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ANALYSIS OF LOCALLY STABILIZED MIXED FINITE 
ELEMENT METHODS FOR THE STOKES PROBLEM 

NASSERDINE KECHKAR AND DAVID SILVESTER 

ABSTRACT. In this paper, a locally stabilized finite element formulation of the 
Stokes problem is analyzed. A macroelement condition which is sufficient for 
the stability of (locally stabilized) mixed methods based on a piecewise con- 
stant pressure approximation is introduced. By satisfying this condition, the 
stability of the QI - Po quadrilateral, and the PI - Po triangular element, can 
be established. 

1. INTRODUCTION 

The development of stable finite element methods for the Stokes equations is 
a fundamental component in the search for efficient numerical methods for solv- 
ing the Navier-Stokes equations governing the flow of an incompressible fluid. 
For a primitive variable formulation, the importance of ensuring the compatibil- 
ity of the component approximations of velocity and pressure by satisfying the 
so-called "Babuska-Brezzi stability condition" is widely understood. In particu- 
lar, it is well known that conforming low-order elements like the P1 - Po (linear 
velocity, constant pressure) triangle are not stable. This impinges on efficiency, 
since the simple logic and regular data structure associated with low-order fi- 
nite element methods make them particularly attractive on modem vector and 
parallel processing architectures. 

The stability of the mixed approximations has become crucially important 
with the advent of "fast" iterative solution algorithms, for example, based on 
multigrid or preconditioned conjugate gradient iterations. Numerical experi- 
ments show that in the solution of the Stokes or Navier-Stokes equations, en- 
suring stability is essential if a reasonable rate of convergence of such iterations 
is to be achieved. For details, see the recent work of VerfUrth [ 16], and Bramble 
and Pasciak [4]. 

Recently, regularizations of the discrete Stokes formulation have been devel- 
oped as a means of overcoming the problem of incompatible mixed approxi- 
mations. The idea of such a regularization was first proposed by Brezzi and 
Pitkaranta [5] in the context of the P1- P1 triangular element. Subsequently, 
Hughes and Franca [9] derived a discrete Stokes formulation which ensured the 
stability of arbitrary mixed approximations. For a discontinuous pressure ap- 
proximation, this stability is achieved by introducing a pressure jump operator 
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into the discrete formulation. For low-order approximations, the only price to 
pay for having universal stability is that the jump operator must control pres- 
sure jumps across all internal interelement edges. This makes the Hughes and 
Franca formulation awkward to implement, since a nonstandard element as- 
sembly algorithm is required. We note that this limitation also applies to the 
absolutely stable formulation recently proposed by Douglas and Wang [6]. 

Numerically, there is evidence (see, for example, [ 14]) to suggest that a more 
robust way of stabilizing a mixed method based on discontinuous pressure is 
to modify the "global" jump operator of Hughes and Franca, so as to restrict 
the jumps in pressure in a "local" sense. In [14] we refer to the original and 
the modified formulations as global jump and local jump stabilizations, respec- 
tively. The precise definitions are given in the next section. A key feature 
of a local jump stabilization is that a conventional macroelement implementa- 
tion is possible, so that the modified methods can be directly implemented into 
element-by-element iterative solution techniques. 

In this paper we aim to derive a general method of analysis for such lo- 
cally stabilized mixed approximations. At the heart of the analysis is a local 
"macroelement condition," which is sufficient for the overall stability of the 
method. The use of such a macroelement condition as a means of verifying the 
Babuska-Brezzi stability inequality is standard practice (see, for example, Gi- 
rault and Raviart [7, p. 129]. The basic idea was first introduced by Boland and 
Nicolaides [3], and independently by Stenberg [1 5]. For ease of notation, and 
to keep the paper brief, we will confine our attention to the Qi - Po (bilinear ve- 
locity, constant pressure) quadrilateral, and the PI - Po triangular element. The 
generalization of our analysis to cover higher-order locally stabilized methods, 
and three-dimensional tetrahedral and hexahedral elements, is straightforward. 

An outline of the paper is as follows. In ?2 the global and the locally stabilized 
Stokes formulations are defined. In ?3 the macroelement condition, which is the 
key to stability, is introduced, and error estimates for the two locally stabilized 
methods are obtained. By comparing these estimates with those of the globally 
stabilized method, the improved robustness of the local stabilization approach 
is justified theoretically. 

2. STABILIZED STOKES FORMULATIONS 

With the usual notation, i.e., defining the velocity and pressure spaces by V 
[Ho (Q)]2 and P = Lo2(Q), respectively, the classical variational formulation of 
the Stokes equation (cf. [7, p. 82]) is: find u E V and p E P such that 

(2.1) (gradu, gradv) - (p, divv) = (f, v) Vv E V, 
(q, divu) = O Vq E P. 

where (, .) denotes the usual L2 inner product. 
Introducing the generalized bilinear form 

(2.2) F((u, p); (v, q)) = (gradu, gradv) - (p, divv) - (q, divu) 

and the linear functional 

(2.3) Y(v, q) = (f, v), 

we can recast the Stokes formulation (2.1) as: find (u, p) E V x P such that 

(2.4) 5((u, p); (v, q)) = 2(v, q) V(v, q) E V x P. 
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Finite element subspaces of V and P are characterized by Th , a partitioning 
of Q2 into triangles or quadrilaterals, assumed to be regular in the usual sense, 
i.e., for some a and co with a> 1 and 0 < o < 1, 

(2.5) hK < UpK VK E Th, 

(2.6) | C06K1?X < W, i = 1, 2, 3, 4, VK E Th, 

where hK is the diameter of element K, PK is the diameter of the inscribed 
circle of element K, and OiK are the angles of K in the case of a quadrilateral 
partitioning. The mesh parameter h is given by h = max(hK), and the set of 
all interelement boundaries will be denoted by rh . 

The finite element subspaces of interest in this paper are defined by setting 

(2.7) RI (K)=f PI (K) if Kis triangular, 
(Q2 (K) if K is quadrilateral, 

giving the continuous piecewise (bi)linear velocity subspace 

(2.8) Vh = {V= (VI, V2) E [HV(Q)] ViK eR1(K), i=1,2, VK ETh} 

and the piecewise constant pressure subspace 

(2.9) Ph= {q E L(Q); q1K E PO(K), VK E Th}. 

We note that neither of these methods are stable in the standard Babuska- 
Brezzi sense; the PI- PO triangle "locks" on regular grids (since there are more 
discrete incompressibility constraints than velocity degrees of freedom), the 
Qi- Po quadrilateral is the most infamous example of an unstable mixed meth- 
od, as elucidated by Sani et al. [13]. 

With the choices of Vh and Ph above, a globally stabilized discrete formu- 
lation of the Stokes problem (cf. [9]) is: find Uh E Vh and Ph E Ph such 
that 

(graduh, gradv) - (Ph, divv) = (f, v) VV E Vh, 

(2.10) (q, divuh)+ fi E hej[PhIeDIe ds= O Vq E Ph. 

where H[De is the jump operator across e E rh and /? > 0 is the "global" 
stabilization parameter. 

Given any subdivision Th, a macroelement partitioning Ah may be defined 
such that each macroelement M is a connected set of adjoining elements from 
Th. Every element K must lie in exactly one macroelement, which implies 
that macroelements do not overlap. For each M, the set of interelement edges 
which are strictly in the interior of M will be denoted by rM. Furthermore, 
the length of edge e E rM is denoted by he . 

With these additional definitions a locally stabilized discrete formulation of 
the Stokes problem (2.1) can be stated: find Uh E Vh and Ph E Ph such that 

(grad Uh, gradv) - (Ph, divv) = (f, v) Vv E Vh, 

(2.11) (q, divuh) + fj E EZhej hePhle[qle ds 0 Vq E Ph, 
MEAfh eEFM 

where Hf.Je is the jump operator across e E rM and I? > 0 is the "local" 
stabilization parameter. 
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FIGURE 1 
Reference and arbitrary (Qi- Po) macroelements 

A general framework for analyzing the locally stabilized formulation (2.11) 
can be developed using the notion of equivalence classes of macroelements. As 
in Stenberg [1 5], each equivalence class, denoted by IMP contains macroele- 
ments which are topologically equivalent to a reference macroelement M. To 
illustrate the idea, two practical examples of locally stabilized mixed approxi- 
mations are given below. 

Example 2.1. The first example is the standard QI- Po approximation pair. A 
locally stabilized formulation (2.11) can be constructed in this case, if Th is 
such that the elements can be grouped into 2 x 2 macroelements, with the 
reference macroelement M and an arbitrary M E Fn as illustrated in Figure 
1 (there is only one equivalence class in this case). 

An obvious way of constructing such a partitioning in practice is to form the 
grid Th by uniformly refining a coarse grid Ah, for example, by joining the 
mid-edge points. 

Example 2.2. The triangular P1 - Po approximation pair can similarly be stabi- 
lized if the partitioning Th is constructed such that the elements can be grouped 
into disjoint macroelements, all consisting of four elements, as illustrated in 
Figure 2. 

A~~~~~~~~~~~~~~ 
K4~~~~~~~~~~K 

A~~~~~~~~~~ 

A K A K2 
K, K2 

A 

M M 

FIGURE 2 
Reference and arbitrary (P1 - PO) macroelements 
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The stability of these mixed methods for the macroelement partitionings de- 
fined above are formally established in the next section. 

3. STABILITY OF THE LOCALLY STABILIZED STOKES FORMULATION 

For a macroelement M the restricted pressure space is given by 

(3.1) PO, M = {q E Lo(M); q1K is constant VK c M}. 

Defining a symmetric bilinear form W (, h ), which is defined on Ph X Ph, by 

(3.2) Wh (r, q) = E Z hej [ rJle[ql]eds, 
ME4h eErM 

we first prove a local coercivity result for the form WM(, *) which is the re- 
striction of Wh(, *) to a macroelement M, i.e., 

WM(r, q) = E he /[r]Je[q]e ds. 
eErMe 

Lemma 3.1. Let GM be a class of macroelements. Then there is a positive con- 

stant yM= y(M) such that 

(3.3) WM(q q q) > y- Jlq 11 2M Vq E Po,m 

holds for every M E jM . 

Proof. Consider first a fixed M E GM. From the definition of WM we note that 
'M(q, q) = 0 if and only if qIM is a constant. Hence, the constant YM defined 

through 
YM= inf WM(q, q) 

qEPo M 
IIqIJo,M=1 

is positive. Next, by virtue of a scaling argument (cf. [15, Lemma 3.1]), the 
regularity conditions (2.5) and (2.6) ensure that there is a constant YM such 
that 

YM>YM >O VME 9Mg 

which implies (3.3). o 

Let us assume now that there is a fixed set of classes FM, i = 1,..., n, 
n > 1 , such that every macroelement M E Ah belongs to one of the equivalence 
classes. 

Following [15], we define _Ih to be the L2 projection from Ph onto the 
subspace 

(3.4) Qh = {E e L2(Q); I'IM is constant VM E 4h}. 

A direct consequence of the lemma is the following "global" inequality: 

(3.5) Wh(q, q) > a 11(I - fIh)Io Vq E Ph, 

where a1 = min{yf , i = 1, ..., n} and is independent of h. 
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The locally stabilized formulation (2.1 1) can be written in the general form: 
given fl > 0, find Uh E Vh, Ph E Ph such that 

(3.6) A ((Uh, Ph); (V, q)) = Y (v, q) V(v, q) E Vh X Ph. 

where 

(37) h((Uh, Ph); (v, q)) = (graduh, gradv) - (Ph, divv) 
- (q, divuh) -flh(Ph, q). 

The main result of the paper is now stated and proved. 

Theorem 3.1. Given a stabilization parameter /3 > fib > 0, suppose that every 
macroelement M E Th belongs to one of the equivalence classes Xn , and that 
the following macroelement connectivity condition is valid: for any two neighbor- 
ing macroelements M1 and M2 with fMlM, ds $ 0 there exists V E Vh such 
that 

(3.8) suppvcMlUM2 and JM v M nds,0. 
MlnM2 

Then, assuming that u E [H2(Q)]2 and p E H1 (Q), there exists a constant C, 
independent of /3, such that we have the error estimate 

(3.9) IIU - Uhill + IIP -Ph11O ? Ch(1U12 + IPI1) 
Proof. Following Babu'ska [1], we first establish the existence of a constant a > 
0, independent of ,8, such that for all (v, q) E Vh X Ph 

(3.10) sup .9h ((v , q); (w, r)) > a(IIvII I + I1qIIo). 
(w, r) EVh XPh I~wlII + IIrIIo - 

To this end, let (v, q) E Vh X Ph and aI be as above. Because of the condition 
(3.8) (cf. [15, Lemma 3.3]), there exist a positive constant &2, independent of 
h, and a g E Vh satisfying 

(3.11) (Tlq, divg) = 1fl1qII0 and IugI1 < a2IIhflhqIIO. 

If w E Vh and r E Ph are now chosen such that w = v - g and r = -q, where 

(3.12) = 2 (i + 1) 

then it follows that 

Rh ((v , q) ; (W., r)) 
= (Vv, Vv) - 6(Vv, Vg) + 6(q, divg) + flih(q, q) 

> hvh6 -3h-vhihgh +3(fsq, div g) 
- ((h - I)q, divg) + alfill(I - flh)q4'2o 

> hVh12 - &a2IVIIIhhqIlo + 61llhcIlhh 

-a2I2(I - flh)qIIOTllhqIIO + alfloll(I - flh)qhh0 
1 

V2 2| 2 

2a 11114110h ll + 2 | (-1I)q112 62a2 al_ 

- 

hhflo 
qh 

2 
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that is, 

7 ((v, q); (W. r)) > 2|VI + J l||in ql| + 2 ||Il*) |o 

i.e., there is a positive constant Ki, independent of lU such that 

(3.13) Rh((v, q); (w, r)) > KcI(JIvIIi + 1lqll0)2. 

On the other hand, 

(3.14) liwIli + I|rI|o < K2(0VIIvi + l1qllo) 
for some positive constant Kc2 

Finally, combining (3.13) and (3.14) establishes inequality (3.10) with a = 
K1/K2, independent of f1. 

Below, C1, C2, C3, ... will be used to denote constants which are inde- 
pendent of h and /1. In the first instance, we let u denote the interpolant of 
u in Vh, and j3 the interpolant of p in Ph. Then, for all (v, q) E Vh X Ph, 

A ((Uh -6, Ph - P); (v, q)) 
= h((Uh, o h) ; (V , q)) -(U p) (V , q)) + Hu h P.q) 

= ((u, p); (v, q)) - R((i, P); (v, q)) + flh (p, q) 
(using (2.4) and (3.6)) 

(3.15) =R((u- , p-iP); (v, q)) + flh(P, q). 
Using the stability inequality (3.10) in the usual way gives 

ulh - ufi 1 + IlPh - P11o 

(3.16) < Cl ( IU-Ul+ I + AP-11o+fl sup h (f,5q)) . 
qEPh 

JlqJJ0=I 

In order to estimate the jump term in (3.16), note that, since we assume that 
p E HI(Q), we have Fh(P, q) = 0 Vq E Ph. Using the triangle and Schwarz 
inequalities (and making use of the regularity conditions (2.5) and (2.6)) then 
gives 

h(P,f 5 ) = h(p - p q) 
( \~~~~~~1/2( 1/2 

<C2 (EhK | p _ p12 ds hK q1AK d) ~KErh )KKKE~h VK 
Id) , 

where AK refers to an element edge, and by a scaling argument (cf. [2, Lemma 
1]) 

(a, hK j Iq 2ds) < C3Ilqijo, 

implying that 
1/2 

sup W(? q) < C2C3 ( hK jIP pI2 ds) 
lqEloh KElh AK 
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Substituting into (3.16), and applying the triangle inequality in the usual way, 
gives 

IIU-UhI I + IIP-Ph IO 

(3.17) ? C4 (Ilu - fill + liip - -13Io + flC5 (zhK 1K ds) 1/2) 

(3@17) ( (K~~~~~~ETh /K) ) 

with constants C4 = 1 + Cl and C5 = C1C2C3/(1 + C1). 
Using a further scaling argument (cf. [2, Lemma 3]) then gives the estimate 

z \ ~~~~~~~1/2 

EhK AK _P 12 ds) < C6hlpll, 
(KETh K / Chp1 

implying an optimal error estimate (3.9) except that the constant depends on ft 
(which implies that the approximation becomes increasingly inaccurate as /3 is 
increased). 

To see that the method does not actually behave in this way, consider re- 
placing the interpolant fi in (3.15) by fl, the L2 projection of p into Qh, 
giving 

(3.18) huh - thu + I[h -ip ii| ? C1 - tillI + jIp -Pllo + fA sup Wh q)). 
qEPh 

JJqJJo=1 

In this case, we have Fh(i, q) = 0 Vq E Ph, implying the error estimate 

(3.19) HU - Uhill + IlP-PhIlO < C4(IlU - till1 + lip -fIIo) 
Combining (3.17) with (3.19) gives the "optimal error estimate" 

lU - UhjIll + lip-lPhllo 

C4 (Ilu - ullI + min lIP -Pllo + fC5 (XhK hj _1)1/2 

IP --11P}) 

proving that (3.9) is meaningful even in the limit of arbitrarily large /1. E 

A feature of the proof of the theorem is the fact that it establishes the va- 
lidity of the local stabilization approach with an arbitrarily large stabilization 
parameter. The method behaves like a constant pressure approximation over 
the macroelement in this case. It is easily seen that global stabilization meth- 
ods will not be as robust, i.e., the constant in the error estimate in [9] tends to 
infinity as the "global" stabilization parameter is increased. In our other pub- 
lications [11, 14], the numerical performance of the locally stabilized methods 
above is compared with that of the analogous globally stabilized methods of [9], 
and the inferior robustness of the globally stabilized methods is discussed in 
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detail. The crucial point is made that when using a locally stabilized method, 
the magnitude of fl can be tuned to improve the rate of convergence of the 
iterative solver, without adversely affecting accuracy. 

Corollary 3.1. Constructing a grid of Qi- Po quadrilaterals such that the refer- 
ence macroelement M and an arbitrary M E 9M are as illustrated in Figure 
1, leads to a stable mixed approximation satisfying the optimal error estimate 

(3.20) IIU-UhII1 + IIP -PhIIO < O(h). 

We note that the reference 2 x 2 macroelement is the obvious choice, since it 
is the smallest patch of elements which satisfies the macroelement connectivity 
condition (3.8). 

Remark 3.1. The corresponding three-dimensional element is the Qi- Po (tri- 
linear velocity, constant pressure) hexahedron, which can be stabilized locally 
over a 2 x 2 x 2 macroelement. Further details can be found in [10, Chap- 
ter 3]. 

Remark 3.2. The stability of the 2 x 2 macroelement above is not surpris- 
ing, since it is well known that the standard Qi- Po method can be rendered 
stable over a grid of 2 x 2 rectangular macroelements by excluding the local 
"checkerboard" pressure component from the pressure space (see for example, 
Gunzburger [8, p. 30]). 

A similar stabilization of the Qi - Po method above (also based on a 2 x 
2 macroelement construction), has earlier been proposed by Pitkaranta and 
Saarinen in [12]. Their method corresponds to (3.6) with a Wh defined by 

(3.21) Wh(r, q) = (flcr, flcq), 

where TY denotes the orthogonal projection onto the space spanned by the 
checkerboard functions. For details see [12]. We note that the error estimate 
for the Pitkaranta and Saarinen method is identical to that above. The main 
advantage of our method is that it seems to be more straightforward to imple- 
ment. 

Corollary 3.2. Constructing a grid of PI - Po triangles such that all the macroele- 
ments are equivalent to the reference macroelement M illustrated in Figure 2, 
also leads to a stable mixed approximation satisfying the optimal error estimate 
(3.20). 
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