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THE DISTRIBUTION OF LUCAS 
AND ELLIPTIC PSEUDOPRIMES 

DANIEL M. GORDON AND CARL POMERANCE 

ABSTRACT. Let Y(x) denote the counting function for Lucas pseudoprimes, 
and 8f(x) denote the elliptic pseudoprime counting function. We prove that, 
for large x, Y(x) < xL(x) 112 and 9'(x) < xL(x) 1, where 

L(x) = exp(log x log log log x/log log x) . 

1. INTRODUCTION 

A pseudoprime is a composite number n for which 2 n- 1 mod n. The 
smallest pseudoprime is 341. Let Y(x) be the number of pseudoprimes up to 
x. The second author, in [12, 13], showed that for all large x 

exp{(logx)5/14} ? <(x) < xL(x-?/2 

where L(x) = exp(logx log3 x/log2x) and logk is the k-fold iteration of the 
natural logarithm. The exponent 5/14 has since been improved to 85/207 (see 
[14]). 

Let P and Q be coprime integers with D = P2 _ 4Q $& 0, P > 0 and 
PQ: 1. Let U0 =0, U = 1=, and Uk =PUk- I-QUk-2 for k > 2. Thena 
composite number n is a Lucas pseudoprime if (n, 2D) = 1 and 

(1) Un-,(n) = 0 (mod n), 

where e(n) denotes the Jacobi symbol (D I n) . Let Y(x) = A, Q(X) be the 
number of Lucas pseudoprimes up to x. The best known bounds for Y(x) 
are: 

exp{(log x)Cl } < Y(x) < x * exp{-c2(log x log2x) 1/2}, 

for some absolute positive constants cl and c2. The upper bound is due to 
Baillie and Wagstaff [ 1], and the lower bound is due to Erd6s, Kiss, and Sarkbzy 
[5]. Of course, the counting function Y(x) depends on the choice of P and 
Q. The above result is thus understood to hold for all x > x0(P, Q). 
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The first author introduced a similar test using elliptic curves. Let E be an 
elliptic curve over Q with complex multiplication by an order in K = Q(vf), 
for r E Z+, and suppose E has a rational point P = (xo, yO) of infinite order. 
Then, if n is a prime which is inert in K and does not divide the discriminant 
of E, 

(2) (n + 1)P = a (mod n). 

That is, when we view E as an elliptic curve over the finite field Z/nZ, the 
image of the point P has order dividing n + 1. An elliptic pseudoprime is a 
composite number n for which (-r I n) = -1 , n is coprime to the discrim- 
inant of E, and n satisfies (2). (The concept of (n + 1)P & a (mod n) for 
composite n will be made precise in the next section.) Let F(x) = E, p(x) be 
the number of elliptic pseudoprimes less than x. The best known upper bound 
for elliptic pseudoprimes was recently found by Balasubramanian and Murty, 
in [2]: for all sufficiently large x depending on the choice of curve E and point 
P, we have 

F(x) < x * exp{-c3 (logX log2x) 1/2 . 

The number c3 is positive and absolute. No good general lower bounds for 
elliptic pseudoprimes are known; the only result is from [6], that for certain 
curves and points, 

((x)?> lgX/log2x. 

In this paper we improve the upper bounds for 8(x) and Y(x). The 
techniques used are similar to those of [12], with modifications to deal with 
elliptic curves similar to those of [2]. We show that 8(x) < xL(x) 1/3 and 
S(x) < xL(x) 1/2 for large x. 

Throughout the paper, the letters p and q will always denote primes. 

2. ELLIPTIC CURVE PRELIMINARIES 

For a field k of characteristic > 3, an elliptic curve over k may be repre- 
sented as 

2 2 3 
E(k) ={(x, y) E k:y =x +ax+b}u&, 

where a, b E k and & is the point at infinity. E is nonsingular if the dis- 
criminant A = -1 6(4a + 27b 2) : 0. In this case, E(k) can be naturally made 
into an additive group with & being the identity element. 

Suppose E is a nonsingular elliptic curve defined over Q. Let End E denote 
the ring of endomorphisms of E(Q). It is known that EndE is either equal to 
Z or an order in an imaginary quadratic field K = Q(j/7). In the latter case, 
E is said to have complex multiplication by K. For instance, curves of the form 

2 3 
y = x - Dx have complex multiplication by Q(VN); the endomorphism 
corresponding to i sends a point (x, y) to (-x, iy) . 

If E is defined over Q and has complex multiplication by K, then K must 
have class number one, so that r E {1, 2, 3, 7, 11, 19, 43, 67, 163}. Con- 
versely, for each such r there are elliptic curves with complex multiplication by 
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OK' the full ring of integers of K. In addition, the fields Q(V/T), Q(V73), 
and Q(V\J7) have curves over Q with EndE = Z + 2OK, and Q(v7-) has 
curves with EndE = Z + 30K . 

For a rational number x, let u/v be its representation in lowest terms, 
where v > 0. Then Num(x) = u will denote its numerator, Den(x) = v its 
denominator, and .x = uv their product. 

Let E(Q) be a nonsingular elliptic curve defined by the equation y2 = 3 + 

ax + b, where the coefficients a, b E Q. If p is a prime with (p, 6A) = 1, 
by an abuse of notation, we can use this same equation to define a nonsingular 
elliptic curve E(FP) over FP, the field of p elements. In fact, there is a 
natural homomorphic projection E(Q) -- E(FP) which takes (x, y) E E(Q) 
to (x mod p, y mod p) . If one of x, y has a factor p in the denominator, 
then (x, y) maps to a' in E(Fp). 

A celebrated theorem of Hasse is that for any nonsingular elliptic curve 

E(FP), the number of points can be expressed as p + 1 - ap, where Iap I < 2 I. 
There is a polynomial-time, deterministic algorithm, due to Schoof [15], for 
computing the number ap . Nevertheless, for very large p, it is not an easy task 
to compute the order of E(FP). 

If E has complex multiplication by K = Q(j/7r), it is easier to compute 

IE(FP)I: 

(3) JE(F )l 
{ P + ' p inert in K, 

1p+ 1-2fl, p = (fl + y f-) (fl- yj7-), 

where 2/3, 2y E Z. Note that if p splits in K, formula (3) does not quite 
give IE(Fp)l, since we do not know the sign of ,B (and if K = Q(V\/) or 

Q(V7/=), there are extra units which add a few more possibilities). However, 
this is the only indeterminacy in (3), since primes p which split in K have a 

2 2 
unique representation up to units as /3 + ry 

The representation of p as /32 + ry2 can be found in random polynomial 
time by factoring the polynomial x2 + r in FP, using Berlekamp's algorithm 

[3]. Once a number c is found such that c2 + r 0 (mod p), one may use the 
method of Cornacchia [4] to determine /3 and y. 

Determining the sign of /3 in (3) can in principle be done using class field 
theory; it is worked out for K = Q( /ZT) and Q(-vx/) in [1 1]. 

For a nonsingular curve E(Q) with coefficients a, b E Q, define the division 
polynomial Y/" (x, y) by 

V/0 = ?, 

V1= 1, 

V 42 2y, 

/3= 3x4 + 6ax2 + 12bx - a2 

v/4= 4y(x6 + Sax + 20bx - Sa2x - 4abx - 8b2 _ a3 
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and the recursion 
2 2 

V/M+n V/M-n = V/M- 1 oM+ 1 V/n - /n- 1 ton+ 1 V/mX 

Thus, 

(4) ~ ~ ~~~~~~~3 3 
(4) Y'/2n+1 = -n /n+2- Vn+1 /n-1 

and 

(5) 2y ~ ~ ~~~~~~2 2 
( 5) 2ytYi2n = Y'n(VYn+2'n-1 - 1tn-2Y'n+)X 

The division polynomials characterize the division points of E(Q). Namely, 
P = (X0, Y) E E(Q) is an m-division point (i.e., mP = &) if and only if 
Ym(xo, yo) = 0. This continues to make sense if we replace Q by some alge- 
braic extension. However, we are primarily concerned here with the connection 
between the division polynomials and division points on E(Fp). 

We now state three lemmas on division polynomials. See Chapter II of Lang 
[10] for many facts about these polynomials and, in particular, the following 
lemma. 

Lemma 1. Suppose E(Q) is a nonsingular elliptic curve with coefficients a, b E 
Q, and let P = (x0, yO) be a point of infinite order on E(Q). For a prime p 
with (p, 6A) = 1, let T be the image of P in E(Fp). Suppose 2P :& a on 
E(Fp) . Then for any integer m > 2 we have 

mPT=ainE(Fp),X *im(xoyo)=0 (modp). 

Of course, we understand the rational number 'm (xo, yo) to be 0 (mod p) 
if in reduced form its numerator is 0 (mod p) . 

The second lemma involves the size of the values of the division polynomials. 

Lemma 2. Suppose E is a nonsingular elliptic curve, and P = (x0, yO) is a 
point in E(Q) of infinite order. Then for all natural numbers m, 

YI m(X0 y0)l <cM23 

for some constant c depending on the choice of curve E and point P . 

Proof. Choose c such that c6 > max{2, Y-2 and 
I 

0M)(X, Yo)I < cm -3 for 

m = 2, 3, 4. It is easy to show by induction that I/m(X0 Yo)l < cm 3 holds 
for all m, using (4) and (5). o 

Corollary 1. For E and P as in Lemmas 1 and 2, the number of primes p for 
which mnP = a in E(Fp) is 0(m2) . 

Proof. By Lemma 1, all such primes p divide the numerator of 'm (xo, yo), 
2 and by Lemma 2, Wm (x0, y0) = 0(cm ) . Therefore, it suffices to show that the 

denominator of 'm (xo, yo) is bounded by c2. 
Suppose we give a grading to the ring Z[a, b, x, y] by giving a weight 4, 

b weight 6, x weight 2, and y weight 3. Then 'm (x, y) is homogeneous 
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of weight m2 _ 1 with respect to this grading [10, p. 39]. Therefore, the 
denominator of lfm(xo, yo) is less than 

IDen(yo)m /3Den(xo)m!2Den(a)m2/4Den(b)m2/61 < m* 

Corollary 1 implies the case r = 1 of Lemma 14 in Gupta and Murty [7]. 
They prove a more general result using a considerably more involved argument. 

Suppose E(Q), P = (xO, yO), and p are as in Lemma 1, and E(Q) has 
complex multiplication by K = Q(Af7), where (-r I p) = -1. Suppose 
2P $ & on E(Fp). From (3), (p + 1)P = C1 in E(Fp), so that by Lemma 1, 

VPl (0 YO) - (mod p) . 

The key observation is that even if we do not know for sure that p is prime, 
we can still check if the congruence VP+I (xo, yo) 0_ (mod p) holds. We say 

a composite natural number n which satisfies (n, 6A) = 1 and (-r I n) = -1 
is an elliptic pseudoprime (for the curve E and the point P) if 

(6) (YP0,n)=l and V'n+1(xO,yO)=_O (modn). 

This is what we mean by the congruence in (2) for n composite. Note that if 
n is prime, then the condition (jO, n) = 1 assures that 2P :$ & on E(F,) . 

For any natural number m with (mi, 6ApO) = 1, define em = em(P) as 
the least positive number k for which Vk(xo, yo) 0_ (mod m). (If no such 
k exists, or if (mi, 6A90) > 1, define em = oo.) We will need the following 
lemma. 

Lemma 3. If m is a positive squarefree number with (m, 6AjO) = 1, then 
em = lcm{eq: q l m} and 

Vlk(Xo YO)) -=O (mod m) , em I k. 

Proof. The lemma is true for primes by Lemma 1, since ep is the order of 
the point P in E(Fp). Suppose m = qlq2 .q, with the qj's distinct primes. 
Let / = lcm{eq, ..., eq }. Then tVI(xo, yo) 0_ (mod m), so em < 1. But 

Yle (XO, yO) _ 0 (mod qj) for each qj, so each eq I em . Thus em = l. The 
second assertion in the lemma follows from similar considerations. o 

A similar lemma was proved by Ward [ 16] for a, b, x0, yO E Z, without the 
restriction that m be squarefree. 

3. ELLIPTIC PSEUDOPRIMES 

Let E(Q) be a nonsingular elliptic curve with coefficients a, b E Q and com- 
plex multiplication by Q(VF), a complex quadratic field with class number 
one, and let P = (xO, yO) E E(Q) have infinite order. 
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Theorem 1. There is a constant XO = XO(E, P) such that if n is a natural 
number and x > X0 then 

#{m <x: m is squarefree and em = n} < x exp (-logx 3+ log3 X 

Proof. Unlike the function 12(m) used in [12], em may be greater than m. 
Thus, n in the theorem may be greater than x. To determine an upper bound 
for n, if m < x is squarefree and em = n, note that 

(7) em<fl(q+1+2VX/0<mmfJ(1+f)? 171 (3 + ) 
qIm qlm vlq q?2logx 

v- 

for x so large that X < Hlq<2logx q . That such an inequality should eventually 
hold follows from the prime number theorem. Using partial summation and 
the prime number theorem, we have 

log 1.I (+ 3)? Z lgX 1 

q?2 logx ( q<21ogx 
q 

1og2X 

and with (7) this implies that em < xl+, for any e > 0 and x > x0(e). We 

shall take e = 1/2 and shall assume n in the theorem satisfies n < x312 

Let c = 1 - (4 + log3 x)/(3 log2 x), and c' = c - 1/(3 log2 x), with x large 
enough so that c' > 7/8. Then we need to estimate: 

Z 1?cEmc<Xc E m-C =XcJ7J(1-p) = x A, 
m<x em=n pIm:epIn epIn 

say. To prove the theorem, it is sufficient to show that 

(8) log A = o(log x/ log2 x). 

Since c > 7/8, we have 

logA = Cp-c + 0(l) = E E p-C + 0() 
epIn din ep=d 

There are only a finite number of primes p with ep = d for d =1 or 2, since 
those primes divide either the numerator of yO (for d = 2) or the denominator 
of yo (for d = 1). Assume now that d > 3. 

By Corollary 1, there are at most ad2 primes p with ep = d, where a 
is a constant depending only on E and P. Call them ql, q2, ..., qt., where 

2 
0 < t < ad 

For each qj, E(Fq,) has order kd, where kd is a multiple of d satisfying 

qj + 1 - 2, < kd < hq + 1 + 2V-, . 

Therefore, we have qj > kd/2. If qj is inert in K, then kd = qj + 1. If qj 
splits, say qj = (a + v,'b)(a - vfrb) = a2 + rb , then by (3) 

2 2 2 2 kd = qj+ 1-2a =a -2a + 1+rb =(a -1) + rb 
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The number of representations of kd as /l2 + ry2 with ,B, y > 0 is at 
most the number of divisors, T(kd), of kd (see, for example, Theorem 54 of 
[9]). In sum, the number of qj with the order of E(Fq,) being kd is at most 
2T(kd) + 1 < 3T(kd), and all of these qj satisfy qi > kd/2. From these facts, 
if d > 3, 

t t [cad2] 

P-c = qc < 6 E T(kd)(kd)c < 6T(d)d c E T(k)kc. 
ep =d i=l k=1 k=1 

Using partial summation, and EZN T (k) = N log N + 0(N) (see [8, Theorem 
320, p. 264]), this is 

1-c 

= 6 a (d)d2-3c(2logd + loga)(1 + o(1)) 
(9) 1 -C 

< (1 -c) zT(d)d -3c logd. 

To get rid of the log d factor, note that 

logd 1102X log2 x log3 x} < l/l2x log2 x log x 

Therefore, 

d 2-3c logd < d 2-3c log2 x log3 x, 

so that (9) implies 

E p -C < (1 - c)-rT(d)d log2 x log31x0 
ep =d 

From the above computations, we have 

log A < (1 -c) log2 x log3 x E T(d)d23c 
din 

(10) < (1 - C) 10g2 X log3 Xj(l1 + 2p2-3c' + 3(p 2-3c)2 + ) 
pin 

=(1 c) 11og2 x log3 x fJ( 1-p2-3c')-2 
pin 

Since 2 - 3c' < -5/8, we have 

r2 -3c' -2 'r2-3c' 23c 
log11(1- - ) 2Ep +0(1)<2 E P +0(1), 

pin pin p<2logx 

where x is large enough that H1p<2logxP > x3/2 This implies 

log (l -p 3c') 
2 

< (logx) 3 
<' log2x 

p n (3 - 3c')1og2X 1og3 X 
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Thus, if x is sufficiently large, we have 

fl(1 _p2-3c ) -2 < (log x) 112 
pan 

and with (10) we get 

log A 0log2X log2 x log3 x(log1x) 1/2 
log ? lo3 x 

which is o(logx/log2x). 0 

Theorem 2. For all sufficiently large x, depending on the choice of E and P, 
the number of elliptic pseudoprimes for E, P up to x is at most 

log x 10g3 x 
x *exp ( 1a 2 )X 

Proof. As is now customary with proofs of upper bounds on pseudoprimes, we 
will divide the elliptic pseudoprimes n < x into several possibly overlapping 
classes: 

(i) n < xL(x)> , 
(ii) there is a prime p n with e < L(x)3 and p > L(x)10, 

(iii) there is a prime p n with ep > L(x)3 and p < 3x/L(x), 

(iv) there is a prime p n inert in K with ep > L(X)3, 

(v) there is a prime p n which splits in K with L(x)3 < ep < v/xL(x) 
and p > 3x/L(x), 

(vi) there is a prime p I n which splits in K with ep > vftL(x) and 
p > 3x/L(x), 

(vii) n > xL(x)<l and every prime p j n is at most L(x)10. 

Clearly, the number of n in class (i) is at most xL(x) 1. 
From Corollary 1, the number of primes p with ep = m is O(m ). Thus, 

the number of primes p with ep < L(x)3 is 

E El< E m2<L(x)9 
m<L(x) ep=m m<L(x)3 

Therefore, the number of elliptic pseudoprimes in class (ii) is at most 

(12) E x/p < xL(x)-10 E 1 < xL(x)-l 
p>L(x)" ep <L(x)3 

ep <L(x)3 

If p is a prime dividing an elliptic pseudoprime n, then from Lemma 3 
(with m = p) we have 

(13) n -= 0 (mod p) , n + 1 -= 0 (mod es (p, ep) -1 

The number of n < x satisfying these conditions is at most 

(14) 1+ x 
pep 
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Thus, the number of elliptic pseudoprimes in class (iii) is at most 

p3xL(x) pp) p<3x/L(x) p<3x/L(x) 

ep L(x)3 ep>L(x)3 

The first sum on the right is at most 3x/L(x), and the final sum is at most of 
order X 1og2 x/L(x)3 . Thus, the number of elliptic pseudoprimes in class (iii) 
is 

(15) < x 

If p is inert in K, epI(p + 1), and so n = p is a solution to (13). This 
solution is prime, so the number of elliptic pseudoprimes divisible by p is at 
most x/pep. Therefore, the number of elliptic pseudoprimes in class (iv) is at 
most 

(16) z xlog3 
2<p<x pep L(x)3 
e ep L(x) 

For the special prime p dividing an elliptic pseudoprime n in class (v), 
let k = n/p, and / = ep. Since p splits, we have p = ,82 + ry2 for some 
1,81, jyj < y'x, where 2,8, 2y E Z. From (3), we have p -2,8 - 1 (modep), 
since ep j IE(Fp)I. Thus, 

(17) n+ 1 =kp+ 1 =k(2/3- 1)+1 0 (mod 1), I< f< VA. 
This means that possible integers 2fl fall in a unique congruence class mod 
l/(k, 1). For a fixed k and /, the number of /1 satisfying (17) is at most 

4 (k 1) + 0(1). / 
For each /3 and 1, the number of solutions y to 

IE(Fp) =62 + ry2 + 1- 2f8 _ O (mod /) 
is bounded by T(41/(r, 41))(r, 41) < T(l), since r < 1 . Since jy{ < +/x, the 
number of y's corresponding to any ,8 and / is thus 

< (a + 0(1)) T(1). 

Summing over k and / shows the number of elliptic pseudoprimes in class (v) 
to be 

< kL) (Z (k I) + (1))( Z + 0(1)) T() 

L(x)3<1<,Ix<?L(x) 

k,l / 

1 
k,1 ) k, I 
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The final sum is easily seen to be O(v/xL(x)2 log X) . The second sum is 

(X)2 T( 
' 

(X)2 l~2 < v/x h T(x ) < v+x-L x) 1(l) << v/ L~x) log x. 
k,l I 

Finally, the first sum is 

< xL~~(I) 
a 

x2 ET(I) X ET(1) 
<<X 

log2 X 

k,l /I 

Combining these estimates shows that the number of elliptic pseudoprimes in 
class (v) is 

(18) <x 1)2 

To estimate the size of class (vi), let n = kp for some k > 1 . We have 
p _ -1 +ap (mod ep), since ep I/ E(Fp)I = p+ 1 - ap . Since n + 1 =- 0 (mod ep), 
we have 

(19) kp+ 1 -k(ap- l)+ 1 =O (modep), 
and so 

Jk(ap - 1) + 11 > ep > vlx L(x). 
Since tapt < 2 lp, this means that k > L(x)/3 . But then, n = kp > x, and so 
class (vi) is empty for x sufficiently large. 

We will divide the pseudoprimes in class (vii) into two subclasses: those 
which have a squareful divisor s (i.e., for each prime p dividing s, p2 also 
divides s) with s > L(x)2 , and those which do not. The number of n < x in 
the first subclass is at most 

2 5 L(x) 
s>L(x) 

s squareful 

using partial summation and the theorem that Es<i t s squareful 1 <?I. 
For the rest of class (vii), we have x/L(x) < n < x, every prime p n 

10 2 
satisfies p < L(x) 1, and the squareful part of n does not exceed L(x) . Then 
n has a squarefree divisor d satisfying 

(20) x/L(x)13 < d < x/L(x)3. 

(For let m = the largest squarefree divisor of n. Then x/L(x)3 < m < x. 
We have some d I m with x/L(x)13 < d < x/L(x)3 . But d is squarefree and 
d I n.) 

As in (13), we have from Lemma 3 that 

(21) n-0 (modd), n+ l -0 (mod ed), (ded)=l. 

Therefore, the number of such n is at most 

E 
( 

+-) _ 1 
x d - +Lx E-Em - 

ded 
- L~~x) ded L~x) M<xM ed=Mrn 



LUCAS AND ELLIPTIC PSEUDOPRIMES 835 

where A' means the sum is over squarefree d in the range (20). By Theorem 
1, and a partial summation argument, the inner sum is at most 

exp (-logx 2103 x) 

uniformly in m, provided x is sufficiently large. Therefore, the number of n 
in class (vii) is at most 

(22) x-exp(-logx 3llog3x) 30lo2 x 

for large x . 
Summing the estimates for each of the classes gives the theorem. 0 

4. LUCAS PSEUDOPRIMES 

The proof of the bound for Y (x) will be similar to the proof for F (x). 
First we will need a few facts about Lucas pseudoprimes. See [1] for proofs. 

Let Rom denote the rank of apparition of m in the Lucas sequence Uk; i.e., 
the least positive k for which m Uk . If (p, 2DQ) = 1, we have 

COp (P (- (p)) 5 

where we recall that e(p) = (D I p). Further, (Wpk I pk lco, and for any m 

with (mi, 2DQ) = l,we have com = lcm{Wpk:pkllm}. If (m,2DQ) = 1, 
then m j Uk if and only if com I k. Also, let a and /f be the distinct roots of 

x2 _ Px + Q = 0. Then for k > 0, 
k k 

(23) Uk = /3 

We are now ready to prove: 

Theorem 3. There is an xO = xO(P, Q) such that if n is a natural number and 
x > xO, then 

#{m<x:) =n}l<x*exp (-logx 3 o13 X) 

Proof. As in Theorem 1, we may assume that n < X3/2. In fact, if the set in 
the theorem is not empty, it is possible to show that n < x log logx . 

Let c = 1 - (4 + log3 x)/2 log2 x, and let x be large enough that c > 7/8. 
Then 

<C 
C 

l 
E_ xX Emcx m- in=xcFJ(1pc< =x A, 

m<x OM=n fm=Icopn copIn 

say. As before, it suffices to show 

(24) logA = o(logx/log2x). 
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Since c > 7/8, we have 

logA = p-C + (l) =p-C + 0(l) 
c~p I n din cop=d 

The primes p with cop = d are divisors of Ud, which is 0(max{lal, fll}d) 
by (23), so there are at most 0(d) of them. (The assumptions on P and Q 
imply that Ud #0 O.) Call them ql, q2, ... , qt, where 0 < t < 3d, for some 
constant 3 depending only on P and Q. Those p with p I 2D contribute 
at most 0(I) to logA, so we may assume the primes qj do not divide 2D. 
Thus, each qj + 1 (mod d), so 

t t [6d] 

(25) E pc = qc <? 2(kd)- < 2d-cEkc ?< (1 -c)ldl 2C 
cop =d i=1 k=1 k=1 

Thus, 

(26) logA < (I - c)( - Edl-2c < (1I - c)-l J7(1 pl-2c)-1 

dIn pIn 

Since 1 - 2c < -3/4, we have 

logJrJ(l pl-2cyIl El-2C+0(1) < E pl-2c+0( 

pin pin p<2logx 

where x is large enough that Hp<2 logx P > X3/2. This implies 

(27) logTT(l -2c 
I 

<- (logX) 
- 

< log2 x 

p~~n ~ (2 -2c)1og2X ?1og3X 

Thus, if x is sufficiently large, we have 

j( _ p 1-2c) -1 < (ogx)1/2 

pin 

and with (26) we get 

log A 102 X l1/2 

which is o(log x/ log2 x). 

Theorem 4. For all sufficiently large x, depending on the choice of P, Q, the 
number of Lucas pseudoprimes up to x is at most xL(x) 12. 
Proof. As in Theorem 2, we will divide the Lucas pseudoprimes n < x into 
several possibly overlapping classes: 

(i) n <xL(x) 1, 

(ii) there is a prime p n with cop < L(x) and p > L(x)3 
(iii) there is a prime p n with cop > L(x) and e(p) =(n), 
(iv) there is a prime p n with cop > L(x) and e(p) # e(n), 

(v) n > xL(x)<l and every prime p I n is at most L(x)3. 
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Clearly, the number of n in class (i) is at most xL(x)1. 
The number of primes p with cop < L(x) is 

E, E, i? E< m < L(x)2. 
m<L(x) wOp=m m<L(x) 

Therefore the number of Lucas pseudoprimes in class (ii) is at most 

(28) E <xL(x-3 1 ?xL(x)-l 

p>L(x)3 cop <L(x) 
CwP<L(x) 

If p is a prime dividing a Lucas pseudoprime n, we have 

(29) n -=O (modp), n - e(n) =-O (mod cop), (p, ) =1. 

For a fixed p, the numbers n < x that satisfy (29) can be split into two cases: 
those with e(n) = e(p) and those with e(n) = -e(p) . In the first case, n = p 
is a solution to (29), but is not a Lucas pseudoprime. Thus, corresponding to 
a prime p in class (iii) there are at most x/pwp Lucas pseudoprimes n < x. 
We conclude that the number of Lucas pseudoprimes in class (iii) is at most 

(30) ~P x 
L (x) 

cop>L(x) 

Suppose p, n are as in class (iv) and n = kp. From (29) we have 

e(n) _ n = kp _ ke(p) (mod cop), 

so that k - 1(mod cop) . The number of k < x/p with k -1 (mod co ) is 
exactly [(x/p + 1)/wcop], so the number of Lucas pseudoprimes in class (iv) is 
at most 

(31) E+ < ) < x 

cwp >L(x) 

Every n in class (v) has a divisor d with 

(32) x/L(x)4 < d < x/L(x). 

As in (29), we have 

(33) n _0O (modd), n - e(n) =-O (modcod), (d cd)o=, 

so that n is in one of two residue classes (mod dwod), depending on whether 

e(n) = 1 or -1 . Therefore, the number of n in class (v) is at most 

E(1 d x) ?L(x) 2 _ 2x 2 z, d dw d L~x) (t~d L~) M<X Cod =M 
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where A' means the sum is over d in the range (32). By Theorem 3, and a 
partial summation argument, the inner sum is at most 

exp ( log x 2 1og2 x 

uniformly in m, provided x is sufficiently large. Therefore, the number of n 
in class (v) is at most 

(34) x exp l-logx o2 13 X 

for large x. 
Each of the classes has o(xL(x) 1/2) Lucas pseudoprimes, which proves the 

theorem. 0 
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