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CONVERGENCE OF AN ENERGY-PRESERVING SCHEME
FOR THE ZAKHAROYV EQUATIONS IN ONE SPACE DIMENSION

R. T. GLASSEY

ABSTRACT. An energy-preserving, linearly implicit finite difference scheme is
presented for approximating solutions to the periodic Cauchy problem for the
one-dimensional Zakharov system of two nonlinear partial differential equa-
tions. First-order convergence estimates are obtained in a standard “energy”
norm in terms of the initial errors and the usual discretization errors.

1. INTRODUCTION

In [11] Zakharov introduced a system of equations to model the propagation
of Langmuir waves in a plasma. If we denote by N(x,t) (x € R, ¢ > 0) the
deviation of the ion density from its equilibrium value, and by E(x,t) the
envelope of the high-frequency electric field, then the one-dimensional system
takes the form

(ZS.E) iE;+ Exx = NE,

32
(ZS.N) Nyt — Nyx = a—x_2(|E|2)

We solve on {x € R, ¢t > 0} and supplement (ZS) by prescribing initial values
for E, N,and N;:

(1) E(x,0)=E%x), N(x,00=N°x), N(x,0)=N'(x).

Most of the interest to date in (ZS) stems from two particular features. Firstly,
(ZS) admits solitary wave solutions [3]. Secondly, in three space dimensions,
(ZS) was derived to model the collapse of caverns (cf. [11]). An intriguing and
still unresolved question remains in three dimensions as to whether smooth data
can generate a solution which becomes singular in finite time.

As is well known, (ZS) possesses the two formal invariants

@) / Z B, P dx = [ Z IECx, )2 dx,

Q | (1B + o+ N + NlElz) dx = const,
—00
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where v is given by
(4) V=—Ux, Uxx = N;.

We know that these are sufficient for global weak existence (cf. [9]). Also
from [9] the same conclusion holds in three dimensions under an additional
“smallness” condition. Moreover, higher-order estimates from [9] guarantee
the existence of a smooth solution in one dimension provided smooth data are
prescribed.

It is such a smooth solution of (ZS) with periodic boundary conditions which
we approximate numerically in this paper. A spectral method is used in [5];
while practical results seem very good, the convergence issue is not rigorously
addressed. Our algorithm uses an approximation of “Crank-Nicolson” type on
the linear parts of (ZS). We approximate the solution over a fixed but arbitrary
time interval 0<¢t< T.

The nonlinear terms in (ZS) are then approximated in such a way that:

(i) the discrete L2-norm (over a period) of the approximation to E is
conserved; and
(ii) a discrete analogue of the total energy is conserved.

This discrete energy will be shown to be bounded below by a positive definite
form. The scheme is linearly implicit and involves only two periodic tridiag-
onal solvers to advance one step in time. We obtain first-order convergence
estimates in the natural “energy norm” in terms of initial errors and standard
discretization errors.

In the references we list several papers where conservative schemes have been
employed [2, 4, 6, 8]. Related results are to be found in [1, 10].

The standard summation by parts formula is

J
> 0 (ujer = 2u; + uj1) = vy (s — us) = vi (1 — uo)
j=1
= 2 (Wi = v;) ()1 — uy).
1

J

The “summed” terms cancel whenever {u;},{vx} are J-periodic mesh func-
tions.

Although [9] treats the Cauchy problem on all of space, the methods given
there (i.e., Galerkin) could be extended to deal with the periodic case studied
here. Constants depending on T and the Cauchy data are written c¢r , while
constants depending only on the data are generically written as ¢. These will
change from line to line without explicit mention.

This scheme has been implemented; details will appear elsewhere.

J

2. THE FINITE DIFFERENCE SCHEME

Let T > 0 be arbitrary; we will approximate the solution to the periodic
Cauchy problem for (ZS) over the time interval 0 < ¢t < T. We first state
hypotheses on the Cauchy data and the solution:

(HO) The Cauchy data

E(x,00=E%x), N(x,0)=N’(x), N(x,0)=N'(x)



AN ENERGY-PRESERVING SCHEME FOR THE ZAKHAROV EQUATIONS 85

are C>* and L-periodic. Moreover,

L
/ N'(x)dx =0,
0

J
Y N'(jh)=0 forany k>0 with Jh=L.
Jj=1
(HE) The periodic Cauchy problem possesses a unique smooth global solu-

tion.
In order to write the scheme, we define

(5" Sty = AX™ (Upyy — k),

(5") 2w = AX " (Uyy — 22U + Uge—1)
At At

©) exe Fere

with Az, Ax > 0. Now for J a positive integer we choose Ax = L, At > 0
such that

(M nAt< T

and define ¢/ = IAt, x; = jAx (I=0,...,n; j=0,...,J).
Our scheme is

ErMt'—Er 1 1oormer 1 i
B.E) itk + 8B + 30°Ep = (NP + NI*O(ER + EfY),
N _2NP+ NPT 1 -
(8.N) k A tg L 5<$2N,;'+l - E(52N,;' U= 82(|EDP).

In both relations k=1,... ,J, n >0 in the first and n > 1 in the second.
Here we take E}, N to be J-periodic mesh functions, i.e.,
E} =E}, © =N ifk=j (modJ).
The scheme is supplemented with the initial values
9) EQ = E%xy),

(10) N2 =Nx;),  N}=N?+AN'(xz).

We claim that the scheme is uniquely solvable: multiplying (8.N) by A#?, we
see that the coefficient matrix for the unknown {N/+'}J_ , of order J x J , is

1+42 -4 o ... -&

. P B BT R
N = s

y : : '-2 .

-42- 0 -’17 14 A2

which is invertible by Gerschgorin for any A > 0. The coefficient matrix for
the unknown {E!*'}/_, has the form

(12) il —Ag,
where both matrices are square and of order J x J .
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Ag is symmetric and has the form

4y £ o ... -&
13 ap=| TH WEm E 0
—.‘% 0 —'é (AE.)JJ
where
(14) (Ae)e = B+ ST + N

Since Ag has only real eigenvalues, il — Ag is invertible. Thus the scheme is
uniquely solvable at each time step. Indeed, putting n = 0 in (8.E), we can
solve for {E}}, since N?, N}, EQ are known from the data. Putting n =1
in (8.N), we can then solve for {N?} and, using {N?}, wecanput n=1 in
(8.E) and solve for {E?}, etc.

We summarize with

Lemma 1. Assume the data satisfy (HO). Then the scheme (8.E), (8.N) is
uniquely solvable at each time step.

Lemma 2. Let the data satisfy (HO). Define {u}} by

Upyy — g +up_, _ NpH - N k=1 J—1
sz At ’ PR ] b

uo=uy=0.

Extend {u}} by defining
up=u; if k=j(modJ).

Then
J-1 n+l _ Arjp
ur = —Ax; G(xk, x,-)—fT,
where

x(1=4%), 0<x<y<L,
Gix,yy= { M TE OsE=S

y(1-%), 0<y<x<L
Proof. The proof that the given representation is indeed a solution is a straight-

forward computation and is omitted. The only issue is one of compatibility.
Summing the definition of u} , we see that it is required that

J
> (N - Np) =0.
k=1

When 7 = 0, this is true by hypotheses (HO) and (10). Using (8.N), we
can write
2
NP NP =NP-N7'+ -A2L¢52(1v,;'+l + Ny~ 2|ERP).
Using induction, we sum both sides over k. The sum of the first two terms
on the right'vanishes by the induction hypothesis; the sum of the remaining
terms vanishes by periodicity. O
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Theorem 1. Let the data satisfy (HO). Then the scheme (8) possesses the follow-
ing two invariants:.
(a)
> |EpPAx =const  (nAt< T).
k
(b) Define u} as in Lemma 2, so that 6*u}l = (NJ*' — NI')/At. Then

gdn+l EA"E [|5E1?+1|2 + %(5“%)2 + %{(NI?)Z + (let+l)2}
k

+H(Np + NP+ EF12] = const
Jor nAt < T. The sums runover 1 <k < J.

Thus the discrete L2-norm of E” over a period is conserved, and the form
of &' is similar to that for the exact solution in (2), (3).

We show that &' is bounded below by a positive definite form. For this
purpose, we put

(15) IE™ =) |ER)Ax,
k
(16) I6E™|3 = Y |6EF|*Ax,
k
with similar quantities for N” . We make note of the discrete Sobolev inequality
(17) sup Jug| < cljully?||oully?
k

valid for periodic mesh functions {u;}. Indeed, denoting the Fourier coeffi-
cients of the mesh function u by {c,}, we write

IukISC( >+ Ev)lcml

|m|<M  |m|>M

1/2 1/2
<cM\? (z |C'm|2) +ceM-(1/2) (Z|m|2|cm|2)

m m

and optimize on M .
The last term & in &} is estimable by

21 < 3 S INFIIER PAx + 5 37 NI B A
k k
1

& 2 1y2 1)4
Szzk:((N,?) + (Np*) )Ax+2€;|E,':+ |*Ax

for any ¢ > 0. Choosing & = 1, we get the bound

1
21 g AN + (NE2) + LB
k
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By the Sobolev inequality (17) and part (a) of the theorem,
LB < IE™ IBIE™ 2 < ™|, < clSE™ |,
< %lléE”“ll% +c.
This gives us

Lemma 3. There is a constant c, depending only on the data, such that the
solution of the discrete scheme (8.E), (8.N) satisfies

S AX[|EFR + |SEM? + (Buf)? + (NP + (NI < e,
k

and hence supy |[E}| < c.
Proof of Theorem 1. As is well known, part (a) is obtained by multiplying (8.E)

by FZH + FZ, summing over k, k =1,...,J, and taking the imaginary

part.
In order to verify (b), we multiply (8.E) by EZ+1 - E, and sum on k.
Adding this to its conjugate, we obtain

—=n+1

(18) I+ Lo = 3 SN+ Np) - 2Re(Ef + EP)EL - E}),
k

where

1 —n+l =i \
Im=mReZk:(EZ ~EQ)(EP, —2EP+E)  (m=n,n+1).

The right side of (18) equals

(19) 3 S(BL P = EEPINE + Np)

Summing by parts, we get for the left side of (18)

@0) It =~z UL - B + s S B ~ B
Thus (19), (20) yield the identity

@) - SIE+ LB - 3 S(ELP = BEFINE + D).

We obtain the contribution from {N}} by recalling from Lemma 2 that

2w tup, N -

Ax? ' At
and by multjplying (8.N) by 1(u} + u}~') and then summing on k. There
results

(23) I-1I=1II,

n
(22) S2up = kel
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where
(NI*' = 2NP + NI 7Y
=§Z o (up +uz™h),
k
(U +u}~ ) - _
1= 5 7 Sk DN - 2N 4 N N - 2N N,
k
uk+u,'§l 2 n|2
I = 5 o |EF 1 - 21ER) + | Ef_ 7).
k

Term III is summed by parts:
m= - 2Ax2 Z [,y +uis)) = (uf + uf D] | ER,, 1 = |EZ]
(24) = 2Ax2 Z [up +up™" —up_, —uiZ{]|ERP
2Ax2 Z [wp ) +ups) — wi =y~ IER1,
where we have shifted k — k — 1 to obtain the first sum. Thus, by (22),

1 - - -
0= er DO VERP [y = 20 o) + (] = 2" )

25 =3 ZIEI?I’

N"* N" LN
At

= mzknEﬂ (NZY = Ng7h.

To evaluate I, we note that by (22)

52“2 _52u2—1 - NI:IH — NI? _ (NI? —NI:'—I) - NI:HI _2NI? +Nl?_l.

At At At

Thus,

I= f% D (g +ulmh [6%uf - 82up)
k

and, summing this by parts, we get

— _L n\2 L n—1y2
(26) - 2At ;(61“1() + 2At ;(61“1( ) .

89
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Summing II now by parts, we find
1 _ _
I=-= D[R +up)) — (W + w7
k
NEH = N+ (N - N
1
=~ aar 2 [+ — e — g [N+ N

k

1

+ aagz O M+ —u - up T [N+ NP,

k

where we have again shifted K — k — 1 to get the first sum. Thus, by (22),

1 _ _ _ _
= e Zk:(N,:”“ + NI [(uf g = 2uf +uf_y) + (W) — 2up~ "+ ups)))]

_1 net . nety | NET - Np O Np - N
= Z;(Nk +N7 At A
1 -
=m2[(Nl?+l)2—(ng 1)2].
k

Therefore, equation (23) yields

=L S sumr — LS vy
241 Xk:(‘s"k) 4At ;(Nk )

__ 1 n-1y2_ 1 n—1y2
(27) = 3w 204D - g LR
1 _
+ A7 Z |ERP(NgH - Ng h.
%

Now multiply this by At and add the result to (21) to get
1 1
-3 Z(5uz)2 -1 Z(NI?H)Z _ Z |5Elrct+1|2
k k k
1 _ 1 _
(28)  =-3 (Gu)? =g D (NTH =D BB
k k k
1 _
+3 S UEZPWNE = N~ + (PP - |ERPY(NE + Np)).
k
The last term here equals
1 1 _
5 D VELTPNE + Ng) = 5 D IERP(NE + N,
k k

Therefore, when we define £'*! as in part (b) of Theorem 1, (28) implies
&t =&r and hence & = &) and energy is conserved. O

In order to state the main theorem, we define the errors by
(29) e = E(xy, t") - E},
(30) Mg = N(xi, t") — N.
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Here, E}, N; are computed from the scheme (8.E), (8.N) for nAt<T,1<
k<J.

Lemma 4. Let the data satisfy (HO). Define {Ul'} by

U =20 + Uiy _ it =g
(31) sz - At ) k—l,...,J_l,

U=U;=0.

Extend {U}'} by defining
U =U} if k=jmodJ.

Then
J-1 n+l_,7
Uk=—-AxZka,x,)—’,
Jj=1
where
(32) G(x’y)"{y(l—f), 0<y<x<lL.

Proof. The actual computation showing that the given representation is a solu-
tion is easy and is omitted. As in Lemma 2, there remains the compatibility
question. Using the definition (30) of 7}, we have

S2UP = A7 [N (%, t"*1) — NP — N(xie, 1) + N7
= =02 + AT [N (xg, 1Y) = N, )],

Therefore, as in Lemma 2, we require that

J
S = S INGw, 1) = N(xe, 17)] =0,
k=1

We expand N(x, t) in a Fourier series with Fourier coefficients {c,,} :
2imnx
N(x,t)= zm:cm(t)exp ( 7 ) .

Thus, co(t) is proportional to f(f‘ N(x, t)dx. Integrating (ZS.N) over a
period, we see that this integral is a linear function of ¢. In fact, co(¢) is
constant in time in view of (HO). Now we write

ZN(xk, ) —Zcm t)Ze (21m7txk)

and evaluate the inner sum explicitly. Using x; = kAx = kL/J , we see that
this sum over k vanishes unless m = 0, in which case

J
> N(xi, 1) = Jeo(t).

k=1
Hence S =0 as desired. O

The norms are defined, e.g., as [le”||3 Zk  lep|2Ax , etc.
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Theorem 2. Let T > 0; assume (HE) and that the data satisfy (HO). Given
any positive integer J, let JAx = L and choose At = Ax. Let E}, N]' be
computed from the scheme (8.E), (8.N), (9), (10) for nAt < T . Define

(33)  &"=3[lle" 13 + o™ I3 + 16U + 3(lln™ 13 + ll"113)].-

(Thus, &™ is the (square of the) “energy norm” of the errors.)
Then there exists a constant cr depending only on the data and T, with the
property that for Ax sufficiently small, we have

g" <er [80+Ax7.
Moreover, &% = O(Ax?), and hence
&" < crAx* asAx — 0.
The proof of Theorem 2 will be given in the next section.

Remark. The choice At = Ax allows us to easily combine several estimates. It
is seen from the proof that the same estimates can be obtained provided At is
bounded both above and below by a constant times Ax .

3. CONVERGENCE ESTIMATES, PROOF OF THE MAIN THEOREM

We begin by defining the standard discretization errors

7= A—(E(xk, 741) ~ E(xe, 1)
(34) + 573 2AX2 (E(xk+l ’ tn) - 2E(Xk ’ tn) + E(xk—l ’ tn))
¥ g (E (e, 071) = 2E(xi, %) 4 By, £41)

— 2 (N0, 17+ NOge, %) (B(xe, ) + ECxe, £41)

and
o = Iltg(N(xk , ") = 2N(xp, 1) + N(xi, t"1))
(35 2Alx2 (N(Xies1 > 171) = 2N (2, 27%1) + N(xp_y , £1))
| 2Alx2(N(xk+l’tn )= 2N(xi, ") + N(x—y, £"71))
- A;Z (EGks1s 1) = 2|E(xi, )2 + |E(Xe—1, "))

As usual, these measure the amount by which the exact solutions fail to satisfy
the approximate equations.
Recall that E, N are smooth solutions.

Lemma 5. We have |t}| + |of'| = O(At?> + Ax?) as Ax, At — 0.
Proof. By Taylor’s theorem and (ZS.E) we can write the first three terms 73
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in 7} as
ty= i (E,(xk, ") + S ALE(x ﬂ,;')) + 3 (e, 1) + O(AXY)
+ -12-(Exx(xk, M+ 0(Ax?)) ("< BR < ™Y
= iEy(xe, 1) + DL By, B) + 0(AXY)
+ 5 NG, )E (e, %) — iEi(xe, 1]

+ 5 NG, 1 )E e, £7) ~ By x, 1741)]

_ N(x, tE(Xk, t") + N(xi, t"YE (%, t**1)
- 2
iAt n i n n+l1
+ TEtt(xk > Be) + i[Et(xk ) ") = E(xg, t"1)]
_ NOa, t)E(x, t") + N, " E (xg, t"*1)
- 2
Now the result for 7} will follow if

%(N(xk s t”)E(xk , tn) + N(xp, t"“)E(xk s t"+l))
— L(N(xk, t") + N(xi, t"*1)) (E(xk , 1") + E(x , £"1))
= O(Af? + Ax?).
Simple algebra shows that this expression equals
§(ECxe, "1 = E(xi, t7) (N (o, £1) = N(x , 1)),

and hence is O(A#?).
As for o, we use Taylor’s theorem again to write

+ 0O(Ax?)

or =(Mt(xk , M)+ O(Atz)) - %(Nxx(xk , M 4 O(sz))
2
- %(Nxx(Xk » tn“l) + O(AXZ)) - (%3|E(xk , t")|2 + O(sz))

The result follows from (ZS.N), since
Nyx(Xg 5 ") = §(Nex (XK 5 1) + Nyx (X1, £771)) = O(AF?). O

+ O(Af* + Ax?).

93

Recall that the errors are defined by (29), (30). In order to obtain the error

equations we subtract (8.E) from the definition (34) of 7} to get

; el'cl“_elrct 1o n . 1o ni
l(T +—2-6ek+25ek

=T+ %[N(xk, ")+ N(xg, " OIE (xi, t") + E(x, £741)]

(36) 1 n n+1 n n+1
~ 7 INE + NEER + B

1
=7 + 2[00 + n ) (E(xe, 1) + E(x, t7+1))
+ (N + NI (e + ef )]
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Subtracting (8.N) from (35), the definition of o}, we get similarly
’1I'cl+1 — 2”1? + ”Z 1 52 n+1 52 n—l
(37) Af? )
= oy +0*(|E(x, t" |2 |Ekl )-
In a sequence of lemmas we will derive energy estimates on e and 7.

Lemma 6 (LZ2-estimate of e). There are constants c, cr such that for Ax, At
sufficiently small,

lle™ |3 < (1 + cAt)||e™||3 + cr(Af? + Ax?)?At
+ cAt(|ln" 13 + ™ 113).

Proof. As in Theorem 1(a), we multiply (36) by é,'c'“ +e;,sumon k, and take
the imaginary part to get

(38) I+II=1I1+1V,
where

1
I= A_tReZ(e"‘M —ef)(ertl +ep) = z:(le""ll2 lef?),
__Imz +l+e (52 n+l+52ek)’

I = ImZ( entl +ef)tl,

v Imz (@t + el + nE(x, 1) + E(xie, t™1))],

the last S1mp11fy1ng since N is real. All sums are taken over indices k with
1<k</J.
Term I is as desired. For III, we have from Lemma 5

I < e (left' P+ lef?) + ¢ > Ithl?
k k

< cAx([le™ 13 + lle”(13) + er(A? + Ax?)? - J
and IV is easily estimable by
ep)Ax!2 - (In*!| + [ng])Ax! /2
Ax

n+l
IV <c sup |EGx, o) 3 L]
x,t<T X

< cAx'lle™ |3 + lle™ |13 + lln™* 113 + Il 13).

As before, term II vanishes upon summation by parts. Now we multiply (38)

by AtAx and use the bounds derived above to get

(39) lle™ 13 < lle™[13 + cAe(lle™ (15 + lle”[13) + cr(Ar® + Ax?)? - JAtAx
+ cAt(lle™ |15 + lleI3 + ln" 113 + " 113).

Thus, we have

(40) (1 — cA?)|le" 3 < (1 + cAt)|le”|13 + cr (A + Ax?)?At
+ A" 13+ In"13) »

and the result follows. 0O
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When estimating the energy, we will need bounds on the discrete potentials
up from Lemma 2 and U} from Lemma 4.

Lemma 7. There is a constant ¢ depending only on the data such that
sup |ug| <c.
k
Proof. We write, using the boundary condition u§ =0,

k

D) —ujy)

j=1

k
= |Ax Y dut_,| < [l6u|2(JAX)'2,

j=1

|ugl =

and this is bounded by Lemma 3 and the definition of J. O

Lemma 8. Let U} be defined as in Lemma 4. There is a constant ¢ such that
sup |UJ'| < c(&™)'/2.
k

Proof. The proof is the same as that of Lemma 7, but in the last step we use
the definition of &” from Theorem 2. 0O

Lemma 9 (Energy of e ). Let h = At = Ax, and define

g =5Re2 (E(ac, ") + E(xic, ™)) (g + np)ep™!

" = 3 Z(N,?“ + NP)lertt 2.
k

Then
Lde |3 + A"~ + 1I"Y) — (L||oe™* |3 + A(IT" + IIT7))
= O[h(E&" +&" 1) + W)

Proof. As in Theorem 1(b), we multiply (36) by (é,z”rl —ep), sum over k,
k=1,...,J, add the result to its conjugate, and take the real part. There
results the identity

Io=1+11+1II,

where
I, = RCZ én+1 _é” 526’ +52 n+1)
1 = [2Re Y 7h(ep*! — )
k
< crh® I PR (e | + le”l) < erh(E7 + &2,

1= %ReZmz*‘ + 1) (ECx, %) + E(xe, ™)) (ep! ~ &),
k

1
I =5 Y (N + N (e = Leg ).
k
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We sum I, by parts to get
1 1
(41) lo=5 Y l0efl2 =5 Y 1dep*! .
k k

Next, we rewrite term III as

Il = 5 Z [(NFH 4+ NDlept! 2 — (N + NEhlep* + (Ng= = NEtYleg]

=" -1 + 3 Z(N,g-l - NMYler?,
k

where
(42) " = § Y (NpH + Np)lept .
k
Recall from the definition (Lemma 2) of u} that
Nn+1 — Nn

o = K~k ; k.

Thus,
N,?H _ N,:'_l

82 +uph) = ok

and therefore

- 1 _
I = 1" — "' — 7t zk: lep|26%(uf + up™").
We sum by parts to get for the last term the bound
0 (h > lepliseg|(16ug| + |5uk'll)) = O(|le" oo™ [l2(I6u" 12 + 16"~ 2))
k

= O(|le"|I,*l6e™ (137,

where we have used Lemma 3. Hence,

(43) III = 1" — I1"~! 4+ (&Y.
Consider now term II. For brevity we set

(44) wl = E(xe, ") + E(xi, "),

so that

wy — w,’j' E(x, ")) — E(xx, t"1) = O(h).
We write term II as

Il = IRez L nbwp(ert! - ep)
— IRCZ’UJ nn+l sh+1 _ IRCZ’LU kék _ lRez(wk wl'cl l)”l'clék

+ iRezwk’h?é/?H - lReZwkn,'c’“ék.
% 3
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Now we add and subtract the expression
fRe Y uf i lep
k
and define
(45) II" = jRed wingt'ept! + {Re ) winpert!,
k k

Then, using Lemma 4, we can write II as
M=1I"-11""+ o&" ")
—$Re)_epl(wp —wp=mpt + wp= (it — P
k

=I"-1I""" + O(&"!) + O((&"~!) 12 (&™) /?)
—§Re ) hefw o2 (Up + UF).
k

We sum the last term here once by parts; it equals
3Re ho(Up + Ur~")wp~'oef + e, owp™")
k
= O[(I8U" |2 + 16U~ ) (1E(" ) loo ll0€" 12 + | Ex (£*~ oo ll€™[12)]
=0((&" + &™)
Using these estimates in (46), we have
(47) I=1II"-11"""! + o[&" + & 1.
Finally, we multiply the relation
Ip=1+1II+1II
by & and use the estimates for each of these terms derived above to 'get
}1de" I3 - 31613 = O(k) + O[h(E™ + &™)

(48) -1 1

+ 1"+ I — 11" — T,
or
(49) i€ + A" + 1Y) — ($16e™ (13 + A(IT" + 1II7))

=Oh(&" +&" 1)+ h?),
and this is the statement of Lemma 9. O
Lemma 10 ( n-energy). Let h = At = Ax. Then
= 316U 13 = 2™ 13 + In"113) + 16U 15 + §m" 13 + "~ 13)
=O0h> +h(&" + &)
Proof. Recall from Lemma 4 the relation
U 208+ UL, it —nf

51U = 72 "
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We multiply the #7-equation (37) by (U + U}~ 1) and sum over k to get the
identity

(50) L-Lh-L=I4+1Is,

where

Z v+ U 1)(n,2’+‘—2n,2’+n2")
k

-2 h? ’
L= %;(Uk + U Hergt,
= G0+ U,
Iy = %; PUE+ U = 0h(&" +&"1)1/2)  (by Lemma 8),
Is = 3 (U + U~ )0 B, )2 - |ERIR).

k
We sum [, + I3 by parts, with the result

(51) L+ =—%Zk:5(’h'3“ + PSP + TP,
Expansion of this yields
- SR+ ] =t = U + U = U= U
= g SO 0L+ U = U - U]
where we put k — k — 1 to get the first sum. Thus,
Ly 1y = g S+ Uy = 207 + ULy + U =207+ 07

= %;(,’zﬂ + ﬂz—l)[azU’? +52U,:'"]
= ﬁ SO+ = )+ o = )

7 Z n+l)2 n—1)2)
k
1

= 27 2_ () + (1)?) Z () + (™).
k

k

I -
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Term I5 is summed once by parts, with the result
1 n n— n -1
Is = Yy Z (Uk+l + Uk+1 Ug - Uk )
k

C(EGaars )P = 1B 1P = |EQa, )+ |EZP),
and further expansion yields

1 _
Is= —ﬂRe; (up +eUr)

(52)

‘ [(E(xk+1 , ") — EI?H)(E(ka 1) +EZ+1)
— (E(xx, ") — EF) (E(xi , ") + Ey)]
1
—ﬁRe; (fUr+eupt)
ey (EXierr s ") + Epy) — €f (E(xic, ") + Ey)]

1 - — -
(53) s ReDOUF +0U™) [(efs — ef) Exesr - 1) + Epy)
k

+ef (B(vent ") = E(xe, ") + Epyy — Ep)]

=0 (Z(IJU;?I +16UR D (1deg] + legl(er + IJEIZ'I)))
k

— O(h—l(gn + gn—l) + h-—lnen“m(gn + gn—l)l/leaEnnz)
= O(h‘l(g’” + é""“))
by the Sobolev inequality applied to ||e" || -
Lastly, for the term Il we note from (31) that

) = mett =2+ !
h b

sy - s2Urt = (n"“‘ —-ng = (g -
and hence
(54) L=5 Z Ur+ Uuphet(ug - uph.

Summing by parts we get
h~? _
L=-5-3 [0, + Ui - U - U]
k

* [UI?H Ul?-{-ll (UI? - UI?_I)]'

(55)

This can be rewritten as
1 n - n—
(56)  Li=-5.> [0 - (607 = 2,,2 7z (16U 13 = 16U 3]
k

Returning now to (50), we multiply it by A2 to get
— 316U 15 + 316U 3
(57) = U™ G + 10" 13) + 2" 13 + llm"=1113)
=0h(&" + &™)+ hd).
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This completes the proof. O
Proof of Theorem 2. Let us define h = At = Ax and
(58) H™! = 4||6e™ |15+ 316U 13 + (™13 + " '113)-

Recall the definitions of the terms II”, III"” from Lemma 9. Adding the con-

clusions of Lemmas 9 and 10, we get
(59) H" + h(II" + III") = H* ' + h(II*' + 117
+O0(h(E&"+ &™)+ hY),

where, from (33),

(60) &" = {lle" 3 + H".
Now, for a (large) positive constant y (to be chosen below) set
(61) &n = y|lem! |2 + H" + h(II" + TIT").

From (59) and Lemma 6 it follows that
& < y(1+ ch)le" |13 + yerh® + cyh(ln™ |3 + 1"113)
+H' AT+ I + O(R(E™ + E1) + 1Y),

Now we estimate II", III" easily by

(62)

I =

%Rez (E(xic, ) + E(xic, ")) (! + m)eg™!
k

(63) < C(IE) oo + IEE* oo™ + 1712l 2
1
< 1 (™ 13+ 1) + clle™ 3

(with a constant ¢ depending only on the data), and

A" < g (N + NDlept)?
k

< clle™ oo IN"1 + N™||2]le™* !,
3/2 1/2
< c(IN" 12 + IN*)lle™ 132 e 1y

by the Sobolev inequality. Since the first factor is bounded by Lemma 3, we
obtain

(64) hIII"| < 1613 + clle™|13

with ¢ depending only on the data. Adding (63) to (64), we obtain

("] + [TII*)) < §l16e™ (13 + F5 (™ 113 + In™113) + clle™ 113
< H" +cle™3

(65)

by the definition (58) of H". It follows that & is strictly positive for a
sufficiently large choice of y, depending only on the data.
In fact, we can choose y large enough so that y > 1 and

(66) &> Sl |3+ JHr
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with a constant ¢ > 0 depending only on the data and on y.
Hence, from (62),

(67) En < @1 4 eryh(&" + &) + eryhd.
Now from its definition, we have, since y > 1,
&" = le" 3+ H" <ylle™' |5+ H"
=& _p(I" +1I") < &" + LH" + c|le" |3,
where we have used (65). Since H” < &" by (60), we conclude that
(69) 3gn <& 4 cllem™ |} < ¢, &"
in view of (66). For any such (fixed) choice of y, we obtain from (67)
(1 —crh)&" < (14 crh)&"' + crh’.

It follows that for £ = At = Ax sufficiently small, depending only on T and
the data, we have

(68)

&r < cr[&° + h2).

Since (&")!/2 is equivalent to (£")"/2, the first part of the proof is complete.
It remains to estimate £°. From (29), (30) and (9), (10) we have

=0, n2=0, ni=0".
Thus, ||7'||3 + |7n°|3 = O(h*). From Lemma 6 with n = 0, |e'|3 = O(h%),
and hence

J J
6! 13 =h""D " lei,s — exl? < 4k~ ) lex|* = O(R?).
k=1 k=1

Finally, we bound [6U}||>. We multiply the definition of U by U}, sum
over k, and then sum by parts to get

J J=1J-1
I6U°3 ==Y TRk =) = D D Gloxe, xp)minj
k=1 k=1 j=1

where we have used Lemma 4 again. Since G is continuous, it follows from
general considerations (or from explicit computation, using 7} = O(h?)) that
the last expression is O(h?), and this completes the proof. O
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