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ABSTRACT. If N is an odd perfect number, and qk 1l N, q prime, k even, 
2k then it is almost immediate that N > q . 

We prove here that, subject to 
certain conditions verifiable in polynomial time, in fact N > q 5k/2 Using this 
and related results, we are able to extend the computations in an earlier paper 
to show that N > 1030. 

1. INTRODUCTION 

A natural number N is perfect if a (N) = 2N, where a is the positive divisor 
sum function. It is not known whether odd perfect numbers exist. In an earlier 
paper [2], the first two authors described an algorithm for demonstrating that 
there is no odd perfect number less than a given bound K, and applied it with 

160 
K= 10 

That paper, and others referenced in it, are dependent on the simple obser- 
vation that if N is an odd perfect number and qk 1l N, where q is prime and 
k is even, then N > q k(q k) > q 2k. Methods based on this observation re- 
quire the explicit factorization of c(q ) for large values of q k, which imposes 
a practical limit on their effectiveness. Fewer factorizations would be required 
if it were known that N > q1 for 1 > 2k. We shall prove below that, under 
certain conditions which are readily tested computationally and easily satisfied 
in the cases to be considered, we in fact have N > q5k/2 (Theorem 2, below). 
In some cases the exponent on q can be raised almost to 3k (Theorem 3). 

The main result of this paper (Theorem 1) is still heavily dependent on the 
algorithm in [2], and we assume familiarity with that paper. It was stated at 
the end of that work that to continue the algorithm to obtain any substantial 
improvement of the earlier result required the factorization of the 81-decimal- 
digit composite number a( 13 72); this factorization has been completed and the 
result given in a postscript to [2]. But as our targeted lower bound increased, 
numerous other "unattainable" factorizations appeared to bar our way. One 
example is the factorization of u(3169 36), a composite number of 127 digits; 
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since 31695-36/2 = 316990 > 10315 ,this factorization could be avoided by appli- 
cation of Theorem 2. This approach was still not sufficient in some instances, 
but more powerful results along the same lines allowed us to avoid these fac- 
torizations as well. 

We have thus been able to prove 
300 Theorem 1. There is no odd perfect number less than 10 

To prove Theorem 1, there were nine cases, all detailed in ?4, requiring special 
attention. Apart from these, the original algorithm of [2], with the s q2k " result, 
was sufficient. 

A preliminary version of the present work is contained in [3]. There, the 
lower bound 1020 was obtained. 

To describe the new method, we need the definition below. For each a > 0, 
fa is a function defined on the positive integers and satisfying 1 < fj(n) < 2 
(so in particular fo(n) = 1). We shall choose fa as appropriate later. 

Definition. Let q be an odd prime and k a positive integer. Define 

Ea(q, k)={ p I p odd prime, > 2, ,6 even or =_ p -- I (mod 4), 

(I) (O < j < k, p131/f(p) < q2j and qj 11 jr(pfl))} 

and 
eg(q, k) = E logq (qi a(p)/pA ). 

Pfl E (q, k) 

(The value of j in the sum is that for which q 1I a(pI) 
Write e for ec. 

We can compute an upper bound on ea(q, k) in time polynomial in q and k 
by an efficient "lifting" algorithm, described in Hardy and Wright [7, Theorem 
123]. Usually, a = 0 and e(q, k) is quite small; numerical results will be given 
in ?3. 

We assume in the following that N is an odd perfect number. According to 
Euler, we may write 

N=q fHpf 
i=1 

where q and the pi are distinct odd primes, p1 -,f 1 (mod 4) and k 
fl2 -flj0 (mod 2). It is easy to show that j > 2, and we make implicit 
use of this below; in fact, it is known that j > 7 (Hagis [6]). Each pfli, and 

qk , are called components of N. 
Our new results follow. 

Theorem 2. Let N, qk and e(q, k) be as above. Then, provided k > 6e(q, k) 
and a(q k) is not a square and has no prime factors less than Iq'(q k), we have 

5k/2 N >q / 
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Theorem 3. Let N, qk, e(q, k) and p1 be as above. Let M be a unitary 
divisor of N (that is, M I N and gcd(M, N/M) 1) such that q t M, 

qt C(M) and p AM. Then 

N I Mq 3k-kl-e(qk) 

where qki II p1 + 1. 

2. PROOFS OF THEOREMS 2 AND 3 

The proofs depend on a number of lemmas, some of which will also be used 
independently in the proof of Theorem 1. 

Lemma 1. If p and q are odd primes with p I a(qk) and qm I p + 1, then 
k > 3m. 

Proof. Since qm I p + 1, we have p + 1 = 2aqm for some a > 0. Then, since 

| (qk) = (qk+1 _1)1(q - 1), 

qk+l - 1 = (2aqm- 1)R, 

where R > 0, and this implies k > m. From the preceding equation, we have 
R _ 1 (mod qm), so R = bqm + 1 say, and clearly b > 0. 

Thus, 
(1) qk+l - 1 = (2aq M -1)(bqm + 1), 

k+1 ~ m 2m 
so q > aqm . bqm > q from which k > 2m. 

We also have 
qk+l-m = 2abqm + 2a-b, 

so b = 2a + Aqm, where A = 2ab - q k+-2m, the latter implying A$0. Then 
we cannot have both b < qm and 2a < qm, since in that case 

i'{1 lb I-2a1 <1, 

a contradiction. Hence, b > qm or 2a > qm 
From (1), if 2a > qm, then 

qk+1 -I > (q2m _-1)(qm + 1) 

so qk+1 > q3m + q2m ?m > q3m ;andif b>q m, then 

qk+ - 1 > (2qm - 1)(q + 1) 

so q > 2q3m + 2qm 
- 

q2m > q3m. Either way, we infer that k > 3m, as 

required. C 

The example p = 5, q = 3, k = 3, m = 1 shows this result to be best 
possible. 
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Lemma 2. Let q be an odd prime and let S be any nonempty set of prime 
powers p9, with p odd and ,B at least 2 and either even or satisfying ,_ p 
1 (mod 4). For each pfli E S, suppose qk, f opl') and k > Z k. Then 

logqf a(i' ,2 Ek -e, (q k). 
P ES 

f 

Proof. We have quite generally that 

o(Pi) p fil 2kk,-logq(pf(/f-(p))) q2k -logq (q2kif(p)/pI3) 

fa(Pi) a (Pi) 

while if pa4' e S\Ea(q, k), then P a /f(Pi) > q2kZ . Thus, where Ea =Ea(q, k) 

logq (i > 2Eki- logq(q kf(pi)/Pfl) 
pf' ES pf'ESnEk 

_ 21:ki 
- 

E: logq(q2kf (p/pA) 

Pfi1 EEa 

* 2 ,: ki - sea(q , k) , 

as required. o 

We remark that Lemmas 1 and 2 require no reference to odd perfect numbers. 

Lemma 3. Let N, qk and pfl' be as in ?1. 
(i) If f16 > 1, then 

N> Iq3k-8,(qk)jnjf(p) 

(ii) If f16 = 1, then 

N>q q3k-k,-e0(q, k) 1 f(p) 

i=2 

where qki II p1 + 1. 

Proof. (i) Apply Lemma 2 with S equal to the set of components of N/qk 
Then, in Lemma 2, E ki = k and 

2N = (N) = c(qk)fr l 
a 7Jf (p) 

i= I fa( i=1 

> qk q2k-e8,(qtk) *JJ(p 

i=l 
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(ii) We again apply Lemma 2, this time with S equal to the set of components 
k of N/qp1. Then E ki =k-k1 and 

2N = a(N) = c(qk)q(p) ift f$ faf (Pi) 
i= (i i 2 

kq (k 1 2(k-k)-& +(qk) 

i=2 

Since P1 + 1 > 2q k, the result follows. z 

Corollary 1. Let N, q k and pfl be as above. If either (i) fil > 1, or (ii) f = 1 
and P1 I q(qk) then 

N >q8k/3-8(q, k) 

Proof. Take a =O inLemma3. (i)Since k>2 and q>3,wehave qk/3>2 
and the result follows from Lemma 3 (i). (ii) From Lemma 1, k > 3k1, so the 
result follows from Lemma 3 (ii) since 3k - k1 > 3k - k/3 = 8k/3. o 
Lemma 4. Let N, qk and P1 be as in ?1. Suppose that a(qk) is not a perfect 
square and is not divisible by p1 or any prime number less than B. Then 

j 
N2> 2Bq 

5k-e0(q, k) J fA (P) 
i=2 

Proof. We shall prove this lemma in the case where q I P1 + 1 and P1 11 N. 
(Minor adjustments are needed for the other cases.) Suppose qkI 11 P1 + 1. 

Since a(qk) is not a perfect square, there is a prime, P2 say, but not P1 , which 
divides a(qk) to an odd power and so divides N to a higher (even) power. 
Also p1+I >2q'k andPp2?B,so 

N > q a(q )PIP2 

q k qk(1 +q-1).2q k(1- qk ').B 

2~~~~~~~~ 
> 2Bq 2k+kl 

From Lemma 3 (ii), we also have N > q3k-k1-e0(q k) H= f 
2 5k e -u--Fa Pi) Hnc 

N2 > 2Bq 5k-0(q,k) 1fa (Pi) 
i=2 

as required. E 

Proof of Theorem 2. Take a = 0. Since k > 6e(q, k), we have 8k/3 - 
e(q, k) > 5k/2, and the theorem follows from Corollary 1, unless f, = 1 and 
7(q k) is not divisible by P1 . But then the result follows from Lemma 4, with 
B> qe(#,k) 



862 R. P. BRENT, G. L. COHEN, AND H. J. J. TE RIELE 

Proof of Theorem 3. As in the proof of Lemma 3, we consider two cases. If 

fil > 1 , then apply Lemma 2 with S equal to the set of components of N/Mq k 

Then E ki = k, since q t a(M), and 

2N = a(N) = a(M)a (M) =r (M) a(qk) Ii q(pfl) 

pjM 

> M. qk. q2k-e(qk) = Mq3k-8(qk) 

If I3l = 1, then apply Lemma 2 with S equal to the set of components of 
k N/Mq p1. Then E ki = k - k1 and 

2N = (M)a(qk)q(P1) j /(3Pf 
i=2 

pjM 
k k, 2(k-k1)-8(q, k) _ 3k-k -e(q, k) 

>M~q *2q *q 2Mq 

The result follows. C 

3. COMPUTATION OF e9(q, k) 

Theorem 2 is useful because an upper bound on Ea(q, k) can be computed 
in time which is bounded by a low-degree polynomial in q and k. We first 
outline an algorithm for this computation, and then give a numerical example. 

Suppose p E E (q, k), where E (q, k) is defined in ?1. Since p > 3 and 

P9 < 2aq 2k, we have B < a + 2k log3 q . Thus, to establish the polynomial-time 
result, it is sufficient to suppose that ,B is fixed. 

Define F(x) =1 +X + X2 + * .. + xA . We can enumerate the set Sj of least 

positive residues modulo qj of F(x) 0 O (mod qJ ) by the "lifting" algorithm 

described in [7, ?8.3]. If j = 1, we can simply check all possible solutions 

1, 2, ... , q - 1 (although faster methods, using a primitive root (mod q ), are 

preferable if q is large). If j > 1 , we apply Theorem 123 of [7] to obtain Sj 
from Sj- I, using what is essentially an application of Newton's method. Since 

F(x) is a polynomial of degree ,B, the number jSjj of solutions is bounded 

by ,8. 

Define Tj = {s+ qj I S E Sj, A > 0, (s+ Aqj) < f 2j 

Clearly, ITjI < F2a/fl 1Sj I. Since P E Ea(q, k), there is some j, 0 < j < k, 

such that qj 11 u(pf) and p9 < fa(p)q2j. Thus, to enumerate such p9, we 

need only check the elements of T1, T2, ... , Tk for primality. In order 

to obtain an upper bound on Ea(q, k), it is sufficient to use a polynomial-time 

probabilistic primality test, for the inclusion of a composite p will only increase 

the computed sum E logq(q2afa(p)/l). In practice, below, the upper bounds 

on each Ea(q, k) are in fact exact results, rounded up if not zero, since each p 

used was shown to be prime. 
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Example. To illustrate the algorithm, consider the computation of e(3169, 36). 

If f6 = 2, then F(x) = 1 +x+x2, so S1 = {97, 3071} is the set of solutions of 

F(x) - 0 (mod 3169). We construct the sets 2, 53, ... , S36 as in [7, ?8.3], 
and in each case IS I = 2. (In this example, a = 0, so = S in general, we 

would add a small number of multiples of qJ to the elements of S in order 

to obtain the set T1.) Applying a probabilistic primality test to the elements 

of T1, T2 ..., T36 rules out all but three possible odd prime p such that 

3169J II (p ): 

j= 1, p=97; 

j = 3, p = 5875516237; and 

j = 11 , p = 266602399893630549086712579594816998201. 

The contributions log3169(31692j/p2) from these three pairs (j, p) are re- 

spectively bounded above by 0.8651, 0.4192, and 0.0482. 
For /3 > 4, we proceed similarly, but we find no solutions satisfying all the 

constraints. (This is typical, since it is unlikely that the constraint pf < f 2j 

will be satisfied if /3 > 4.) We conclude that only the three pairs given above 

can contribute to e(3169, 36), so e(3169, 36) < 1.3325. 
Table 1 gives the details of all nonzero contributions to ea(q, k) in the cases 

relevant to the proof of Theorem 1. Note that there is only one case with /3 > 2. 

4. PROOF OF THEOREM 1 

Except for the nine cases to be discussed below, the proof is a straightforward 
extension of the algorithmic method given in [2]. In particular, it is still valid 
that the theorem will follow once the primes 127, 19, 7, 11, 31, 13, 3, and 5 

are eliminated as possible divisors of N. (As in [2], the elimination of these 
primes was carried out in the order given.) 

The computer output towards the proof of Theorem 1 has 12655 lines. Some 
relevant extracts are shown below. In -these, D means the indicated divisor 

has already been considered; for details, see [2]. The cases requiring special 
attention are the following. 

(i) Line 7343 concerns the possibility that 322142 11 N. Note that o(322142 
= C148, a composite number with 148 decimal digits, unable to be factorized at 

this time. We have e(3221, 42) = 1og3221 (32212/1 14) < 0.8126 (see Table 1); 
the conditions of Theorem 2 are satisfied, so 

N > 3221 ?5 > 10368 

(Such discussions will subsequently be much abbreviated.) 

(ii) Line 7163, (7172) = c146, e(7, 172) < 4.1400. By Theorem 2, 

N > 7 > 10 
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TABLE 1 
Nonzero contributions to e,(q, k), q II a(pI) 

a! q k i fi logq(q2Jfa(P)/Pf) p (see below) 

0 7 172 8 2 0.5496 ... 3376853 
19 2 0.0607 ... 10744682090246617 
25 2 0.3689 ... 936579478224094047977 
61 2 1.7036 ... 6778 ... 

119 2 1.0771 ... 1292 ... 
150 2 0.3796 ... 4020 ... 

0 3221 42 1 4 0.8125 ... 11 

0 612067 22 1 2 0.3398 ... 63601 
17 2 0.2253 ... 5291 ... 

0 3169 36 1 2 0.8650 ... 97 
3 2 0.4191 ... 5875516237 

11 2 0.0481 ... 2666 ... 

221 3 240 1 2 0.9380... 37 
Large primes p occurring above 

677822686658425215407071060694728215733634249273881 

1292705670586158487568763039916765694399830534390031 
9630427909162956962804028786608263511417448696587 

40205637668275700485119982296550937753326347643003642516228059494 
71752457774955475739650336310509313359098137765181615640612833 

52915283185303600217046163660913353511950087333134 
106429889256916343584191707324489815681786937851 

266602399893630549086712579594816998201 

(iii) Line 7985, u(61206722) = cM28, e(612067, 22) < 0.5652. By Theo- 
rem 2, 

N > 61206755 > 10118 

(iv) Line 8866, u(316936) = cM27, e(3169, 36) < 1.3324. By Theorem 2, 

N >31699 > 1031 

(v) Line 4479, u(4674) = c123. We apply Lemma 3, with a = 0. The 
antecedents of this case (see Figure 1) show that p= 2801 and k, = 1. Since 
e(467, 46) = 0, 

N > 467 
137 

>1365 

FIGURE 1. u(467 ) 

4340: 72 =19 ... , D 
4341: 74 ? 2801 
4342: 2801 1 3. 467 
4343: 4672 19... , D 

(some lines omitted) 
4479: 46746 = c23, case (v) 
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FIGURE 2. a(191 ) and a(191 ) 

8653: 131 ? 7, D 
8654: 1 32 3 .61 

(some lines omitted) 
9473: 134 =* 30941 
9474: 309411 = 34. 191 
9475: 1912 7... , D 

(some lines omitted) 
9526: 19142 ? case (viii) 
9527: 19146 = c105 case (vi) 

(vi) Line 9527, 0(19146) = c105. See Figure 2. Lemma 3, with a = 0, 
P1 = 30941, k1 =1 and e(191, 46) = 0, gives 

N > 19 1 137 
> 10312 

(vii) Line 11343, u(36389 22) = I Observing the antecedents of this case 
(Figure 3), we may apply Theorem 3 with M = 3 > 318, P1 = 363889, 
k1 = 1 and e(36389, 22) = 0. (Since 3 is a primitive root (mod 36389) and 

fi2 is even, we know that 36389 t o(3 f2).) Then 

N> * 31 83638965 >10304. 

(viii) Line 9526, 0(191 42) = c96. The antecedents of this case (Figure 2) 
show that P1 = 30941 and 191 11 a(p1). Then, in Lemma 3, k1 = 1 and 
ft(pl) > 1, so that 

N > q 3k-1-e0 (q, k) 
fA (Pi) 

i=2 

with q = 191, k = 42. The bound obtainable from Lemma 3 with a = 0 is 
not quite good enough, so (for the first time) we need to take a > 0. For any 
prime p, we set 

(P) if p IN, p 191 or 30941, 

1 otherwise. 

Since 

2= (N) < IP =191 30941 P 
N p - 1 190 30940 p.- 1' pIN = 

we have 

ti=2(Pi) (2 * 190 30940 a 



866 R. P. BRENT, G. L. COHEN, AND H. J. J. TE RIELE 

We need to take a large enough that H1J=2 fa(Pi) is large but not so large that 

ea(191, 42) > 0. After some experimentation, we find that with a = 50 we 
have e5o(191, 42) = 0 and 

N 9125 2 190 .30940 5> 0300. 
191 30941 

FIGURE 3. a(36389 ) 
10615: 32 ?13, D 

(some lines omitted) 
11214: 318 * 1597 . 363889 
11215: 3638891 5. 36389 
11216: 363892 = 1429 * 926659 

(some lines omitted) 
11343: 3638922 ?*c0, case (vii) 

(ix) Line 12201, u(3 240) = c115. Since e(3, 240) = 0 and 
38240/3 = 3640 > 10305, 

by Corollary 1 we may assume that I1 = 1 and p1 t a(3 24). Then, from 
Lemma 3 (ii), 

N > 3 720-1 > 10300 

if k? < 91. Thus we may assume further that k, > 92, so that p1 > 392 For 
any prime p, we set 

f (P) P - I _) if p l N, pA 3 orpl, 

I otherwise. 

Then, as in (viii), 

2 p -l 1 a 

Ilfa(Pi) > (2. * 3* 
FIfJ2 )(23 P1 

We find that with a = 221 we have e221(3 240) < 0.9381. (It is relevant for 
this calculation that 7, 13, 19, 31 are "forbidden" divisors. Otherwise, there 
would be contributions from these primes to the sum defining 6221 (3 240).) 
Using Lemma 4 with B = 1, we have 

/ 92 221 
2 1200-0.9381 2 3 -1 600 N > 2*3 2 - 92 > 10 

This completes the proof of Theorem 1. 
The entire computer output is printed in [4]. A copy has been deposited in 

the UMT file of this journal. 
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We should mention that the size of the task precluded us from being as 
fastidious as we were in [2]. The proof contains 199 partial factorizations. We 
estimate that at most 1658 lines would have been saved if those factorizations 
were completed. In most cases, the extra lines result from expanding the proof 
tree using a smaller prime than would be available if the complete factorization 
at the relevant line were known. In ten cases, the program had to backtrack 
from an assumed prime divisor q to another in the same or an earlier branch 
in order to avoid a composite a (q k) for which we could find no useful factors. 
The nine special cases (i)-(ix) arose because this option was not available or 
was impractical. (This can be seen in Figures 1 and 2.) On the other hand, 
there were three cases where the proof was shortened by branching on a prime 
smaller than the largest available (but there was no systematic search for such 
possibilities). 

The program for the proof of Theorem 1 differs from that used in [2] in 
that, besides calculating bounds named B 1, B2 and B3 there, it also calculates, 
when necessary, "bounds" named B25 and B30, which are Llogi0q5k/2j and 

Llog0 q3kj, respectively, for the current assumed component q k. However, 
the B25 and B30 "bounds" need not exceed 10300, and the program does not 
incorporate the calculation of values of Ea. so that they are not rigorous and 
are used only to flag the need for special discussions, such as those above. 

A supplement published with [2] contained the output for that proof. In [4], 
we include a list of factors of p' - 1 for p prime, 13 < p < 10000, and those 
values of n (all prime) which arose in our work. This complements the lists 
in [5] and should prove similarly useful. We take this opportunity to announce 
the availability of a machine-readable database of factors [1], including all those 
necessary for the proof of Theorem 1. 
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