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INFINITELY DIFFERENTIABLE GENERALIZED LOGARITHMIC 
AND EXPONENTIAL FUNCTIONS 

PETER WALKER 

ABSTRACT. We construct infinitely differentiable solutions of the functional 
equation f(x + 1) = ef(x). Numerical values are found and their accuracy 
is discussed. 

1. INTRODUCTION 

Functions F, G satisfying 

(1) F(x+1)=eF(x) 

and 

(2) G(eX) =G(x) + 1 

are called generalized exponential and logarithmic functions, respectively. They 
are important in numerical analysis, where they are used in a new system of 
computer arithmetic which has significant advantages over floating-point arith- 
metic, including freedom from overflow and underflow, and a more satisfactory 
error measure. Details of this can be found in [1] and [2]. 

More generally, solutions of the Abelian functional equation 

(3) f(x + 1) = 0(X(x)), 

where 0 is a given function mapping a set X to itself, are important in study- 
ing the flow on X determined by 0. This is because the inverse function g 
(suitably defined) satisfies 

(4) g(q(x)) = g(x) + 1, 

and the composition qt$(x) = f(g(x) + t), t E R, satisfies the formal identities 
00(x) = x, 01 (x) = 0(x), and ot+u(x) = Ot(ou(x)) 

In the case X = C, 0(x) = eX - 1, the author showed [7] that (3) has a non- 
constant entire solution. Mapping properties of this function and its inverse in 
C can be found in [9]. Numerical values are calculated in [6], and by a different 
method in [8]. 
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The case X = C, q(x) = ex is of particular interest and difficulty owing to 
the absence of a real fixed point and the complicated nature of the trajectories 
of the exponential function, as is shown for instance in [3]. The existence of 
a real-analytic solution of (2) in this case was proved by Kneser [5], but that 
method did not allow numerical values to be calculated. 

In this paper we show how to construct a C' solution of (2) by the use of 
a C' auxiliary function h which satisfies 

h(ex) =eh(x) - 1 x eR. 

The numerical values of h are easy to calculate since the iterative procedure 
by which it is defined is rapidly convergent. Section 2 gives the construction of 
h and shows that it has the required properties. It is not clear whether h can 
be continued analytically off the real axis: if this were possible, then we could 
relate our solution to the one found by Kneser. 

This function h is composed with the solution g (which is known from [7] 
and [8]) of g(ex - 1) = g(x) + 1, to give the required G = g o h. The major 
difficulty arises in the calculation of g and this is discussed in ?3. 

Numerical values of G are calculated in the range [0,1]; values outside this 
range can be found from the functional equation. 

Other approaches to the problem which have been considered are discussed 
and compared in ?4. 

2. THE AUXILIARY FUNCTION 

The required properties of h are stated in Lemmas 1 (iii), 2 and Theorem 1. 
These results may be taken on trust by a reader who wants to proceed directly 
to ?3. We begin with the definition. 

Definition 1. For x E R, let 

ho(x)=x, h,(x)=log(l+eX), 

and generally for n > 1, 

hn (x) = log(1 + hn (eX)). 

We shall use the notations 1(x) = log(1 + x), f[n] for the nth iterate of f, 
and xn = expIni(x). In this notation hn(x) = I-n,(xn) 

Lemma 1. (i) Each hn is increasing and real-analytic, 
(ii) for all x, and n > 1, hn(x) > hn-I (x), and 

(iii) the limit h(x) = limnTOo hn(x) exists, is continuous and satisfies x < 

h(x) < x + e X for all x E R. 
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Proof. (i) is evident since both ex and 1(x) = log(1 + x) are increasing and 
real-analytic. For (ii) we see that for all n > 0 we have 

hn+ l (x ) = jInj (log(,1 + Xn+ ) ) 

= In ](xn + log(1 + I /xn+ )) 

> I (xn) = hn(x) 

since 1[n] is increasing, and the result follows. 
For (iii) observe that for x > 0, 

/In] (X) = 1 +l n(1) (x) 

1 1 1 
1 + l[n1](X) 1 + [1 ](X) 1 + X 

which is a positive decreasing function, bounded above by 1 /(1 + x) . 
But for all n > 1 we have xn > 0, and so from the mean value theo- 

rem applied to the above expression for hn+1 (x) we obtain on putting kn = 
log(1 + 1/xn+1) that 

h (x) = In(X + k ) 

(5) = In](xn) + kn (ln])I(Xn + 6kn), 0 < 0 < 1, 
< hn(x) + log(1 + 1/xn+1)/(1 + Xn). 

In particular, we have the weaker inequality 

hn+l(x) < hn(X) + l/Xn+1, 

and since the series E l/xn converges with extreme rapidity, we deduce the 
uniform convergence of the sequence (hn), the continuity of h(x), and the 
estimate h(x) = x + O(e-X) as x -- oc. 

It remains to prove the sharper inequality stated in (iii). It is enough to do 
this for x > 0 since for x < 0, h(x) is increasing while x+e x is decreasing. 
From (5) we have 

00 

h(x) < x + log(1 + eKx) + E{log(1 + 1/xn+1)}/(1 + Xn) 

<x+log(l+eJX)+{Z l/xn+l} (1+ex), 

which we want to be < x + e x. 
Hence, putting u = ex > 1, we want 

00 

A = E 1/eIn,(u) < B = (1 + u){1/u - log(1 + 1/u)}. 

We show this by proving that A < 1/(2u) < B. 
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Note that eU > e - 1 + u for u > 1, and so e[2](u) > ee+u -1,and similarly 
e[n] (U) > e[n] (1) eu-"' for all n > 1 . Thus, 

A < elsU l i/e[n](l) < el-u/2 < 1/(2u). 

For the other half of the required inequality, we have 

B = (1 + u)(1/u-log(1 + 1/u)) 
00 

= (1 + u) E(-1 )n /(nun) 
2 

= [1 +2E(-1) /{n(n + 1)un}] (2u), 

and the result follows since the sum of the series is positive. U 

Lemma 2. For all x E R, h(eX) = eh(x) - 1, and h is the unique solution 
of this functional equation which has the additional property that x < h(x) < 
x + constant, for x > 0. 

Proof. The functional equation is immediate since 

hn I (eX) = exp(hn (x)) - 1. 

Let g be any other solution with x < g(x) < x + C. Then 

g(x) = I (g(xn)) > l 
](xn) =hn (x) 

so g(x) > h(x). 
Also 

g(x) < l[n](xn + C) 
= l[n](x) H+C(ln ])'(xn + C) 0< <1; 

the second term tends to zero as in Lemma 1, and the proof is complete. u 

Note. The uniqueness result evidently holds under very much less restrictive 
conditions. 

Lemma 3. (i) For all x E R and n > 1, we have 0 < h'(x) < 1. 
(ii) Both h and all hn are convex. 

(iii) h is differentiable on R, and 

h'(x) = exP{E(Xn -h(Xn)) 
0 

Also, 0 <h'(x)<1I and I1-h/(x) =O(e6x) as x ---oo. 
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Proof. (i) We have 0 < h (x) < 1 by inspection, and for n > 1 

h' (x) = h' Ij (eX) exp(x - h 

from which (i) follows by induction since hn(x) > x. 

(ii) The convexity of hn (and thus of h also) follows from (i) and 

h/(x) = h 1(eX) exp(2xX-nhn(x)) 

+nhn (eX)(l - hn(x))exp(x -hn(x)). 

(iii) Since h is convex, there is an at most denumerable set D1 such that 
h'(x) exists for all x E R \ D1: also h' must have a limit as x -x oc through 
R \ D1, and this limit must equal 1 to satisfy Lemma 1 (iii). For some larger 
(but still denumerable) set D2 we can suppose that h'(x) and h'(xn) exist for 
all x E R \ D2, n > 1 . Then from the functional equation for h, 

h'(x) = h'(xn) eXP {E(Xr -(xr 
0 

and so, letting n - o00, 

h'(x) = exp {Z(xr - h(Xr))} 
0 

for x E R \ D2. But the summation is continuous, so h must be continuously 
differentiable and this expression for h'(x) is proved for all x E R, and in 
addition 0 < h'(x) < 1 . The last statement follows as in the proof of Lemma 
I (iii). U 

Lemma 4. The estimate 0 < x ?k) < (k - l)!nk-I(x )2k holds for all n > 0, 
k > 1 . For x > 0, we have Xn > n, and the weaker but more useful consequence 
that 

x (k) < (k -l)!(xn)3k-. 

Proof. Since xl = eX, xn = exp(xn- ), we have 

/ / 

Xn =X nxn-l = Xnxn- I ... xi 

But for all x > O ,both x and x2 are < eX, so xx2<x2, xx2x3 < x2x3 < 

x2, and generally 
/ 2 2 

Xn =x ... Xn < Xn-lxn < Xn. 

This gives the result for k = 1. 
Differentiate again to get 

Xn= Xn (xn + xi) = Xn' n 

say, where 
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and 
an) = X1+*** + x (k) < nx (k) 'n X n - n 

Hence xn < nXn , which is the result when k = 2. 
Suppose the result is proved for r = 1, ..., k. Differentiate 

,. . . 
Xn = Xn n 

(k - 1) times to get 

(k+)(k 1 ) x (r+1) (k-r) 

< (k l)r!nr(x )2(r+1)(k r -1)!k-r(X 2(k-r) 

r=O 

k-i 
- (k - l ) ! (xn)2(k+ 1) E k - k!nk (x 2(k+ 1) 

r=O 

as required. U 

Theorem 1. The function h is C00 on R. 
Proof. We show inductively that h is k times differentiable and that both 
1 - h'(x), and h(k)(x) for k > 2, are O(e-X) as n -- oc. Lemma 3(iii) gives 
the case k = 0. 

For the general case, let S(x) = >??(xn - h(xn)), so we already know that 
S(x) = O(e-X) as x -- oc, and that h'(x) = eS(x). 

It follows that S is differentiable with 
00 

S'(x) = (E -h (Xn))Xn, 
0 

where the series converges and its sum is O(e X) by comparison with 
j e-xn (x)2, using Lemma 4. Hence h is twice differentiable, h"(x) = 

eS(X)SK(x), and this also is O(e X). Now S is twice differentiable and 

00 

S" (x) = E{[1 - h'(xn)]xn' - h" (xn ) (xn )2}, 
0 

where the convergence of the series is assured by Lemma 4. 
We proceed inductively in this way. Having shown that S is k - 1 times 

differentiable and that s(k-1)(x) = O(e-X), the existence of h(k) is deduced 
from h' = eS by k - 1 differentiations, each term being again O(e-X). Then 
from S(x) = Z' (xn - h(xn)) we see by k differentiations and a suitable 

majorization from Lemma 4 that S(k) exists and is O(eGX) as n -+ oo. This 
completes the proof of Theorem 1. o 
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3. VALUES OF GENERALIZED LOGARITHMS 

We construct a generalized logarithm as the composition G = g o h, where 
h is the auxiliary function defined in ?2, and g is defined on Q = C \ (-oc, 0] 
as follows. 

Let 1(z) = log(1 + z) (the principal value on C \ (-oc, -1]), let z0 = z 

and for n > 1, let zn = l(zn-_): Zn = lnl (Z) in the notation of ?2. Then it 
can be proved (essentially as in [4]) that zn --- 0 as n -- oc, and that the limit 

g(z) = lim (n - (log n)/3 - 2/zn) 

exists locally uniformly on Q and satisfies 

O(lz)) = g(z) - 1, Z E Q 

The restriction of g to (O, o0) is the function we require. The above limit is 
attained too slowly to be of use for numerical calculation; however, if we take 
further terms in the asymptotic expansion of 2/zn we obtain [8, Theorem 2 
and Lemma 4] 

(6) 2/zn = n -Wn/3 + (Wn-1/2)/9n 
(6) + ~~ ~ ~~2 2 )3 

+ (Wn - 3J'V + 7/5)/54n + O(W /n) 

where W2=3g(z)+logn. 
Discarding the error term in (6) we obtain a quadratic equation for Wn with 

one large spurious root and a small root which gives the required value of W14 
and so of g. 

In Table 1 we give the value of g( 1) found in this way for successively larger 
values of n. The values were calculated in quadruple-precision arithmetic- 
only the most significant figures are shown. 

For the accuracy we may argue heuristically as follows. Each successive row 
in the table corresponds roughly to a doubling of n, and gives one extra digit 
in agreement between successive calculated values: this is consistent with the 
O(log n/n)3 form of the error term in (6). This persists until around n = 106, 

at which time accumulated errors from the iteration of 1(x) start to overwhelm 
all other contributions. This makes it reasonable to conjecture that the first 
fifteen or so leading figures in the last rows of Table 1 are correct. 

For higher accuracy one could either take additional terms in the asymp- 
totic expansion (6), or a more accurate routine for logarithms, though both of 
these possibilities leave unanswered the question of the actual precision of the 
calculated values of g as defined by its iterative limit. 

The same phenomenon is observed for other values of x, and values of g(x) 
found in this way are given in Table 2. 

The calculation of the auxiliary function h presents no comparable difficulty. 
The estimate 0 < hn+ I(x) - hn(x) < 1/xn+l established in Lemma 1 shows that 
hN(x) is already a sufficient approximation to h(x), where N is the least n 
with xn > 174 (when xn+l > 10 75): for any real x, N < 5. 
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TABLE 1 

n Value of g(l): n terms 

10 -2.256064 

20 -2.256876 

50 -2.256957 939 

100 -2.256960 915 

200 -2.256961 142 

500 -2.256961 158561 

1000 -2.256961 158866 260 

2000 -2.256961 158873 057 

5000 -2.256961 158872 499 

10000 -2.256961 158872 501761 

20000 -2.256961 158872 510526 

50000 -2.256961 158872 512340 

100000 -2.256961 158872 512361 

200000 -2.256961 158872 512355 

500000 -2.256961 158872 512353 

1000000 -2.256961 158872 512576 

TABLE 2 

x g(x) 

1 -2.256961 158872 51 

2 -1.048451 256956 99 

3 -0.599844 842289 86 

4 -0.355093 566244 87 

5 -0.196870 545099 95 

6 -0.084242 022425 19 

7 0.001068 371884 59 

8 0.068548 360145 03 

9 0.123655 590438 78 

10 0.169772 918950 97 
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TABLE 3 

x G(x) 

-0.02 -0.018204 301359 50 

-0.01 -0.009128 010558 46 

0 0.000000 000000 00 

0.01 0.009179 116718 55 

0.02 0.018408 699526 66 

0.1 0.093976 556873 55 

0.2 0.192283 329814 27 

0.3 0.293914 011374 90 

0.4 0.397671 246427 76 

0.5 0.502267 533530 87 

0.6 0.606450 659320 94 

0.7 0.709115 627061 05 

0.8 0.809364 315506 22 

0.9 0.906501 993526 06 

1.0 1.000000 000000 00 

The values of the required generalized logarithm are then calculated as the 
composition G = goh. Table 3 gives the normalized values G(x) = G(x) -G(0) 
for x = 0(0.1)1 . The extra values in the neighborhood of x = 0 enable G'(0) 
to be estimated, for use in the final section where it is compared with the value 
found by other means. 

4. OTHER METHODS 

One easy way to construct a solution of equation (2) is to define G(x) = x 
for 0 < x < 1 and use the functional equation to extend the definition to the 
rest of R. It is easy to verify that this gives a C1 function which is not C2 

To obtain a CO0 or even analytic solution, the author's "matrix method" [1], 
[8] assumes a power series for G about x = 0 in the form 

00 

G(x) = cnxn 

Substitute this into (2) and expand both sides to get the system of equations 
00 

Cn 1, 

and 1 00 

k!Zflnncn 
= Ck, k >1. 
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A possible way of solving these equations is to consider only the first N terms 
of the first N equations, thus obtaining (c(fN)) as the solution of 

N 

Zc N) -1 

and 

hcN nk 

(N) 

_ _ 

-cf)nk I () < k < N- 1. 
* 1k 

The solutions found in this way appear initially to converge with increasing N 
but for larger values of N the numerical results are inconclusive and no proof 
of convergence is known. The values of c(fN) found with N = 30, ..., 80 are 

0.9159437391.. ., N = 30 

0.9159447811 .., N = 40 

0.9159452632. . ., N = 50 

0.9159455362..., N = 60 

0.9159457310. . ., N = 70 

0.9159458315 .., N = 80. 

By contrast, the value of G'(0) from Table 3 is 0.915356365 using a 3-point, 
and 0.91536681 using a 5-point formula. This discrepancy in only the fourth 
decimal place seems to indicate that the matrix method, if it converges at all, 
may converge to a different solution of (2). 

The values of G(x) found by the matrix method when N = 40 are in Table 
4 and show similar differences from those in Table 3. 

TABLE 4 

x G(x) 

0 0.000000 000000 00 

0.1 0.093968 243244 43 

0.2 0.192134 482750 65 

0.3 0.293532 626333 53 

0.4 0.397050 838405 42 

0.5 0.501500 895931 00 

0.6 0.605696 451331 34 

0.7 0.708527 746133 22 

0.8 0.809021 767480 67 

0.9 0.906381 099933 32 

1.0 1.000000 000000 00 
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These differences cannot be explained without at least a proof of convergence 
of the matrix method. And we cannot identify our function defined by the 
iteration method of ?3, with Kneser's function defined by conformal mappings, 
without an extension of the domain of the function h to include nonreal values. 
Until both these difficulties have been overcome, the possibility remains that 
either two or three distinct generalized logarithms have been constructed. 
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