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UNCONDITIONAL CONVERGENCE 
OF SOME CRANK-NICOLSON LOD METHODS 
FOR INITIAL-BOUNDARY VALUE PROBLEMS 

WILLEM HUNDSDORFER 

ABSTRACT. In this paper convergence properties are discussed for some locally 
one-dimensional (LOD) splitting methods applied to linear parabolic initial- 
boundary value problems. We shall consider unconditional convergence, where 
both the stepsize in time and the meshwidth in space tend to zero, independently 
of each other. 

1. INTRODUCTION 

In this paper the accuracy of some simple splitting methods will be ana- 
lyzed. The methods are used for the numerical solution of initial-boundary 
value problems for partial differential equations (PDE's) in two space dimen- 
sions. Discretization in space of such PDE problems leads to a large system of 
ordinary differential equations (ODE's) 

(1.1) it(t) = F(t, u(t)) (O < t < T), u(O) = Uo, 

where the vector function F contains discretized space derivatives. It is often 
possible to decompose F into two simpler functions F1 and F2, 

(1.2) F(t, v) = F1 (t, v) + F2(t, v). 

Standard implicit methods to approximate (1.1) require the solution of large 
systems of algebraic equations involving the whole function F. A well-known 
method is the implicit midpoint rule 

(1.3) Un+ = un + TF(tn + 'T, 'n+ 'Un+1) (n = 0, 1, 2, ..) 

For linear problems, (1.3) is also often called the Crank-Nicolson method in the 
PDE literature. The vectors Un approximate the exact solution u of (1.1) at 
tn = nT with z > 0 the stepsize in time. Method (1.3) is of 2nd order in the 
classical ODE sense. 

In terms of computational effort it can be more attractive to exploit the split- 
ting (1.2). In this paper we shall consider some locally one-dimensional (LOD) 
methods, where the step Un |-4 un+1 is performed in two stages, in each of which 
only one of the functions F, or F2 is used. The best known LOD method is 
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based on the backward Euler method (see Yanenko [17]). To achieve 2nd order, 
Yanenko also derived LOD methods based on the Crank-Nicolson method. In 
this paper we primarily consider 

(1.4a) Un+1/2 = Un + F1(tN + 4I, 2Un + 2Un+1/2), 

(1.4b) Un+1 = Un+I/2 + TF2(tn + 4r, I Un+1/2 + Un+I) 

for n > 0. The vector Un+1/2 is an intermediate vector, only used for the 
internal computation. If F1 and F2 have a more simple structure than F, the 
computation of un+I from (1.4) can be done more efficiently than from (1.3). 
However, the LOD method (1.4) will have 2nd order only if F1, F2 are linear 
and commuting; in more general situations it will be merely of 1 st order, owing 
to lack of symmetry (see [4]). Below we will consider two modifications which 
restore symmetry and 2nd order. 

Denote (1.4) as 

(1.5) Un+I = d1,2(un) (n = O. 1, 2, ...), 

where the order of the indices 1, 2 refers to the fact that first F1 was used and 
subsequently F2. In this paper we shall call (1.5) the basic scheme. 

Symmetry can be restored by interchanging after each step F1 and F2. This 
idea, which can be found in [9, 10], leads to the following modification: 

(1.6) un+I = (I, ,2(un), Un+2 = 02,1(un+i) (n = 0, 2, 4, ...), 

which will be called here the sequentially alternating scheme. This modification 
indeed has again 2nd order, and it requires the same amount of computational 
work as (1.5). 

At first sight the scheme (1.6) seems superior to (1.5). This conclusion, how- 
ever, will turn out not to be justified. The reason is that the classical order 
concept for ODE's to which we referred to until now is the order of consis- 
tency/convergence for nonstiff ODE's, where F satisfies a Lipschitz condition 
with a moderate Lipschitz constant L, and TL is assumed to be sufficiently 
small. In our situation, where (1.1) originates from a PDE problem, the Lip- 
schitz constant L will contain negative powers of the meshwidth in space h. 
As a consequence, L will be very large for fine space grids, and the classical 
convergence theory cannot be applied. In fact, the order of the discretization 
errors in time may be affected by small meshwidths, a phenomenon called order 
reduction. We will see that order reduction destroys the favorable convergence 
properties that (1.6) has for nonstiff ODE's. 

Another modification of (1.5), due to Swayne [14], reads 

(1.7) Un+I = 4(DI,2(un) + 1I2,1(un) (n = 0, 1, 2,...). 

We shall refer to (1.7) as the parallel alternating scheme. Its order of consis- 
tency/convergence in the classical ODE sense is also 2. The results in [14] might 
give the impression that this scheme does not suffer from order reduction. It 
will be shown that this is not entirely correct: the order of the local discretiza- 
tion errors is reduced for small h > 0, but it will also be shown that in the 
transition from local to global errors this reduction is annihilated because of 
damping and cancellation effects. 
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The accuracy analysis for the above LOD methods will be performed on 
simple linear heat flow problems with a source term and Dirichlet boundary 
conditions. For space discretization, standard finite differences on a rectangular 
grid Qh are considered, h being the meshwidth in space. To obtain a full 
convergence analysis, we let T and h tend to zero simultaneously. The effect 
of h l 0 on the orders in time is summarized by Tables 1.1 and 1.2. Only for 
fixed h = ho > 0 does the classical ODE theory apply. 

TABLE 1.1 TABLE 1.2 
Orders of consistency in time Orders of convergence in time 

method (1.5) (1.6) (1.7) method (1.5) (1.6) (1.7) 

h ho 1 2 2 h= ho 1 2 2 

h 0 | 4 | |4 1 0 1 [I, ] 2 

The entry [4Il4] for method (1.6) in the second table means that the order 
of convergence is in the interval [I, 4]. These results are valid for L2-norms. 
(The convergence of method (1.6) in the maximum norm is even worse; see 
Table 5.3.) 

The fact that LOD schemes may suffer from order reduction as h l 0 was 
mentioned already in [17] for a heat equation without source term but with 
boundary conditions varying in time. For such problems boundary correction 
techniques to restore the order of consistency are known for the basic scheme 
(1.5) (see [8]). In some counterexamples we will see that the order reduction is 
also present for homogeneous boundary conditions if there is a source term in 
the differential equation. Since many practical problems can be modelled with 
homogeneous boundary conditions, but with a function F which is nonlinear, 
or at least affine, this point should be taken into account in the derivation of 
boundary correction techniques. Observe from Table 1.2 that as far as the 
order of convergence is concerned, such corrections are not necessary for (1.5), 
(1.7); for these two schemes the orders of convergence in time are not reduced 
as h I 0. Still, boundary corrections may be useful to obtain smaller error 
constants (see for instance the numerical results in [13] for the LOD method 
based on the backward Euler method, which is convergent with order 1 for both 
cases h fixedand h10 [11]). 

Although we shall deal in this paper only with simple linear problems with two 
space dimensions, it should be noted that the LOD schemes are stable for much 
more general problems, nonlinear and with arbitrarily many space dimensions 
(see [15]). 

The linear model problem used for the analysis of the LOD methods is de- 
scribed in ?2. The accuracy analysis of the methods can be found in ??3, 4, 
and 5. This analysis is closely related to the one given in [6] for the Peaceman- 
Rachford ADI method. Method (1.5) is included in these sections, in spite of 
the fact that this method is already known not to have 2nd order, not even for 
fixed ODE's. It will turn out that the convergence proof for (1.5) contains some 
basic ideas and derivations which are also applicable to the other methods. 

It is also possible to construct a scheme of the type (1.4), starting from the 
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trapezoidal rule instead of the implicit midpoint rule, or to use in (1.4) not 
the time levels t, + ' T tn + 3 T but only tn + 'T. for example. In ?6 it will be 
briefly discussed to what extent such modifications would affect the convergence 
results. ?7 contains general concluding remarks. 

2. PRELIMINARIES 

2.1. The model problem. We shall consider application of the LOD methods to 
parabolic model problems on the unit rectangle Q = (0 1)2 with 0 < t < T, 

a0u(x, y, t) = Au(x, y, t) + g(x, y, t) on Q, 

(2.1) u(xy, t)=ur(xy,t) onF=OQ, 
u(x,y,0)=u0(x,y) onQU F. 

Let ih be the spatial grid {(xi, yj):xi = ihi, yj = jIh, < i, j < m} with 
h = 1 /(m + 1). Grid functions on i2h will be identified in the usual way 
with vectors in RM, M = Mi2, assuming row-wise ordering on Qh. Thus, 
w: f2h -- R will also be written as 

- WI W - Wll 

W= EW2 RM With wj= i E Rm, wij= w(Xi , Y). 

-Wmj - wmj - 

Standard 2nd-order finite difference discretization of the Laplacian A on Qh 
leads to the semidiscrete system 

(2.2) ut(t) = Au(t) + f(t) (0 < t < T), u(0) = uo. 

The vector u(t) E RM has components uij(t) z u(xi, yj, t), and A = A1 + A2 
with A1, A2 E L(RM) approximating a92/Ox2 and &2/0y2, respectively, as 
given by the stencils 

1 O 1 
A h-2 [l -4 1] A h-2 [1 -2 1], A2_h-2 L0 -2 0o] 

Further, f(t) = b(t) + g(t), where g(t) is the restriction of g(x, y, t) to 
Qh and b(t) = b1 (t) + b2(t) comes from the boundary conditions, b1 (t) having 
components h-2ur(x?h, y, t) on the gridpoints adjacent to the vertical bound- 
aries and b2 (t) components h-2ur(x, y ? h, t) near the horizontal boundaries. 
For the source term g(t), splittings g(t) = g1 (t) + g2(t) are considered with 
g =(t) = g(t) t) = (1 - 0)g(t) and 0 E [0, 1]. We thus obtain a system 
(1.1), (1.2) with 

(2.3) Fj(t, v) =Ajv + bj(t) + gj(t) (j = 1, 2). 

The errors of the LOD methods will be measured in the discrete L2-norm 

m1w I=[2 fow=(1/2 

jw 11 h2 E IWejl2 for w = (Wij) E Rm. 
i,j=l 
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The induced spectral norm for the space L(RM) of M x M matrices is also 
denoted by II * II. Along with the property that AI and A2 commute, we shall 
often use the fact that these matrices are negative definite. This implies 

(2.4) IIr(TAj)II < 1, I(I - PTAj)-'Il < 1, and 11(I - 'TAj)-TAjII < 2 

for all T > 0, j = 1, 2, where r(z) = (1 - Iz)-I(1 + 4z) is the stability 
function of the implicit midpoint rule. 

The fully discrete numerical solution u, will be compared with the exact 
PDE solution u. This exact solution is assumed, throughout the paper, to be 
sufficiently often differentiable in time and space. The restriction of u(x, y, t) 
to fh is denoted by Uh (t), and it will be assumed that Uo = Uh (0) . The error 
due to space discretization is described by 

(2.5) th (t) = h (t) -F (t, h (t) ). 

For our model problem this spatial error is 0(h2) . 
The main objective of the present investigation is the temporal order of con- 

vergence p appearing in the error bound 

(2.6) IIUh(tn) -Un < CTP +Dh2 (T, h > 0, 0 < tn < T) 

with constants C, D independent of T and h. Here, T and h are allowed 
to tend to zero simultaneously and independently of each other (unconditional 
convergence). 

2.2. Some technical results. In the error bounds it will be required that the 
constants involved are not affected by T and h. The symbol O(TPhq) will be 
used to denote a scalar, or vector, whose absolute value, or L2-norm, is bounded 
by CTPhq for all possible T, h > 0 with C > 0 independent of T and h. In 
particular, O(TP) thus stands for a term bounded by CTP for T > 0 uniformly 
for h > 0. Naturally, we always have T < T and h < 1. 

Let 0 denote the left Kronecker (or tensor) product of vectors in Ri and 
matrices in L(Rm), i.e., 

V XW = (WivT,w2vT, ., WmVT)T E RM for v, w = (wi) E m 

and P o S stands for the block matrix in L(IRM) with blocks sijP E L(Rm) 
for P, S = (s1j) E L(RIm) . Standard properties of such products can be found 
in [3, 7], for example. (We use the left Kronecker product rather than the 
more common right form, since it gives a more natural notation here.) A grid 
function with values v(xi)w(yj) on Qh can be written as vector v X w with 
vi = v(xi), wI = w(yj) . It is easy to verify that 

IIv&wII=IvIIwI forv,wEDRm, 

where I is the one-dimensional discrete L2-norm 

IvI = [hvTV]l/2 for v E R'm 

Let Q = h-2 tridiag (-1, 2, -1) E L(RIm) be the standard one-dimensional 
approximation for -d2/dx2. The matrices Al, A2 can be written as 

A1=-QoI, A2=-IoQ, 
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I being the identity matrix. The eigenvalues and eigenvectors of Q are given 
by 

Qqi = Aiqi (1 < i<m), Ai = 4h-2sin2(ihir/2), 
() = V(sin(ihir), sin(2ihir), ..., sin(mihir))T E Rm. 

Since {q0I, 02, ... , q, } is an orthonormal set in Rm with respect to the inner 
product hvTw, we have for any v E Rm the Fourier decomposition 

m m 

v = .1xi V1i = hVTO, ( 1 < i < m) and IV12 =EIv,12. 
i=1 i=1 

In the remainder of this section we consider a rational function V/ such that 

(2.8) t(O)=O and kI(z)l<K forallz<O. 

Since TQ is positive definite, it easily follows that for any v E Rm a constant 
C exists such that 

(2.9) Iv,(-TQ)vl < C for all T, h > O 

(we can take C = Klv I; for this inequality the assumption ig(0) = 0 is irrele- 
vant). If v E Rm can be viewed as a smooth one-dimensional grid function, a 
better estimate is known for small T, also valid uniformly for h > 0. 

Lemma 2.1. Let X E C2[0, 1] and v = (vi) E Rm with vi = X(ih). Assume 
(2.8). Then, for any y < I there exists a C, > 0 such that Tg(-Q)vI < Cy Ty 
for all T, h > O. 0 

This lemma can be proved as in the Appendix of [6], where ig(z) = 
(1- I z) z was considered. The constant C, can be bounded in terms of y and 
upper bounds for Iz-Y,(z)l (z < 0) and lX(0)I, lx(')lI, x" (x)l (? < X < 1). 
The function X thus may depend on h as long as these upper bounds are valid 
uniformly in h. 

Sharpness of the above result can be shown by considering the vector e = 
( 1 , 1 , . .. , O T E Rim 

Lemma 2.2. Let A > 0, y/ :h 0, and assume (2.8). There exists a C > 0 such 
that 

lI/(-TQ)el > CT114 for T, h > 0 with z/h2 > fi. 0 

Also this lemma can be proved as in the Appendix of [6]. 
Note that if we were considering only a fixed meshwidth h = ho > 0, then 

for any v E Rm it would hold that 

(2.10) I(-TQ)vl < CoT forT> 0, h=h, 
where C0 = I Q I I v I - sup { I z -l (z) 1: z < 0}. However, since the spectral norm 
of Q equals IlAm I 4h-2, such bounds are useless for small h. From the above 
estimates it is seen that bounds valid for all h > 0 are possible, but at the cost 
of a lower power of z. This is essentially the cause for order reduction if h l 0 
in time integration methods. 

For vectors w E RM, which can be regarded as grid functions on the two- 
dimensional grid fh, we have 

m m 

iwj=1 EiWijj=+IIWi12= 1jl2 
i, j=l i, j=l 
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with Fourier components Wij = h2wT[qi ? q$]. Lemma 2.1 yields the following 
two-dimensional result. 

Lemma 2.3. Let x E C2([O, 1]2) and w = (Wij) E RM with wij = x(ih, jh). 
Assume (2.8). Then, for any y < I there is a C. > 0 such that 

IIVi(TAj)wI? < CyTy for all T, h > O and j = 1, 2. 
Proof. Consider 1 = 1 and the row-wise ordering w = (wT ..., T)T Wj= 

,... , Wpmj'. We have (cf. [7]) 

Y (TAI) = Yg(-TQ XI) = (-rQ) I, 

and consequently, 

Y/(AI)w = ((Y(-TQ)WI)T,..., (yi(-TQ)wm)T)T. 

The bound for jj YI(TA 1)w II now easily follows from Lemma 2.1. 
For j = 2 we can proceed in the same way by using a columnwise ordering 

for w. 0 

3. RECURSIONS FOR THE DISCRETIZATION ERRORS 

3.1. The basic scheme. In this section recursions for the global discretization 
errors Uh (tn) - Un of the LOD schemes will be derived. As we shall see, the 
propagation of errors is governed by the matrix 

(3.1) R = r(TA1)r(TA2). 

Since, in view of (2.4), one has IIRII < 1, stability is always ensured. In this 
section most attention will be given to the structure of the temporal discretiza- 
tion errors introduced in one single step of the integration process. These local 
discretization errors will be expressed in terms of derivatives of uh(t) and 

(3.2) Vh(t) = F1(t, uh(t)) - F2(t, uh(t)). 

Note that although F1 and F2 contain negative powers of h, the function Vh 
and its derivatives are bounded uniformly for h > 0, provided that the PDE 
solution u is sufficiently smooth (which will always be assumed). 

Consider, along with (1.4), a perturbed scheme 

(3.3a) Unl12 = in + TF1 (tn + 'T, 2fiin + 'Uin+i/2 +Pn) + qn 

(3.3b) Un+1 = Un+i/2 + TF2(tn + 3f 4'2 n+1/2 + I Un+ +Pn+112) + qn+12 

The perturbations Pk, qk may represent various error sources, for instance 
roundoff. Below, these perturbations will be used to derive suitable expressions 
for the local discretization errors. 

Let ek = uk - uk for k = n, n + I and n > 0. By subtracting (1.4) from 2 
(3.3), we obtain 

En+ 1/2 = En + 
I 

TA 1 (En + En+ l 2) + TA 1Pn + qn 

En+1 = 6n+1/2 + 2 TA2(En+1/2 + En+1) + TA2Pn+1/2 + qn+1/2. 

Elimination of 8n+1/2 leads to 

(3.4 8n+ = Rn + 6n (n = 0 1 v 2 
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where 

an = r(TA2)(I- TA )-1 [TA Pn + qn] 

+ (I - TA2)<-[TA2Pn+1i2 + qn+1/2]. 

If we put in = uh(tn) for all n > 0, (3.4) gives a recursion for the global 
discretization errors. Evidently, 3n is then a local discretization error. To 
obtain a suitable expression for these local errors, let Un+1/2 = Uh(tn+i12) and 

Pn Uh (tn) + Uh (tn + 1 T) Uh (tn + I T) , 

Pn+1/2 = -Uh(tN + IT) + Uh(tn + T)-I Uh(tn + T). 

This choice is made so that all perturbations Pk, qk only depend on quantities 
like Uh(t), Fj(t, Uh(t)), and time derivatives thereof, which are known to be 
bounded for h l 0. 

By a Taylor expansion around t = tn+112, and using the relation Uh = 

F(t, Uh) + 0(h2), it follows with the above choice that 

Pn = -32T Uh(tn+1/2) + 0(T3) Pn+1/2 - lIT2ih(tn+1/2) + 0(T3) 

qn =-2 TVh (tn+1/2) + gT ivh(tn+1/2) + 0(T3) + O(Th2), 

qn+1/2 = 1TVh(tn+1/2) + 8T Vh(tn+1/2) + 0(T3) + O(Th 2), 

with Vh given by (3.2). Relation (3.5) can be written as 

an = (I - tA1)-1(I - ITA2)-1[(I + I TA2)(TAIPn + qn) 

+ (I - TAI)(TA2Pn+1/2 + qn+1/2)] 

Using the bounds (2.4), we obtain after some calculations 

An = (I - TA1 )-1(I - IA2)-1 [ I T2Nh (tn+l/2) + I T2AVh (tn+1/2) 

(3.6) + -' T3(A2-Al)th(tn+112) 

-32I T3Aih (tn+112)] 

+ 0(T3) + O(Th2). 

So, the global discretization errors En = Uh (tn) - Un of the basic LOD scheme 
(1.5) satisfy the recursion (3.4) with local errors An given by (3.6). In ??4 and 
5 this will be used to derive error bounds. 

3.2. The alternating schemes. For the alternating schemes (1.6), (1.7) recursions 
for the global errors En = Uh(tn) - Un are easily obtained from the previous 
results. Let An be the local errors, given by (3.6), of the basic scheme un+, = 
(I<, 2(Un). The scheme Un+I = I2, 1 (Un) has local errors 

an = (I - TAI)-(I - TA2)-1[- 
I 
2Tlih(tn+1/2) + 1T2AVh(tn+l/2) 

(3.7) + I63(A2 
- Al)%h(tn+1/2) 

-I T3A ih(tn+1/2)] 

+ 0(T3) + O(Th2). 

This follows directly from (3.2), (3.6) by interchanging the indices 1, 2. 
For the scheme (1.6) we thus have 

(3.8) En+I = REn + fn, En+2 = Ren+1 + 6n+l (n = 0, 2, 4,...). 
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Taking the two steps together, it follows that 

(3.9) en+2 = R2gn + Pn Pn = Rcn +6n5+, (n = 0, 2, 4,...). 

Likewise, we get for the parallel alternating scheme (1.7) the error recursion 

(3.10) En+1 =Ren+cn an= 6n +M n' (n=0, 1,2,...). 

Its local error an can be written as 

an = (I- TAl) 1(I - 'TA2)-l[ ! r3(A2 -A1 )i)h(tn+1/2) 

(3.11)T- '3A(tn+l/2)] + Q(T3) + O(rh2). 

4. LOCAL ERROR BOUNDS 

4.1. The basic scheme. For a time integration method consistent of order p 
one would expect local discretization errors to behave like O(TP+l) + O(Th2), 
with the Th2 contribution coming from spatial errors. 

Consider the local error An , given by (3.6), of the basic scheme (1.5), which 
has order 1 in the classical ODE sense. It is easily seen, by using (2.4), that 
IVYn II = O(T2) + O(Th2), provided that 

(4.1) IIAvh(t)II = 0(1) 

uniformly in h. This condition, however, will not hold in general, because of 
the fact that even if the PDE solution u is very smooth, Vh (t) (which then also 
is a smooth grid function) need not be zero near the boundaries IT. For smooth 
u, (4.1) is equivalent to the compatibility condition 

/02 02\ 
(4.2) (d2 - 02) u(x, y, t) + (20 - 1)g(x, y, t) = 0 on r, 

and this will only be satisfied in exceptional cases, e.g., if g - 0, ur =- 0. 
In the following it will not be assumed that (4.1) holds. It is then still possible 

to obtain upper bounds for the local errors uniformly for h > 0, but with a 
reduced order of consistency. 

Lemma 4.1. For any y < I there are constants Cy, D > 0 such that 

IIn3II <?Cyz1+y+DTh2 forallT,h >0, 0<tn< T. 
Proof. From (3.6) and the bounds (2.4) it follows that 

n= -1T2(I- _TAi)-'(I- 2TA2) 'Avh(tn+l/2) + 0(z2) +O(zh2) 

and 
2 

I ? 2 EI(I ( -Aj)'AjVh(tn+l/2)II + O(T2) + O(h2). 
j=1 

Since Vh(t) is a smooth grid function, provided u is smooth, the result now 
follows from Lemma 2.3. n 

In the above estimate we have obtained a temporal order of consistency 4 
only. To show that this result is sharp, we will consider problem (2.1) with a 
suitably chosen simple solution. This solution can be taken stationary. 
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Example 4.2. Consider a distribution of the source term with 0 = 0; other 
natural choices 0 I or 0 = 1 can be treated similarly. Let 

(4.3) u(x, y, t) = 2x(l - x) sin(7ry). 

Then g2(t) = g(t) is the restriction of -Au(x, y, t) to fh, and b(t) = 0, 
since u satisfies homogeneous boundary conditions. It follows by some simple 
calculations that 

(4.4) Vh (t) = -2e 0 q l + 0(h2), 

where e = (1, 1, . , 1)T E Rm and q1 is the first eigenvector of Q (cf. ?2.2). 
To simplify the situation further, we neglect in the following the spatial errors 

0(h2); it is only the temporal order which is of interest here. So, we consider 
the local error 

(4.5) an = 1T2(I _ pTA1)-1(I - 'TA2)-<A[e X 01]. 

This can be written as 

(6 = - T2[(j + PTQ)-lQe 
0 (I + TQ)1qXl] 

(4.6) - 1T2[(I + P TQ)l1e 0 (I + 1 TQ)-1Qol]. 

The second term on the right-hand side is of O(z2) since Qq1 = A101 = 0(1) 
and (I + TQ)-' is also bounded for all h > 0. Using Lemma 2.2, we can 
see that the norm of the first term is bounded from below by CT514, C > 0, 
provided that z/h2 :A o(l), and consequently, such a lower bound also holds 
for 113PnII . Hence, the order result in Lemma 4.1 cannot be essentially improved 
if both z and h tend to zero and z/h2 > ,B > 0. 0 

4.2. The sequentially alternating scheme. Consider the local error Pn in (3.9) 
of scheme (1.6). By some calculations it can be seen that the temporal order 
of consistency is 2, provided u satisfies certain compatibility conditions, or if 
h > ho > 0. So, it seems that compared to the basic scheme (1.5), one order 
is gained. Below it will be shown, however, that this gain is lost in general as 
h ?O. 

Observe that, since IIRII < 1, 

IIPnII < II3,II + 113+n+111I 
The bound of Lemma 4.1 for 6n I II holds for II36+ 1 as well. Therefore, the 
following result follows directly. 

Lemma 4.3. For any y < 4 there are C, D > 0 such that 

IIPnII? < CyT1+ + DTh2 for all , h > 0, 0 < tn < T. 

To prove sharpness, we consider again a simple stationary problem. 

Example 4.4. Let, as in Example 4.2, u be given by (4.3) and 0 = 0. Omitting 
the spatial errors, it follows from (3.7), (4.4), and (4.5) that n+ = -6n and 

(4.7) =Pn (R I) = = T3(I-_ 'TAI)-2(I- _TA2)-2A2[e ( 0]. 
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Hence, 

P = 1 3[(I + TQ)-2Q2e 0 (I + 'TQ) q01] 

+ 3[(j + 'TQ)-2Qe 0 (I + TQ)-2Qq1] 

+ 3[(j + Q-2e 0 (I + zQ-2Q201]. 

Now, let T, h l 0 and z/h2 > /f > 0. Using Lemma 2.2, we see that the norm 
of the first term on the right-hand side is bounded from below by CT514, C > 0. 
The second and third terms are O(T9/4) and 0(T3), respectively. Hence, for 
IPnLII we have a lower bound C'T5/4 with a constant C' > 0. 0 

4.3. The parallel alternating scheme. The local error an of the parallel alter- 
nating scheme (1.7) is given by (3.1 1). In the same way as in Lemma 4.1 it can 
be shown that the following local bound is valid. 

Lemma 4.5. For any y < 1 there are C,, D > 0 such that 

IjInI?<CyT2+y +DTh2 forallTh>O, O<tn<T. o 
Compared to the other two schemes, one order of r has been gained. Note, 

however, that there still is an order reduction, since for fixed ODE's, scheme 
(1.7) is consistent with order 2. To show that the above bound is sharp when 
h l 0 we consider again a simple example. 

Example 4.6. Suppose 6 = 0. As before, other choices for 6 can be treated 
similarly. Let 

u(x, y, t) = tx(1 - x) sin(7ry). 

Note that here a nonstationary solution is considered; for stationary u the 
scheme (1.7) is exact in time. For the above problem we have Uh (t) = 0 and 

vh(t) = -2e 0 qXl + 0(h2). 

Hence, omitting the spatial errors, 

Un = -' r3(I- _TAI)-(I- TA2)-1(A2 - Ai)[e q $1], 

which can be written as 

n= - '3[(I + 'TQ)-1Qe 0 (I + 

+ 'T3[(I + PTQ)-1e 0 (I + Q)-lQql]. 

Comparing this with formula (4.6), it now follows that IIn II > CT9/4 with 
C > O, if T, h l O and T/h2 > Ol > O. 0 

In the examples treated in this section the order reduction has been caused 
by the presence of a source term g. The same effect would have been obtained 
if we had taken g 0_ but boundary values ur varying in time, for instance 
with 

u (x , y , t) = exp (- I 7r 2t) sin (7rx) sin (7ty /2). 

5. GLOBAL ERROR BOUNDS 

5.1. Global order reduction. Consider an error recursion in' RM of the form 

(5 1) en D = Se - .d 1 n A ' 
{ 1 _ .. 1 N_ 1) eo = -n 



46 WILLEM HUNDSDORFER 

where N = LT/X] and S E L(IRM), ISIS < 1 . The vectors en and d, stand for 
global and local errors, respectively. If Id, I = O(Tl+Y) + O(Th2) uniformly for 
n > 0, we obtain in the standard way the global result lienII = O(TY) + O(h2), 
i.e., convergence with temporal order y. In many cases, however, it is possible 
to improve this global result by taking into account certain cancellation effects, 
giving a temporal order of convergence which is larger than the temporal order 
of consistency. Consequently, the order reduction in the global errors is often 
less prominent than in the local errors; it may even be absent. In this section 
this will be shown to be the case for the schemes (1.5) and (1.7) (not for scheme 
(1.6), however). Similar results for Runge-Kutta methods can be found in [2, 
12], for example, and for an ADI method in [6]. 

Let a > 0, and consider the following two statements with constants C, C' > 
0, 

(5.2) IIenII < CT (O < n < N), 

dn = (I - S)4n + tn (0 < n < N - 1) with ,n t nn E Rm such that 

(5.3) In II < C'Tr, |IIqnI < C' 1T (O < n < - 1) and 
11~n - in- 11l < C T +a ( 1 < n < No - 1). 

Lemma 5.1. Assume (5.3). Then (5.2) holds with C depending only on C' 
and T. 
Proof (cf. also [5]). Instead of directly bounding the local errors dn, we first 
expand the recursion (5.1), giving 

en = dn-I + Sdn-2 + ... + Sn-0do 

= in- - S(d~n-i - n-2) --- - -Sn- I( _, - ) - Sn~o 

+?1n-1 + S?1n-2 + +sn- I?1o 

Hence, by bounding the terms in this last sum, 

IIenII < 2C'Ta + 2nC'Tl+a < 2(1 + T)C'Tra for nT < T. Q 

In case the local errors are constant, the reverse implication also holds. 
Lemma 5.2. Assume (5.2) and dn = do (0 < n < N - 1). Then there are 
in = 4O t n = no such that (5.3) holds, with C' depending only on C and T. 
Proof. Let A = (1 + T)1 , so that IIASII < 1 . Consider a sequence {Vn } defined 
by 

Vn+i =Svn + do (n > ?0), O = 0. 
Then, for Wn = Vn - en, we have 

Wn+1 = ASwn -(1 A)Sen (n > ?), WO = ?, 
and hence 

IIwn+1 I < A|IIwn I + (1-A)CTa (n > 0), lIwOII = 0. 
This leads in a standard way to the global result 

IIlI .l (1 + A+.. + An-1)(l - A)CTa = (1 - n)CTa < CTa. 
Thus, we obtain 

IIVnII < IIenII + IIWnII < 2CTr (n > 0). 
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On the other hand, from the recursion for the v, it follows that 

VN= (I + AS +... + AN-lSN-l)do = (I-ANSN)(IAS) do. 

Therefore, 
II(I -AS)-'doll < (1 _ AN) 12CTa < CITa 

with C' = 2C(l + T)/T. 
Now take 

to = (I - AS)- do, no = ( - A)S4o- 

Then it is easily seen that do = (I - S)4o + no, and from the above it follows 
that II4oII < C'Ta, IIloll < C'/1T+. 0 

It should be noted that if S = I + O(T), then (5.3) is simply equivalent to 
IlIdnl = O(T1+a), and (5.2) would follow in the standard way. The decomposi- 
tion (5.3) can be useful if S is bounded away from I, as will be the case if 
S = R = r(TAI)r(TA2) when h l 0. Then (5.3) merely implies IlIdnI = O(Ta). 

Remark 5.3. For simplicity, only temporal errors were considered in the above, 
but it easily follows that 

IlenII < CTa + Dh2 (O < n < N) 
if (5.3) is satisfied with I I nII < C'Ta, I I n - dn-I|I < C'TI1+, and IInII < 
C'T 1+a + D'Th2. 0 

5.2. The basic scheme. Scheme (1.5) is convergent with temporal order 1 in 
the classical ODE sense. The following theorem shows that this remains valid 
as h 1 0. So, in the transition from local to global error the order reduction 
disappears. 

Theorem 5.4. Consider (1.5) and (2.1). There are constants C, D > 0, de- 
pending only on T and the smoothness of u, such that 

IIuh(tn) -UnII < CT + Dh2 for all T, h > 0, 0 < tn < T. 
Proof. Let On = jTVh(tn+1/2) and an = n - (I -R)4n . Smoothness of u implies 
llnI 1 = O(T), lln - n-| = O(T2). By observing that 

(5.4) I - R =-T(I - TA2)-1 (I- TA2)--A, 

it can be seen from (2.4) that II nII = O(T2) + O(Th2). The proof follows from 
Lemma 5.1 and Remark 5.3. E 

5.3. The sequentially alternating scheme. As we saw in ?4.2, modifying (1.5) 
into (1.6) did not help to improve the temporal order of consistency. Here it 
will be shown that this modification even has a negative effect on the order of 
convergence in time. 

Example 5.5. Consider the problem of Examples 4.2, 4.4 with T = h. Omitting 
the space errors, we have for this stationary example the error recursion 

(5.5) 8n+2 = R2 8n + 1 T(R - )2e $} 01 (n = O. 2, 4, 

(cf. (3.9), (4.7), and (5.4)). According to Lemmas 5.1- and 5.2 there will be 
convergence with temporal order a if and only if there are X, r E RM such 
that 

(5.6a) III = Q(T ), O + 
= a) 
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(5.6b) 1T(R-I)2eqgo = (R2_-Ig+ 

It will be shown that this necessarily implies a < 
We consider the Fourier expansions 

m m m 
4 = Z X~uq0ijqi($9j, t= Z ijqi ($9 , ande =Zeii. 

i,j=1 i,j=l i=1 
Let further Al, ...A, m be the eigenvalues of Q and ri = r(-T~i) (cf. ?2.2). 
By observing that Roq 0 q$ = rirjqi 0 qj, it follows from (5.6b) that 

0- (rrj- l )41+tQ11 for 1 < i < m, 2 < j <m. 
This is fulfilled by taking Xxy = 'ij = 0 for j > 2; any other choice would lead 
only to larger norms 11J11 and I II. With j = 1 we obtain from (5.6b) 

!T(riri - 1)e2 =(rir? - 1)'i+iEi for 1 < i <m. 
To simplify this relation, define 

(i r-1 ~2 r2r2- 1 ri -1 2 2rriI ( n_ i = rj I) nilm 

Since r1 = 1 + O(T), it now follows that (5.6) reduces to 

(5.7a) [m ~] 1/2 O m 1/2 

(5.7a) eI 122 O(T'), ie ml2 =O(Tl+a 

(5.7b) T(ri - 1 )2= (r? - 1)4i + i for 1 < i <m. 

In the following we will use the notation f(x) g(x) (x 0) for real 
functions f, g if there are Co, C1, H > 0 such that Cog(x) < f(x) < Cl g(x) 
for 0 < x < H. From (2.7) it is easily seen that ,- i2 (h 1 0) uniformly for 
1 < i < m . 

Now, consider the indices i > am. Since we assumed T = h, we have, 
uniformly for these large indices, ri - 1 -1 and r? - 1 -(ri + 1) -T 

(Tr 0). Hence, (5.7b) implies 

(5.8) T E lei2 Z i'~i- 

i>m/2 i>m/2 

From the proof of Lemma 2, p. 99 in [6] with y = 0 it can be seen that 
= 0 for i even, 

i1 hV2cotan(ihnr/2) for i odd, 
and that for T= h 1 O, 

E II2 h2 E cotan2(xir/2) h l cotan2(x7r/2) dx h = . 

i>m/2 xi> 1/2 1/2 

On the other hand, we have in view of (5.7a) 

Z 'i - Ti 12 = O(QT22+2a) 
i>m/2 
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Hence, (5.8) implies T3= O(T 2+2a), and thus we must have a < 1 . ? 

Note that from the local error bound I1pn 11 = O(T1+Y) + O(Th2) of Lemma 4.3 
with y I 4, it directly follows that the temporal order of convergence is always 
at least 4, approximately. With the above example we now know that this 
order result is nearly optimal. (The question whether the order is 4 or 2, or in 4 2 
between, is not so relevant since the convergence behavior is very disappointing 
anyway.) 

So, we have the surprising result that scheme (1.6), which has a higher order 
in the classical ODE sense than (1.5), has a lower order of convergence in time 
when T and h tend to 0 simultaneously. To give an illustration of this, we 
present some numerical results for (2.1) with T = 2 and 

u(x, y, t) = x(l - x)y(l - y)(16 + y). 

This solution is chosen so that no space errors are present and its magnitude is 
near 1. The source term g in (2.1) equals -Au, and we take g1 = g2 = Ig 

(i.e., 0 =2) Tables 5.1 and 5.2 nicely illustrate the theory. On fixed space 
grids, where we are in the standard ODE situation, the sequentially alternating 
scheme (1.6) becomes more accurate than the basic scheme (1.5) for decreasing 
T, but if both T and h tend to 0, scheme (1.5) is the better one. 

TABLE 5.1 
Global errors (L2-norms) for (1.5), (1.6) on a fixed space grid 
h = 1 

|T- I | 10 20 40 80 160 

(1.5) 0.47 E-1 0.23 E-1 0.12 E-1 0.59 E-2 0.29 E-2 

(1.6) 0.69 E-1 0.32 E-1 0.10 E-1 0.27 E-2 0.68 E-3 

TABLE 5.2 
Global errors (L2-norm) for (1.5), (1.6) with h = 2T 

T-1 10 20 40 80 160 

(1.5) 0.47E-1 0.34E-1 0.20E-1 0.10E-1 0.53E-2 

(1.6) 0.69 E-1 0.63 E-1 0.45 E-1 0.31 E-1 0.22 E-1 

TABLE 5.3 
Global errors (max-norm) for (1.5), (1.6) with h = 2T 

|T- I | 10 20 40 80 160 

(1.5) 0.74 E-1 0.73 E-1 0.46 E-1 0.25 E-1 0.13 E-1 

(1.6) 0.11 0.14 0.14 0.14 0.14 
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Although the theory has been formulated for the discrete L2-norm, it is 
illuminating to consider the errors of Table 5.2 also in the maximum norm 
1lv 1oo = max IvijI, v = (vij) E RM. In this norm the behavior of the sequen- 
tially alternating scheme is even worse: it appears that there is no convergence 
at all. 

The fact that in the above tables the asymptotic behavior does not show up for 
the larger T values is probably caused by damping effects of terms (I - )T-j)1, 
which will be stronger the larger T is. In the error estimates we have merely 
used the bound II(I - PA)-II < 1 for all T > 0. 

5.4. The parallel alternating scheme. As we saw in ?4, the local errors of the 
parallel alternating scheme (1.7) also suffer from order reduction, though not 
as much as for scheme (1.6). Moreover, the following theorem shows that this 
reduction will be annihilated for the global errors of (1.7). 

Theorem 5.6. Consider (1.7) and (2.1). There are constants C, D > 0, de- 
pending only on T and the smoothness of u, such that 

IIUh(tn)-UnII < CT2+Dh2 foralHT.h>O, O<tn<?T. 
Proof. Let 

Xn = 16 TA 1 (A2 -Al)Vh(tn+1/2) + 32 iih(tn+1/2) X 

t1n = an-(I-R)cn 

Note that A-'(A2 - Al) is symmetric with eigenvalues (Ai + Ai)-1(Ai - Aj) 
bounded by 1 in modulus, and hence the norm of this matrix is < 1 . Smooth- 
ness of u thus implies 11~nI = O(T2) and 11In - Xn-iII = O(T3). Further, it 
is easily seen from (3.11) and (5.4) that 1 nnI = O(T3) + O(Th2), and so the 
convergence result follows from Lemma 5.1 and Remark 5.3. o 

In conclusion, it can be said that the parallel alternating scheme (1.7) does 
what it is expected to do: its temporal order of convergence is 2, which is one 
higher than for the basic scheme. Moreover, the scheme (1.7) is exact in time 
for stationary solutions (so, in Tables 5.1-5.3 all errors would be 0 for (1.7)). 

6. SOME ALTERNATIVE FORMS 

The choice of the time levels used in (1.4) seems somewhat arbitrary. We 
can consider the more general formula, with parameter c, 

(6. 1a) Un+1/2 = Un + TF(tN + CT, 5Un + 1Un+1/2)X 

(6.1b) un+1 = Un+1/2 + TF2(tn + (1 - C)T, Un+1/2 + 2Un+l). 

When using (6.1) as a basic scheme (1.5), the alternating schemes (1.6), (1.7) 
are of 2nd order in the classical ODE sense for any choice of c. Apart from 
C = 14, which was used in (1.4), the choices c = 0 or c = are also natural 
ones. Below it will be shown, however, that taking c # 4 will cause a global 
order reduction for the parallel alternating scheme if the boundary values ur 
are not constant in time. 

In the same way as in ?3, by using suitable perturbations Pk. qk, it can be 



CONVERGENCE FOR INITIAL-BOUNDARY VALUE PROBLEMS 51 

shown that (6.1) has local errors 

an = (I - TAI1) (I -TA2) l 
X [(~ 2-C)T2N h(tn+112) - T2AVh (tn+1/2) 

+ (C - )T2(Al - A2)ih(tn+1/2) + (c - I)T3AlA2iih(tn+l/2) 

+ (C - I )T (Al - A2))h(tn+1/2) + ( c2 -_ C + I 
)T3Aih(tn+1/2)] 

+ O(T3) + O(Th2). 

The local error of the parallel alternating scheme (1.7), with (6.1) as basic 
scheme, is now seen to be 

n= (I -1 TA)-1 (I - TA2)-1 

X [(C - 1)T3AjA2iih(tn+l/2) + ( C - 8 )T3(A1 - A2)i)h(tn+1/2) 

+ (Ic2_ - 
C + ')T3Aiih(tn+1/2)] 

+ O(T3) + O(Th2). 

In case the boundary conditions for u are constant in time, it follows that 
u = 0 on F and T3AlA2ah(t) = O(T3). The term involving T3AlA2ah(tn+l/2) 
will lead, however, to a lower order of temporal convergence for time-dependent 
boundary conditions. 

Example 6.1. Consider (2.1) with g_ 1 and solution 

u(x, y, t) = t. 

Then u(t) = e e and vh(t) =(20 - l)e e. Hence, 

U= (C- ')T3(I- 1TA1)-1(I- PTA2)-'AIA2[e 9e]. 

This can be written as 

Un = (C - 4)T3[(I + 2 TQ)-1 Qe ? (I + 2 TQ)-1 Qe]. 

Consequently, 

IInII = Ic - 4IT31(I + PTQ)-1QeI2 > IC- - C2T3/2 
for some C > 0, provided that T/h2 :A o(1) (see Lemma 2.2). 

Since an is the error introduced in one step, it is clear that the order of 
convergence is < 3 if c :# 4. In fact, it can be shown that there will be 
convergence with order 1 exactly when T = h. We shall not prove this result, 
since it is of little relevance here. The important thing is simply that time- 
dependent boundary conditions should be treated in (6.1) with c = 1 This 
choice was also used in [14]. o 

One can also derive LOD methods starting from the trapezoidal rule 

(6.2) Un+ = Un + 1 F(tF N Un) + TF(tn+ 1 Un+1) 
instead of the implicit midpoint rule (1.3). An LOD method of this type is 
given by 
(6.3a) Un+1/2 = Un + TF1 (tn. Un) + 2 TF1 (tn + 2 T. Un+1/2), 

(6.3b) Up+i = Un+1/2 + ITF2(tN + 1T, un+1/2) + PTF2(tn+i, un+ ). 
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For strongly nonlinear problems, scheme (1.4) might possess better stability 
properties (cf. [14]), but for linear problems with constant coefficients, (6.3) 
will also be stable. 

An error recursion 6n+I = Ren + fn, En = Uh(tn) - Un, can be obtained by 
considering along with (6.3) a perturbed version 

Un+1/2 = in + TFI(tN, ifn) + 1TFI(tN + P, n+1/2) + qn, 

Un+i = Un+l/2 + 2TF2(tn + 2T , Tin+112) + 2TF2(tn+i , in+l) + qn+112. 

By taking k = U(tk) for k = n, n + I and n > 0, we get 

n 2TVh(tn+1/2) + T2Vh(tn+1/2) + O(T3) + O(Th2) 

qn+ /2 = 2TVh(tn+1/2) + <C Vh(tn+3/2) + Q(T3) + O(Th2). 

In the same way as in ?3 (see the formulas (3.4), (3.5)), it follows that the local 
discretization error for scheme (6.3) applied to (2.1) is given by 

= (I - 'TA)-1 (I- 1 TA-)-1 

(6.4) x [I4T2h (tn+1/2) - T2AVh (tn+1/2) + 1 T3 (A2-A l) th (tnf+l/2)] 

+ O(T3) + O(Th2). 

For the parallel alternating scheme based on (6.3) we get a local error 

(6.5) O7ln = (I-2 TAI) 1 (I - TA2)l1 [ 1 T3(A2- A1)th(tn+1/2)] 

+ O(T3) + O(Th2). 

It can be seen, by following the previous proofs, that all error bounds for 
(1.5)-(1.7) remain unchanged if (6.3) is used as the basic scheme. The error 
structure is even somewhat simpler with (6.3). 

7. CONCLUDING REMARKS 

Of the three schemes (1.5), (1.6), and (1.7) considered in this paper, it is 
clear that the sequentially alternating scheme (1.6) is unsuited in its present 
form (i.e., without boundary corrections). The basic scheme (1.5) is lst-order 
accurate in time. For some practical problems, lst-order accuracy is sufficient, 
but even in such a situation it seems better to use instead of (1.5) the LOD 
method based on backward Euler, which has stronger damping properties and 
is also of 1st order. Rather general convergence results for this LOD method 
were presented in [1 1]. 

For problems where more accuracy is demanded, the parallel alternating 
scheme (1.7) of [14], based on either (1.4) or (6.1), seems a good candidate. 
An alternative would be, for example, the Peaceman-Rachford ADI method. 
An analysis for this method can be found in [6]. Some numerical results given 
in [14] suggest that this ADI method and (1.7) are competitive. 

A popular technique for improving accuracy is Richardson extrapolation. 
However, when both T and h tend to 0, the structure of the temporal errors 
is different than for the classical ODE case T 1 0, h = ho > 0. Therefore, 
it is not clear yet whether extrapolation will increase the order of convergence 
in general. Some interesting results in this direction have been derived in [1] 
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for the LOD method based on backward Euler. Numerical results can also be 
found in [16]. 
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