where f is chosen such that the solution is 

sin x _X _2A 
u(x, t) = xp 4(1 +t) 

After the transformation suggested in ? 1 (then putting v *(s, y): 
2 v(s, y)exp(y /4)), equation (5.1) becomes (here S := log(2)) 

1 *+ V Y ~~/2 s/2 s/2 [v*-v* +y lyv*+ v*=ycos~y )+es sin(yes), 
(5.2) 4 yeR, O<s<S, 

1 .( , y) = siny, y E R. 
The solution of (5.2) is approximated by PN as in (3.6) (a = 1). Let 

EN = II~v* -1/2 
EN = 11 (V -PN)W1 11L2(R) 

when v* and PN are evaluated at the time S = log(2). Since we are mainly 
concerned in checking the accuracy of pseudospectral approximation studied 
in ??3 and 4, we do not look for an optimal discretization in time. Therefore, 
we used explicit first-order forward differencing to advance in time. Denoting 
by NT the number of iterations (the time step therefore is S/NT) Table 5.1 
shows the error E20 versus NT. 

TABLE 5.1 
Error E20 for different values of NT 

NIT E20 

250 .2487E-02 

1000 .6203E-03 

4000 .1550E-03 

16000 .3886E-04 

We chose large values of NIT in order to emphasize the error with respect to 
the spatial variable. 

We recall that the maximum size of the time step in order to get stability is 
given by 2/(N + 1). Actually, this can be easily determined by knowing the 
eigenvalues of the matrix relative to the spatial discretization (see Remark 3.1). 

To better examine the convergence behavior with respect to N, we consider 
the elliptic problem 

(5.3) -v + yv + (y - l)ey Y E R. 

This admits the solution v*(y) = ey. The approximate solution PN (given 
by (3.6)) is obtained by solving the corresponding linear system by Gaussian 
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TABLE 5.2 
Errors versus N for the approximation of problem (5.3) 

N + I 11(V* -PN)W' 11L2(R) EN | 1(v* -PN)yW'1 11L2(R) 

8 .5389E-01 .3004E-01 .7416E-00 

16 .1392E-04 .5985E-05 .7674E-03 

24 .6959E-09 .2415E-09 .8875E-07 

elimination. Let E?? = maxl<j<N+l{Iv* -PNI(yj) exp(-y /8)} (see Remark 
3.7); then, in Table 5.2 we report the error for different norms. It is clear that 
we have convergence of spectral type. 

Similar results can be obtained for d = 2. We give an example where differ- 
ent techniques are used to approximate the spatial operator in each direction 
(see ?4). On the domain (-1, 1) x IR, we solve the equation (4.2) when a = 1, 
A = 0, and g* is such that v*(4 , ) = sin(q(1 - 2)). The approximation is 
performed as in (4.4). In Table 5.3, we give the error 

N M 1/2 

EN,M = E -(V PN, M)2(4i Yk)WOk 

for various N and M. We note that in the relevant system the number of 
unknowns is (N - 1) x (M + 1). 

TABLE 5.3 
Error for the Chebyshev-Hermite approximation to (4.2) 

N M ENM 

4 4 .6025E-00 

8 8 .7399E-02 

12 12 .1338E-03 

4 8 .5218E-00 

8 4 .3184E-01 

12 6 .5098E-02 

6 12 .9172E-01 
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Next we analyze an equation on the half-plane, 
(5 4) I -AV* + lYVv* + V* = g* for y = (@, 1) E R x (-oc, 0), 

*54 tv(4, O) , B EDR. 

The function g* is chosen such that v*( , 1) = q + en sin 11, which is an odd 
function in the variable I. The approximation is performed by collocation at 
the N+ 1 Hermite nodes in R for the variable 4 and the M nodes Yj,2M+151 
j = 1, ... , M, for the variable 1. The approximation, which is a polynomial 
of degree at most N in the variable 4 and a polynomial of XM in the variable 
11, is denoted by PNM Let 

(N+1 M 1/2 

ENM k Z (v PNM) (2i,N+1,1iyj,2M+1,1)oi,N+1,1Jo,2M+1,1) 
i=1 j=1 

then, in Table 5.4, EN M is reported for some values of N and M (that are 
chosen in order to have the same number of nodes in each direction). The 
system is solved by Gaussian elimination. 

TABLE 5.4 
Errors for the approximation on the half-plane 

N M ENM 

4 5 2.6395 

6 7 0.6129 

8 9 0.1110 

10 11 0.1675E-01 

12 13 0.2175E-02 

Finally, we end the section with the following problem: 
I IA -v*401r + 2+ 1* = g* in (-1, 1) x (-oo, 0), 

(5.5) V*(4, 0) 0, E [ 1], 
1V*( l,5)=O, <0, 

where g* is such that v * o 11cos+(1-2 )(cos ( - 1), which is an even 
function in the variable 11. As usual, by PN M (polynomial of degree at most 
N in the variable 4 and polynomial in XM for the variable 1) we denote the 
approximate solution obtained combining Chebyshev collocation with Hermite 
collocation as in ?4. Table 5.5 shows the error 

N M12 

EN,M= -ZZ (V PN, M) (i, No Yk,2M+1,1)w0k,2M+11) 
1 

i=O k=1 



618 DANIELE FUNARO AND OTARED KAVIAN 

TABLE 5.5 
Errors for the approximation of (5.4) 

N M EN,M 

4 3 .7686E-02 

6 5 .2057E-03 

8 7 .3065E-05 

10 9 .2966E-07 

12 11 .1998E-09 

14 13 .1014E-11 

As before, N and M are such that the system has the same number of un- 
knowns in each variable. 

Remark 5.1. We should point out that, as is usual in pseudospectral approxi- 
mation, when other parabolic or elliptic operators are involved, one can use the 
same basis of Hermite functions. For instance, consider the following elliptic 
equation: 

(5.6) -Au+b.Vu+Au=f inlRd, 

where i > 0, b E id, and f decays at infinity at a suitable rate. Then writing 
2 2 

v(x):=e 4u(x) g(x):= e X/4f (x) 
one checks that v satisfies the new equation 

-Av +(x+b).Vv+(d/2+A- Ijx2- 2b'x)v = g. 

This equation can be solved numerically by the collocation method as explained 
above. The matrix related to the corresponding linear system is easily obtained 
by the matrices of first and second derivatives given in ?3. 

The numerical approximation of semilinear parabolic or elliptic equations 
can be treated in a similar way. 

Remark 5.2. In the process of computing the nodes, weights, and entries of the 
derivative matrices, one encounters numerical difficulties due to the behavior of 
Hermite polynomials of high degree. For a study of this aspect, see [7], where 
appropriate numerical procedures are suggested. 
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