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A NEW DESINGULARIZATION FOR VORTEX METHODS 

THOMAS Y. HOU 

ABSTRACT. A new desingularization is introduced for the vortex method. The 
idea is to subtract off the most singular part in the discrete approximation to 
the velocity integral and replace it by the velocity of a vortex patch of constant 
vorticity, which can be evaluated explicitly. Stability and convergence of the 
method are obtained in the maximum norm. Preliminary numerical results are 
presented. 

1. INTRODUCTION 

In this paper, we introduce a new desingularization for the vortex method. 
The idea is to subtract off the most singular part in the discrete approximation 
to the velocity integral and replace this singular summation by the velocity of a 
vortex patch of constant vorticity, which can be evaluated explicitly (see the Ap- 
pendix). As a consequence, the desingularized vortex method is asymptotically 
one order less singular than the original vortex method if the vorticity field is 
Lipschitz continuous. This desingularization technique applies to both the point 
vortex method and the vortex blob method. Preliminary numerical experiments 
seem to indicate that the desingularized vortex method provides more accurate 
approximations for large-time calculations than the original vortex method. 

Because of our desingularization, we can prove stability of the method in 
the maximum norm. This allows us to analyze convergence of the method 
in the case when a local regridding procedure is introduced for the method 
[11]. Moreover, our analysis only uses the fact that the Biot-Savart kernel is 
L I . This implies that the method is also convergent for the analogue of the 
incompressible Euler equations (1)-(2) (see below) with a kernel K which is 
more singular than the Biot-Savart kernel. 

Consider the incompressible 2-D Euler equations in the vorticity-stream func- 
tion formulation: 
(1) cot + (u * V)C( = O. C(X, O) = Co(X). 

Here the velocity u is related to the vorticity co by the Biot-Savart law 

(2) u(x, to K(x - yr)w(y to dy, 
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and K is the Biot-Savart kernel 

(3) K(x) (-X2 | X1 

The flow trajectory X(t, a), defined as below, plays an important role in 
the vortex method. It describes the position of a fluid particle at time t which 
starts at the position a initially, and satisfies the following ordinary differential 
equations 

(4) dX(t, a) = u(X(t, a), t) X(O, a) = a. 

It follows from (1), (2), and (4) that 

(5) co(X(t, (a), t) = co((, 0) = coo(a) 

and 

(6) u(x, t) K(x-X(t, a))coo(a))da. 
R2 

The simplest approximation of (4) and (6) consists of replacing the velocity 
integral by the trapezoidal rule approximation and solving the resulting ordinary 
differential equations: 

(7) d~h _daj, 
d dt (t) = -h (Xh (t) , t), Xih (0) = a- 

(8) uh(Xh(t), t) = E K(Xih(t) - X (t))cojh2, 
]EZ2 
i7i 

where ai = i . h = (iIh, i2h) and coj = coo (aj). Numerical discretization of 
equations (7) and (8) is known as the point vortex method [16]. 

However, the point vortex method has the following difficulty: if two neigh- 
boring particles approach each other, the discrete velocity approximation may 
become unbounded. In order to alleviate this difficulty, Chorin [5] introduced 
the idea of replacing (7)-(8) by the system of equations 

(9) dX (t) = u6 (X6 (t), t) Xi5 (O) a a 
dt 1tt, X()-1 

( 10) ua (Xia (t), t) = , K, (Xia (t) - Xja (t))c~jtt- 
]EZ2 

where K, is a regularized kernel obtained by convolving K with a mollifier 
fJr, 

K,=K*f f, ff(x)= ,f (,) 

This gives a computationally more stable method than the point vortex method 
if the smoothing blob size, 5, is much larger than the grid size, h. Conver- 
gence of the vortex blob method has been established first by Hald [9], and 
subsequently by Anderson and Greengard [1], Beale and Majda [3], Cottet [6], 
and Raviart [1 5] among others, under the assumption a > h. For a more com- 
plete bibliography, we refer to the review papers of Leonard [12] and Majda 
[13]. On the other hand, recently Goodman, Hou, and Lowengrub have shown 
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that the point vortex method is also stable and convergent with second-order 
accuracy for the Euler equations with smooth solutions [8, 10]. 

However, for large-time calculations, the point vortex method and the vortex 
blob method with small blob size a5 h seem to produce relatively large errors. 
The purpose of this paper is to introduce a new desingularization for the vortex 
method so that the accuracy of the method can be maintained for relatively 
longer times. 

2. DESINGULARIZATION FOR THE 2-D POINT VORTEX METHOD 

The new desingularization method is motivated by previous joint work with 
T. Chacon on a Lagrangian finite element method [4]. In the present paper, we 
approximate the vorticity by a piecewise linear polynomial and allow the mesh 
points of the triangulation to move along the streamlines of the flow. Therefore, 
the vorticity is calculated accurately at the mesh points, and the method is 
nondissipative. The main observation, which makes this formulation possible, 
is that the integral of a product of the Biot-Savart kernel and a polynomial over 
any triangle can be evaluated explicitly. More precisely, suppose Th - {= T}N 
is a triangulation of the support of the vorticity, with mesh points given by the 
particle trajectories {Xih} . Let cwh(x, t) be the piecewise linear approximation 
to co(x, t) over Th which satisfies the following properties: 

coh( Xh t) = coo(ai), oh(X, t) is continuous in x 

and cohITi is affine, 1 < i < N. 
Then a natural approximation of u(x, t) is given by 

uh(x, t) = j K(xy)Wh(y, t)dy 

(= > JK(x - y)wh IT(Y. t)dy. 
TZETh i 

Since oh IT is affine, the integrals which appear in (11) can be calculated ana- 
lytically. Thus, we obtain a system of equations for Xih(t) as follows: 

(12) dXh(t) E K(Xi _y)h IT1,(y t)dy. 

A key observation is that we can reformulate the above discretization by 
splitting the velocity integral into two parts: 

dt = 1 (Xi') y)(h(yco t)C-wh(Xih, t)) dy (13) 
dt 

h tW 

+co h(Xh xt)j K(X, -y)dy, 
Qh Wt 

where Qh(t) is the support of 60h(y, t) at time t. Obviously, the integrand 
K(Xih - y)(oh(y, t) -coh(Xih, t)) is bounded if C1h is Lipschitz continuous. The 
second integral on the right of (13) represents the velocity of a vortex patch of 
constant vorticity. It can be evaluated explicitly by expressing the computational 
support Qh(t) as a union of triangles and using our explicit formula (see the 
Appendix). 
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Applying this idea to the vortex method, we obtain the following desingular- 
ized vortex method: 

dX(tI = 
Z 

K(X - X)(j- oi) 2 + if| K(Xh - y) dy 
( 14) axjE~h(O) ht 

jhi 

=uh(xh t), 

where Qh(t) is the computational support of co(y, t) at time t. Again, the 
integral on the right of (14) can be evaluated explicitly. This is our desingu- 
larized point vortex method. As we can see, for Lipschitz continuous vorticity, 
K(Xh - XV)(cwj - co1) is one order less singular than the original summand 

K(Xih -X )c)j . 
We note that the discrete sum on the right of (14) is an approximation to the 

continuous integral 

(15) j K(Xh(t) - X(t, a)) (coo (a) - coo(ai)) da. 

One feature, which is different from the original vortex method, is that the 
integrand no longer has compact support in a. Therefore, we need to choose 
the initial computational support i1h (0) and the initial grid points aj in such a 
way that the discrete sum approximates the integral over ih (0) as accurately as 
possible. For example, the composite midpoint rule would lead to second-order 
accurate approximation if the initial support is taken to be a square. If the size 
of the square is R, then aj = (ji + I, 12 + I)h, h = R/M for some integer 
M> O. 

Convergence of the method can be obtained by a local argument. Actually, 
the desingularization allows us to prove stability of the method in the maximum 
norm. To be specific, we present a proof in the case when we approximate 
the support of the vorticity by a polygonal domain and use a midpoint rule 
approximation for the integral (15). 

Theorem 1. Suppose that coo E C02(R2), and the support of co(x, t) is approxi- 
mated by a polygonal domain. Further, assume that a midpoint rule discretiza- 
tion is used in approximating the integral (15). Then the solutions of the desin- 
gularized vortex method (14) satisfy 

(16) IlXh(t) - X(t)I1i,0 < Ch2I log(h) I 

(17) Hu h(Xh(t), t) - u(X(t), t)//1. < Ch2/log(h)I for 0 < t < T. 

Remark 1. Our desingularized method does not require that i1h(0) be the exact 
support of the initial vorticity. In computations, we might take a larger initial 
computational support ih(0) than the actual support of coo(x) . 

Proof of Theorem 1. As usual, we divide the proof into two parts: consistency 
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and stability. We first estimate the consistency error a: 

a = U(X1(t), t) - ( K(Xi(t) - Xj(t))(coj - coi)h2 
a j E fQh (?) 

(18) +-di 

+ C~i | K(Xi (t) - y) dy 
QhC(t) 

where Qc (t) is the approximation of the exact support 9(t) using the exact 
particle trajectories Xj(t) . It is natural to split a into two terms 

(19) = 1+ U2 

where 

1 = J| K(Xi(t) - X(t, a))(coo(a) - coo(ai)) da 
Qh (?) 

(20) - E K(Xi(t) - Xj(t))(coj - coi)h2 
aJ ECfh (0) 

hsi 

and 

(21) a2 = cOi j K(Xi(t) - y) dy - wo j K(Xi(t) - y) dy . 

Denote by BR the square centered at the origin with size R. Without loss of 
generality, we assume that the support of wo is contained in BR. To simplify 
our analysis, we take a larger computational support to start with, i.e., 9h(O) = 

BR+2 . 
For the a, -term, we apply the standard error estimate for the midpoint rule. 

Let Bj be the square centered at ai with size h. We have 

ai l < h2 sE max la2 F(a)Ih2 + j F(a) da, 
aEB 

a 

where 
F(a) = K(X(t, ai) - X(t, a))(Coo(a) - co(ai)). 

Using IX(t, a i) - X(t, a) > CjIai - a I, we can show that Fc(a) is bounded and 

(22) lallh~j < h2 I C 2 da + Ch2 < Ch2llog(h)I . 
h<lao-al <R la - aiJ | 

Here, C is a generic constant depending on c00 and T only. We will use this 
notation throughout the proof. 

For the a2-term, there are two cases. 
Case (i): a i 0 BR. Then co i = 0, since co0 has support contained in BR. 

Therefore, a2 = 0. 
Case (ii): ai E BR. Let QR+1 = {y : y = X(t, a), a E BR+1}. Note 

that Q(t) = QR+2 by our assumption. Since the approximation of Q(t) by a 
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polygonal domain h (t) is second-order accurate, we conclude that QIR+1 is 
contained in both Q(t) and 2 (t) . Thus, we get 

a2 = COi(| K(Xi(t) - y) dy - [ K(Xi(t) - y) dy) 
Q(t)\flR+l Q*(W)\ fR+ I 

But if y lies outside the region QR+1, i.e., y = X(t, a) with IlI > R + 1 , we 
have 

IX(t, ai) - X(t, a)l 2 Clai - al > C, 
where we have used jail < R and the fact that the inverse of X is smooth by 
incompressibility. Consequently, 

(23) 1a21 < Clarea of Q(t)\QR+I - area Of Qh(t)\QR+1 I < Ch2. 

Combining (22) and (23), we obtain the following consistency estimate: 

(24) 1a1 < Ch2jlog(h)J. 

Now we turn to proving stability of the method. As in the consistency esti- 
mates, we split the stability error, denoted by p, into two parts 

(25) P= P1+P2, 

where 

PI = Z K(Xi(t) - Xj(t))(coj - oi)h2 
aBj E 1h (?) 

(26) - Z K(Xil(t) - Xj(t))(oj - oi)h2 
aJ E h (?) 

jii 

and 

(27) P2 = K(Xi(t) - y) dy - cw J K(Xih(t) - y) dy . 

Let us denote ej (t) = Xj (t) - Xj (t) . Define 

(28) T= inf{t: 0 < t < T, lle(t)1K0 < h3/2}. 

Using the Mean Value Theorem, we get 

(29) PI = E VK(Xi(t) - Xj(t) + 1ij)(ei(t) - ej(t))(wj - oi)h , 
atj E fh (?) 

hii 

where JeijI < 21e(t)I1i1, < 2h3/2 for t < T*. The application of the mean value 
theorem is well justified because for t < T* and i ? j, 

1Xi(t) - Xj(t) + Qijl > IX(t, ai) - X(t, aj)l - 2h3/2 

> Clai - ajl - 2h3/2 > 2 jai - aj . 

This also implies that 

(30) lp, I? 2Ile(t)lll, < i - let~l 
ajE(fh(O) 

jhi 
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To estimate P2, we again divide the argument into two cases. 
Case (i): ai 0 BR. Then coi = O and P2 = ? 
Case (ii): ai E BR. We write 

P2 = (i f K(Xi(t) - y) dy - J(i K(Xi'(t) - y) dy 
Qh(t) Qh(t) 

+ (?i f K(Xi (t) - y) dy - | K(Xi(t) - y) dy) 
Qh Mt Qh Mt 

2p 
+ P(2) 

Rewrite p(l) in the form 

p2) = ce(t) J I VK(Xi(t) - y + 0ei(t)) dy dO. 

Since ai E BR and Qc is an accurate approximation to Q(t) = {y: y = 
X(t, a), a E BR+2}, we conclude that there exists a constant ro such that 
Bi,ro = {y: Iy - Xi(t) - 6ei(t)I < ro} is contained in Qc(t) for t < T* . But 
the integration of VK over a symmetric domain, Biro, is equal to zero, and 
outside Bi, ro, VK is bounded. This implies that 

lp(l)l < CIjeIjj. for t < T*. 

For the p2) -term, we can argue exactly as we did for u2 (Case (ii)) in the 
consistency estimate. We get 

P22)1 < Clarea Of QK(t)\QR+I - area of Qh(t)\QR+1I 
< CIje(t)Ijj. for t < T*. 

This completes our stability estimate 

(31) IpI < CIje(t)Ijj. for 0 < t < T*. 

Combining (24) and (31), we arrive at 

(32) d Ile(t)JI1 C(IQe(t)Iji. + h211g(h) ) 

for t < T* . The Gronwall lemma then implies 

(33) jje(t)jjj00 < C(T)h 2Ilog(h)j. 

For h small enough, we have C(T)h21log(h)I < h31/2. This shows that T* = 

T, and inequality (33) holds for all t < T. This proves (16). Now, it follows 
from (32) that 

dt Iluh(XP^(t), t) - u(X1(t), t)Ili,0 = dje(t) ? C(Ile(t)Ili,,0 + h21log(h)l), 

which implies (17) in light of (33). This completes the proof of Theorem 1. o 

Remark 2. As we see in the proof of Theorem 1, we have only used the fact 
that the kernel K is LI C. Thus, our result applies to the analogue of the 
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incompressible 2-D Euler equations with a kernel K which is more singular 
than the Biot-Savart kernel. 

3. DESINGULARIZATION FOR THE 2-D VORTEX BLOB METHOD 

The desingularization scheme presented in ?2 can be extended to the vortex 
blob method. Consider the regularized 2-D Euler equations 

(34) co4 + U * VC0=O, =o(X, 0) = co0(X), 

and 
u6(x, t) = K6 * co, 

where Kj = K * f5t is a regularized kernel, q, = 6(x/)/162, and q is a smooth 
mth-order cutoff function satisfying 

(i) fq$(x)dx= 1; 
(ii) f qs(x)xa dx = 0 for all multi-indices IaI < m - 1; 

(iii) +(x) = k(IxI), and q(x) = 0 for IxI > 1. 
It is well known that for an mth-order cutoff function (see, e.g., [3]), 

|a (0x, t) -co,,(x, t) I < Ce m, |u(x, t) - u(x, t| < Cem . 
Clearly, the generalization of the desingularized scheme (14) to the equation 
(34) is given by 

(35) dX ( -t) = Z ( Xj )(@j co)h + K6 (Xi -y) dy, d t 
aIEhh(O 

where h (t) is the computational support of co(y, t) at time t, and coj= 
coo(aCj). The question is how to compute the patch velocity corresponding to 
Keg. Let us denote by Q(t) the support of the exact vorticity co(x, t). We 
claim that if we take an initial computational support Qh (0) large enough so 
that 

(36) dist(&Qh(t), aQ(t)) > 26, 

then 

(37) wji J K6(Xa - y) dy = coi K(Xi' - y) dy. 
Qh Wt Qh Wt 

The patch velocity can then be evaluated analytically by our explicit formula in 
the Appendix. 

We prove (37) as follows. If ai lies outside the initial vorticity support, i.e., 
ai Q(O), then wi = 0 and therefore (37) is valid. If aki E Q(O), the assump- 
tion on ^h (0) implies that the circle centered at X5 with radius d is embedded 
completely inside i^h(t). Now, recall that K6(x) = K(x) fly I < 11/ q(y) dy (see, 
e.g., [2, 10]). We conclude that K6(x) = K(x) if IxI > 6, and K6(x) is an odd 
function in x. These two facts together imply (37), since the integrals of both 
K and K6 over the circle centered at Xa vanish. 

In view of (37), our desingularized vortex blob method becomes 

d(X38t) = E K6(Xi - X56)(coj - coi)h2 + ( 
J 

K(Xi' - y) dy 

-u6(Xi', t), 



A NEW DESINGULARIZATION FOR VORTEX METHODS 111 

where Qh (0) is taken large enough so that (36) is satisfied. In practice, this can 
be achieved by adding particles outside the vorticity support adaptively. 

Arguing as in the proof of Theorem 1, we can prove the following convergence 
theorem for the desingularized vortex blob method (38). 

Theorem 2. Suppose that an mth-order cutoff function is used and (36) is sat- 
isfied. Under the assumption of Theorem 1, the solutions of the desingularized 
vortex blob method (38) satisfy 

(39) IIX(t) - X(t)I1, < C(3m + h2log(h)l), 
(40) Iju'(X6(t), t) - u(X(t), t)jIIj < C(cm + h2llog(h)j) for 0 < t < T. 
Remark 3. It was pointed out by Lowengrub and Shelley (see [11]) that the 
patch velocity term on the right of (38) can be eliminated by making the desin- 
gularization local. This amounts to mollifying the constant vortex patch by a 
radially symmetric cutoff function, i.e., replacing woi by woq(X3 - X) in (38). 
The patch velocity vanishes because of the oddness of the integrand. Moreover, 
with this smooth cutoff, the desingularized vortex blob method is high-order 
accurate Q(5m + (h/5)r52) [1 1], where r is the degree of smoothness of the 
flow. 

4. GENERALIZATION TO THE 3-D EULER EQUATIONS 

In this section, we would like to generalize the desingularization idea to the 
3-D Euler equations. The hope is that through desingularization the stretching 
term can be approximated in a more stable manner. 

The 3-D incompressible Euler equations in the vorticity-stream function for- 
mulation are given by 

(41) c)t+u.Vco)= (wV)u 

and 

(42) u(x, t) = K(x - y))(y, t) dy, 

where 
(43)1 /0 X3 -X2 

(43) K(x) = - 47rJX13 -X3 ? xil 4rx3 2 -XI1 0) 

Formal application of our desingularization idea would lead to the following 
grid-free vortex method: 

dX3 (t) 
E _(X(t)-X(t))(c (t)- a(t))h3 

(44) aj EQh (?) 

+ d ) a (t) S K(Xi(t) - y) dy- 
Qh(t) 

d t ) oe (t) E VK ( Xi6 (t) - X (t) )(o@ ( t) - ad(t))) h3 
dt &EhO 

(45) aj E+ Lh(0) 

+ @(t) * K J VK(X(t) - y) dy, 
Qh(t) 
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where Kh(t) is the computational support of co(y, t) at time t. The point 
vortex method corresponds to ( = 0. For the vortex blob method, the restric- 
tion (36) is imposed on h (t)W. In principle, by using spherical coordinates, the 
integral of K or VK over any triangle can be reduced to an integral of rational 
type, which can be evaluated explicitly. However, the implementation of such 
an algorithm is more complicated than its 2-D analogue. 

Convergence of the desingularized 3-D vortex method (44)-(45) can be an- 
alyzed either by following Beale's proof for the vortex blob method [2], or by 
following the proof of Cottet, Goodman, and Hou [7]. In either case, the stabil- 
ity can be obtained more easily in our case since the integrand is less singular. In 
particular, the growing factor log( 1/h), which appeared in the stability estimate 
of [7], can be eliminated. 

From a computational point of view, the distortion of the Lagrangian parti- 
cle trajectories in time will eventually reduce the accuracy of the discretization, 
no matter how accurately one can follow the particle trajectories. Thus, local 
regridding seems unavoidable for a large-time calculation. In a subsequent pa- 
per [1 1] we will analyze the convergence property of our desingularized vortex 
method with local regridding. In this case, the stability in the maximum norm 
is crucial in making a local analysis. 

5. NUMERICAL RESULTS 

In this section, we present some preliminary numerical tests that exhibit the 
practical performance of our desingularized vortex method. Second-order con- 
vergence is illustrated numerically. In particular, our numerical experiments 
show that the numerical error for the desingularized vortex method grows more 
slowly than that of the original vortex method. The improvement is especially 
evident for the point vortex method and the vortex blob method with small 
blobs. 

In our tests, we use the radially symmetric vorticity distribution 

CO(x) = (1 - lxi2)7 if x? < 1, 
0 ~~if lxi > 1. 

The corresponding velocity field is given by u(x) = f(IxI)(-x2, xl), with f(r) 
defined by 

f(f) (1 - (1 - r2)8)/(16r2) if r < 1 
r 1/(16r2) if r > 1. 

The pair (u, co) is a steady solution of the Euler equations (1) and (2). The 
vorticity co is in C6(R2) with support contained in the unit circle. 

This flow is radially symmetric and rotates about the origin. Particles with 
maximum speed, situated approximately on lxi = 0.4, complete one rotation 
at time t = 47r. Those on lxi = 1 complete one rotation at time t = 327r. 
Consequently, a large tangential stretching is produced in a relatively short time. 
This particular point (u, co) has been used, among others, by M. Perlman [14] 
in the numerical study of the accuracy of the vortex blob method. 

In this particular case, the velocity of the circular vortex patch can be written 
explicitly as 

K(x - y) dy = 7rIxI2K(x) for lxi < 1. 
IY1<1 
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FIGURE 1 
L2 errors in velocity; desing. vortex blob vs. vortex blob, a = h0.95 

We plot the error in velocity both in maximum norm and discrete 12 norm: 

lle(t)Ijj,. = max 1ej(t)l, Ile(t)1112 = h (si Iei(t)12 

In Figure 1, we present the calculation using the desingularized vortex blob 
method with small blob size 3 = hO.95 and compare with the calculation using 
the original vortex blob method. Here we use a fourth-order cutoff function. 
As we see, the accuracy is maintained for longer times for the desingularized 
vortex blob method. A similar comparison between the desingularized point 
vortex method and the original point vortex method is given in Figure 2. It is 
clear that the desingularized version provides a more accurate approximation 
for large times. 

Figure 3 shows the errors in velocity for the desingularized point vortex 
method in the maximum norm for h = 0.2, 0.1, 0.05, respectively. We can 
see that in all these calculations, the errors grow slowly in time and convergence 
is clearly observed as h decreases. 

We also compute the order of convergence of the desingularized vortex meth- 
od using the following approximate formula: 

r(h, t) = log2(e(2h, t)/e(h, t)), 

where e(h, t) is the numerical error in 12 norm at time t with step size h. 



114 T. Y. HOU 
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FIGURE 2 
L2 errors in velocity; desing. point vortex vs. point vortex 
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FIGURE 3 
Maximum errors in velocity for desing. point vortex method 

In Figure 4, we compare the order of convergence of the desingularized point 
vortex method with that of the corresponding residual (or truncation error) a~ 
(see (1 8)). The agreement of these two indicates that the method is stable and 
the stability error p is very small. 
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FIGURE 4 

Orders of convergencefor desing. point vortex method, h = 0. 1, 0.05 

APPENDIX 

ANALYTIC CALCULATION OF VELOCITY OF A VORTEX PATCH 

In this appendix we present an explicit formula to evaluate the integral of 
the Biot-Savart kernel K over a polygonal domain fh' 

XK(x' - y) dy X 
Qh 

Since one can always express the above integral as a sum of integrals over tri- 
angles with xS as a vertex, it is enough to give the formula to evaluate 

(A.1) J = jK(xS - y) dy, 

where X is a triangle with three vertices x = (xlI, x2), P = (P1, P2), and 
q = (qi, q2). 

Let z be the orthogonal projection of xS over the straight line connecting 
vertices p and q, and fi be the internal angle between this straight line and 
the negative yi -coordinate axis (see the figure below). 

We express J in polar coordinates as follows: 

1 {82 {PO 

(A.2) J = 27jj (sinO, -cosO)dpdO, 

where 

(A.3) 01 = arctanq2 2 02= arctanqP2 -2, Po 
q, -XI PI - 

' ~~sin(O +fl) 
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. ---------- - --- -- * -1 

The change of variables 4 tan 0 gives 

(A.4) ~~i I -A j arctanO 0(-ld2 
(27 Cos5 |arctan81 (C + tanfl) (42 +l) ) 
The integrals appearing in this expression are of rational type. Then, it is 

possible to find analytic expressions for J. A careful calculation of the integral 
appearing in (A.4) leads to the following formula: 

(A.5) J = 
A7 d ? ~ogr 

where dk=2k--Xk 0 =2-= 1,and r=j-pj/j-qj. 
A more general formula was given in [4], which allows us to evaluate the 

integral of a product of the Biot-Savart kernel and a polynomial over a triangle. 
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