
MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 197 
JANUARY 1992, PAGES 135-159 

EMBEDDED DIAGONALLY IMPLICIT RUNGE-KUTTA 
ALGORITHMS ON PARALLEL COMPUTERS 

P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY 

ABSTRACT. This paper investigates diagonally implicit Runge-Kutta methods in 
which the implicit relations can be solved in parallel and are singly diagonal- 
implicit on each processor. The algorithms are based on diagonally implicit 
iteration of fully implicit Runge-Kutta methods of high order. The iteration 
scheme is chosen in such a way that the resulting algorithm is A(ca)-stable or 
L(ca)-stable with ca equal or very close to 7r/2. In this way, highly stable, 
singly diagonal-implicit Runge-Kutta methods of orders up to 10 can be con- 
structed. Because of the iterative nature of the methods, embedded formulas of 
lower orders are automatically available, allowing a strategy for step and order 
variation. 

1. INTRODUCTION 

In N0rsett and Simonsen [21], Jackson and N0rsett [16], and Iserles and 
N0rsett [1 5], it was observed that on parallel computers, predictor-corrector 
methods (PC methods) based on implicit Runge-Kutta (RK) correctors are par- 
ticularly attractive for solving initial value problems for the system of ordinary 
differential equations (ODE's) 

( 1. 1) dy(t) = A y(t)). dt 
On sequential computers, implicit RK methods are seldom used as corrector 
equations, because of the large number of implicit relations to be solved when 
using these correctors. However, matters are different when parallel computers 
are used, since PC methods, being a form of functional iteration, possess a high 
degree of parallelism. First results based on the PC approach were reported 
by Lie [ 18], who uses a fourth-order, two-stage Gauss-Legendre corrector and a 
third-order Hermite extrapolation predictor. In [12], these "parallel, iterated" 
RK methods (which we shall briefly call PIRK methods) have been investigated 
for a variety of predictor methods and it was concluded that, from an implemen- 
tational point of view, one-step predictors are preferable. Related PC methods 
were studied by Tam in his thesis [24]. In particular, families of methods were 
constructed with elliptically shaped stability regions. An analysis of the error 
behavior of a very general class of PC methods, including all methods indicated 
above, was given by Burrage [2]. 
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An attractive feature of PIRK methods is the availability of embedded for- 
mulas of lower orders allowing a strategy for step and order variation without 
additional costs. On the other hand, owing to their explicit character, PIRK 
methods have rather limited regions of stability and are therefore only suitable 
for integrating nonstiff systems. 

In this paper, we shall be interested in integrating stiff systems, and we will 
investigate the possibility of constructing methods that are more stable than 
PIRK methods by diagonally implicit iteration of fully implicit RK methods. 
After a fixed number of iterations, such methods belong to the class of DIRK 
methods, and are therefore essentially different from the explicit PIRK methods 
studied in the aforementioned papers. DIRK methods resulting from diagonally 
implicit iteration have the property that effectively they are singly diagonal- 
implicit RK (SDIRK) methods when run on parallel computers. Furthermore, 
like the PIRK methods, they possess embedded formulas of lower order, which 
make them an ideal starting point for developing variable order/variable step 
codes. We shall call the "Parallel Diagonal-implicitly Iterated" RK methods 
PDIRK methods. 

In the literature, various (S)DIRK methods were published for the integration 
of stiff systems of ODE's. The most recent contributions are the parallel DIRK 
methods of Iserles and N0rsett [ 15], which are, like PDIRK methods, effectively 
of SDIRK-type on multi-processor computers (these methods are the first and, 
as far as we know, the only parallel DIRK methods published in the literature). 
However, the order of most DIRK methods is limited to p = 4 (the only DIRK 
methods exceeding this order are those of Cooper and Sayfy, see this Journal, 
Vol. 33, 1979, pp. 541-556). By diagonal iteration of implicit RK methods it 
is possible to construct highly stable PDIRK methods of orders up to 10. 

Table 1.1 presents the characteristics of a number of SDIRK methods from 
the literature, together with the most stable PDIRK methods of order p > 
4 derived in the present paper. In this table, DIRK II denotes the Type II 
methods of Iserles and N0rsett [15], Pemb indicates that embedded methods 
of orders < Pemb are available, and s denotes the number of stages of the 
underlying corrector in the PDIRK methods (by choosing Gauss-Legendre or 
Radau IIA correctors, we may set s = [(p + 1)/2], where [1] denotes the integer- 
part function). Furthermore, the number of sequential stages is defined as the 
number of implicit systems to be solved on each processor in each step. Finally, 
we introduce the concept of L2-stability, which means that the method possesses 
an A-acceptable stability function for which the degree of the numerator is two 
less than the degree of the denominator. 

This table shows that the PDIRK methods constructed in this paper have 
the advantages of high order, high stability, and embedded formulas, but the 
disadvantage of quite a large number of sequential stages per step. For example, 
in spite of its inherent parallelism, the number of sequential stages per step of 
an L2-stable, eighth-order PDIRK method is three times as large as that of the 
A-stable, fourth-order SDIRK method of Crouzeix and Alexander, and nine 
times as large as that of the BDF methods. However, because of the iterative 
nature of PDIRK methods, the "later" stages are relatively cheap since there 
are accurate initial iterates available for solving the associated implicit relations. 
This feature, and in particular their high order and unconditional stability, make 
PDIRK methods a promising starting point to base a code on. This is confirmed 
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TABLE 1. 1 

(S)DIRK and PDIRK methods 

Proces- 
Method Order Stages Seq. stages sors Stability Pemb Reference 

SDIRK p = 3 p- I p- I 1 A-stable 1 [19] 

SDIRK p = 3 p - 1 p - 1 1 Strongly A-stable 1 [6] 

SDIRK p = 4 p - I p - 1 A-stable 1 [6], [1] 

SDIRK p = 3 p p 1 S-stable p- 1 [4], [5] 

SDIRK p = 3 p + I p + 1 L-stable p - 1 [22] 

SDIRK p = 4 p + 1 p + 1 S-stable p - 1 [4], [5] 

DIRK II p = 4 p p - 2 2 L-stable p - 1 [15] 

PDIRK p = 5 3(p - 1) p - 1 3 Strongly A-stable p - 1 ?3.2 

PDIRK p = 6 3(p - 1) p - 1 3 Strongly A(a)-stable p - 1 a - 89.970 ?3.2 

PDIRK p = 7 4(p - 1) p - 1 4 A(a)-stable p - 1 a :w 89.95? ?3.2 

PDIRK p < 6 sp p s L-stable p - 1 ?3.1 

PDIRK p = 8 sp p s L-stable p - 1 ?3.1 

PDIRK p < 8 s(p+ 1) p+ 1 s L2-stable p - 1 ?3.1 

PDIRK p= 10 s(p+ 1) p+1 s L2-stable p-1 ?3.1 

by a few preliminary experiments reported in ?4, where we show by means 
of two "difficult" test problems taken from the literature that a provisional 
implementation of an L2-stable, seventh-order, four-processor PDIRK method 
is already far superior to the SDIRK code SIMPLE of N0rsett and Thomsen [22] 
and at least competitive with the BDF code LSODE of Hindmarsh [1 1]. The 
development of a more sophisticated code based on PDIRK-type methods and 
much more extensive comparisons with existing sequential codes on a significant 
class of stiff problems will be the subject of our future research and should 
provide more reliable data on the efficiency of PDIRK-based codes. 

2. PDIRK METHODS 

For notational convenience, we shall assume in the following that equation 
(1.1) is a scalar equation. However, all considerations below are straightfor- 
wardly extended to systems of ODE's, and therefore also to nonautonomous 
equations. Our starting point is the s-stage, implicit, one-step RK method 

(2. 1 a) Yn+1 = Yn + hbTf(y), 



138 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY 

where Y is implicitly defined by the set of algebraic equations 

(2.1b) Y jyne + hAf(Y). 

Here, h is the integration step, e is a column vector of dimension s with unit 
entries, b is an s-dimensional vector, and A is an s-by- s matrix. Furthermore, 
we use the convention that for any given vector v = (v;), f(v) denotes the 
vector with entries f(vj). 

By iterating, say m times, the equation for Y by diagonally implicit itera- 
tion, we obtain the method 

2.2) Y(i) = yne + h[A - D]f(Y(j-')) + hDf(Y(i)), 

Y().2, =y JhbTf(Y(j)), j = 1, 2, ..., m, 

where D is a diagonal matrix with arbitrary, nonnegative diagonal elements 
and Y(O) denotes an initial approximation to the vector Y. Notice that after 
each iteration the current approximation y(J) to Yn+, can be computed. As 
we shall see in ?2.1, the order of these approximations increases by 1 in each 
iteration. Therefore, the mth iterate will be used to continue the integration 
process and the preceding iterates can be used for error control. 

Since the matrix D is of diagonal form, the s components of each vector Y(i) 
can be computed in parallel, provided that s processors are available. Thus, 
effectively, we obtain a method which requires per integration step the compu- 
tational time needed for computing one component of the initial approximation 
Y(O) and the successive solution of m equations. In the following, we always 
assume that we have s processors at our disposal, and we shall speak about 
computational effort per step when we mean the computational time required 
per step if s processors are available. We shall call the method providing Y(O) 
the predictor method and (2.1) the corrector method. 

There are several possibilities for choosing the matrix D. The simplest choice 
sets D = 0 to obtain an explicit iteration method (fixed point or functional it- 
eration). This approach was followed in, e.g., N0rsett and Simonsen [21], Lie 
[18], and van der Houwen and Sommeijer [12]. These papers deal with the 
iteration of implicit methods for solving nonstiff ODE's. As stated in the in- 
troduction, we are aiming at stiff ODE's, which requires the use of matrices 
D : 0. One possibility of exploiting nonzero matrices D is improving the rate 
of convergence of the iteration process. For example, by identifying the diag- 
onal elements of D with those of A, we obtain the nonlinear Jacobi iteration 
method. Alternatively, one may choose D such that the stability region of the 
iterated method rapidly converges to that of the corrector (cf. [13]). In this 
paper, however, we choose D such that we have for a prescribed number of 
iterations favorable stability characteristics, such as A-stability or L-stability 
(as far as we know, this approach has not yet been investigated in the litera- 
ture). We restrict our considerations to the case where the predictor method is 
itself an RK-type method. Hence, by performing m iterations with (2.2) and 
by accepting y(m) as the final approximation to Yn+1 , we obtain an RK method 
with a fixed number of stages. Furthermore, we assume that the predictor is 
explicit or at most diagonally implicit. Then, the resulting parallel RK method 
belongs to the class of DIRK methods (Diagonally Implicit RK methods), and 
will be briefly called the PDIRK method. 
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2.1. Order of PDIRK methods. Assuming that the iteration process (2.2) con- 
verges as m -- oo, the values yfj) approximate the solution of the corrector 
method (2.1), i.e., y(?c?) = Yn+i . The approximation y(J) differs from y(??) by 
the amount 

Y/1 Y- /o) - Y(j) - Yn+1 = hbTT[py(j)) - f(Y)]. 

If the right-hand side function is sufficiently smooth, then the iteration error 
Y(i) - Y satisfies the approximate recursion 

y(i)- hJI - h LD] -1 [A-D] (i- Y] 

so that 

(2.3) Y(m) - Yn+i hm+l f bT [Iy-(h D [A-D] O) 
(9 y h0D]_ -1 -LA- 

Let the predictor be of order q, i.e., 

(2.4) Y(O) - = Q(hq) =* O) - Yn+1 = -(hq+1); 

then 
Y(M) - Yn+1 = -(hq+m+l) , 

so that y(m) has (global) order q + m. 
In this paper, we shall study PDIRK methods with predictors of the form 

(2.5) Y(?) := Yne + hEf(yne) + hBf(Y(?)). 

Because this predictor is implicit, we will choose the matrix B of diagonal form 
in order to exploit parallelism. Since 

Y(?) - Y = yne + hEf(yne) + hBf(yne + hEf(yne) + hBf(yne)) 

- Yne - hAf(Yne + hAf(yne)) + 0(h3), 

it is easily verified that the predictor (2.5) is always first-order accurate; it be- 
comes of order two if (E + B - A)e vanishes, and of order three if, in addition, 
(BA - A2)e vanishes. 

By defining Yn+1 according to 

(2.6) Yn+l := y(m) = Yn + hbTf(Y(m)) 

the PDIRK method is completely determined. For this method, we summarize 
the above order considerations in the following theorem. 

Theorem 2.1. Let the corrector be of order p*; then the approximation Yn+i 
generated by the PDIRK method {(2.5), (2.2), (2.6)} has order min{p*, m+ 1} 
for all matrices B and E, order min{p*, m + 2} if (E + B)e = Ae, and order 
min{p*, m + 3} if in addition, BAe = A2e. 

We remark that correctors of any order are explicitly available. Correctors of 
any even order p* are provided by the (p*/2)-stage Gauss-Legendre methods, 
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and correctors of any odd order p* are provided by the ((p* + 1)/2)-stage Radau 
methods. 

2.2. Stiffly accurate PDIRK methods. As was discussed by Alexander [ 1], when 
integrating stiff equations, it may be advantageous to use RK methods {A, b} 
in which b equals the last row of A, i.e., bT = eTA, where s is the number 
of stages of the RK method. Such RK methods are termed stiffly accurate. 
Therefore, it is of interest to look for PDIRK methods possessing the property 
of stiff accuracy. Formally, we can associate with any PDIRK method a new 
PDIRK method possessing the property of stiff accuracy, simply by replacing 
(2.6) with 

(2.7) Yn 1 eY(m). 

Of course, this only yields a feasible method if the last component of the vec- 
tor y(m) provides an approximation to Yn+i . For example, this is true if the 
corrector itself is stiffly accurate, i.e., bT = eITA. We shall call the two versions 
corresponding to (2.6) and (2.7) PDIRK methods of Type I and II, and denote 
them by PDIRKI and PDIRKII, respectively. Thus, 

Type I: PDIRK method {(2.5), (2.2), (2.6)}, 
Type II: PDIRK method {(2.5), (2.2), (2.7) }. 

The following theorem is the analogue of Theorem 2.1. 

Theorem 2.2. Let the corrector be stiffly accurate (bT = eTA) and be of order 
p*; then the approximation Yn+i generated by the PDIRKII method is also 
stiffly accurate and has order min{p*, m} for all matrices B and E, order 
min{p*, m + 1} if (E + B)e = Ae, and order min{p*, m + 2} if in addition, 
BAe = A2e. 

2.3. Various types of PDIRK methods and their Butcher arrays. Given the gen- 
erating RK method (corrector) {A, b} defined by (2.1), we shall investigate 
three special families of PDIRK methods, either of Type I or of Type II, which 
differ from each other by the way in which the predictor is defined, i.e., the 
matrices B and E are chosen. Let 0 denote the s-by-s matrix with zero 
entries; then we distinguish: 

Type A: Last-step-value predictor (E = B = 0) Y(O) := yne, 
Type B: Backward Euler predictor (E = 0, B = D) Y(O) := yne+ hDf(Y(0)), 
Type C: Theta method predictor (B =D) Y(O) :=yne+hEf(yne)+hDf(Y(Q)). 

Notice that the matrix B either vanishes or is chosen equal to D. Although, in 
general, B and D may be different (diagonal) matrices, the particular choice 
B = D has advantages with respect to the implementation of the method. 
Typically for stiff equations, the implicit relations in which the matrix D = 
diag(d1, d2, ... , ds) is involved will be solved by some form of Newton iter- 
ation, which requires (in the case of systems of ODE's) the LU-decomposition 
of the matrices I - dih(9fl/y. Clearly, if B = D then these decompositions 
can also be used in solving the predictor (see also the discussion below). In the 
remainder of this paper, the analysis is performed in terms of a general matrix 
B, and concrete results are only specified for B = 0 or B = D. 

For future reference, we specify the various PDIRK I families of methods in 
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terms of their Butcher arrays and give the corresponding orders of accuracy p': 

Type IA: 

1.D:O0: pI =min{p*, m+ 1} 
j =O 0 
j = 1 A-D D 
j= 2 0 A-D D 
j= 3 0 0 A-D D 

j =m 0 ... ... ...O A-D D 

oT ... ... oT oT bT 

Type IB: 

1. D#O 0:pI =min{p*, m+ 1} 

2. D := diag(Ae): pI = min{p*, m + 2} 
j = O D 
j= 1 A-D D 
j=2 0 A-D D 
j=3 0 0 A-D D 

j=m 0 ..O A-D D 
oT ... ... ... oT OT bT 

Type IC: 

1. D#O0,E#O0:pI=min{p*, m+ 1} 

2. D:= diag(Ae - Ee), E O4 : pi = min{p*, m+2} 

3. D:= diag(Ae - Ee), DAe A2e: pI =min{p*, m + 3} 
0 

j=O E D 
j= OA-D D 
j=2 0 A-D D 

j=m O O A-D D 
oT ... ... ... oT OT bT 

In these arrays, 0 denotes the s-dimensional nullvector. Type II versions 
are obtained by defining Yn+i by means of (2.7) instead of by (2.6), and, if 
the weights of the corrector satisfy bT = e TA, then by virtue of Theorem 2.2, 
we may replace pI by pII and m by m - 1. Notice that the b-vector is not 
actually needed if the algorithm is based on Type II methods. Furthermore, we 
remark that methods of Type B.2 are completely determined by the generating 
corrector, and that those of Type C.3 prescribe the matrix D and the row sums 
of the matrix E. 

As already observed, PDIRK methods all belong to the class of DIRK meth- 
ods (since the name DIRK is not consistently used in the literature, we re- 
mark that we shall call an RK method of DIRK type if the strictly upper 
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triangular part of its Butcher tableau vanishes). Moreover, the ith processor 
(i = 1, 2, ... , s) is faced with solving a sequence of implicit relations in each 
of which the decomposition of the matrix I - dih fl/y is required (in case of 
systems of ODE's). Since this decomposition can be used in all m iterations 
in (2.2), we shall say that PDIRK methods are singly diagonally implicit RK 
methods (SDIRK methods). Here we remark that this terminology is often re- 
served for methods in which all stages are implicit with the same diagonal entry 
in their Butcher array. However, the zero diagonal entries in PDIRK methods 
of Types A and C (originating from B = 0) do not exclude these methods 
from the class of SDIRK methods, since these zeros mean that f(y,) has to be 
evaluated prior to the iteration process. Because the bulk of the computational 
effort per step consists in solving the implicit relations, the costs of this explicit 
stage are relatively negligible. 

Therefore, taking parallelism into account, we shall say that PDIRK methods 
require k sequential stages if each processor has to solve k implicit relations 
per step. Thus, Type A methods require m sequential stages, whereas for Type 
B and Type C methods this number is given by m + 1 . 

Finally, we observe that if the diagonal matrix D has equal diagonal entries, 
then all processors need the same LU-decomposed matrix in their solution pro- 
cesses. In such cases, this decomposition, as well as the evaluation of the Jaco- 
bian matrix a&f/&y, may be performed by an additional processor, providing 
a "fresh" decomposition for all processors as soon as it is available. 

3. STABILITY 

Applying the PDIRK method to the test equation 

(3.1) y'(t) = Ay(t) 
yields a relation of the form y,+I = Rm(z)yn , where z := Ah and Rm(z) is a 
rational function, the so-called stability function. The stability functions corre- 
sponding to PDIRKI and PDIRKII methods will be denoted by RI (z) and 
RII (z), respectively. They can be directly derived from the Butcher arrays by 
using the familiar "determinant formula" (cf., e.g., [7, p. 72]). However, the 
dimension of these arrays is usually so high that the evaluation of the determi- 
nants is rather tedious, even for small values of the number of iterations m. 
Therefore, we shall derive alternative formulas. 

From (2.6) and (2.7) we see that the stability functions are respectively de- 
termined by 
(3.2) Yn+I = Yn + zbTy(m) = RI_(z)yn and Yn+I = eTY(m) = RI (z)yn. 

In order to derive an expression for y(m), we write 
y(i) = [I - zD]- 1 Qyne, 

where the matrix Qj follows from 

Y(i) = [I - zD]f'[yne + z(A - D)Y(j-')] 
= [I - zD]-'[yne + z(A - D)[I - zD]-'Qj>1Yne]. 

Introducing the matrix function Z = Z(z) z(A -D)(I- zD)' , we find that 
Qj satisfies the recursion 

Qo = [I-zD][I-zB]-'[I + zE], Qj = I+ ZQj>. 
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Hence, the stability functions are given by 

RI (z) = 1 + ZbT[IzD]-lQm(z)e, RIm(z) =eT[I-zD]E'Qm(z)e, 

(3.3) Qm=Qm(z):=I+Z+Z2+ +Zm-l 
+ Zm[I - zD][I - zB]-'[I + zE]. 

We shall separately consider the case where the diagonal matrices B and D 
have constant diagonal elements, and the case where the matrices B and D are 
arbitrary diagonal matrices. 

3.1. PDIRK methods with constant diagonal elements. First, we consider the 
effect of setting D = dI on the attainable order of those PDIRK methods 
which already impose conditions on the matrix D. Assuming that the gener- 
ating corrector always satisfies the condition Ae = c, we find, according to the 
specification of PDIRK methods in ?2.3, that 

Type B.2: D = diag(Ae) =X de = c, 
Type C.3: DAe = A2e ?# dc = Ac. 

By observing that third-order correctors require bTe = 1 bTC =2 bTAc = 6 

and bTC2 = ., we see that PDIRK methods of Type B.2 cannot satisfy these 
conditions, so that their order is limited to p* = 2, which is obtained for 
d = I . A necessary condition for Type C.3 methods to satisfy these third-order 
conditions requires d = . However, the fourth-order condition bTA2c = 214 
cannot be satisfied, so that the order of Type C.3 methods is limited to p* = 3. 
Obviously, we are not interested in such low-order methods. Furthermore, as 
will be shown below, we shall exclude methods of Type C. 1, because the number 
of sequential stages is not optimal with respect to the order p. Thus, in this 
section we shall concentrate on PDIRK methods of Type A. 1, Type B. 1, and 
Type C.2. 

Next, we return to the stability functions (3.3). For B = bI and D = dI, 
the matrix Qm(z) can be written as 

Qm (Z) = 1-b)Nm (z) 

where Nm(z) is a polynomial in z with matrix-valued coefficients; (3.3) be- 
comes 

(3.4) RI (z) = 1 + bTzNm(z)e RI esNM (z)e 
( * ) m( (1 -bz)( - dz)m ' M(Z 

= 
(1- bz)( - dz)m 

This representation shows that both stability functions are of the form 
r 

(3.5a) R(z) := (1 - dz)-qP(dz), P(d z) :E cj(d z), 
j=0 

where the coefficients cj depend on q and d (recall that either b = 0 or 
b = d) . For future reference, it is convenient to specify the values of r and q 
for the various types of methods. In Table 3.1 these values are listed for general 
values of d. 

For an arbitrary given value of d, the order of consistency of the stability 
function (3.5a) cannot exceed r, hence, by choosing m such that the order 
p of the PDIRK method equals r, we achieve that the number of sequential 
stages is minimal with respect to the order p. 



144 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY 

TABLE 3.1 
Values of r and q in the stability function (3.5a) 

Type IA IB IC IIA IIB IIC 

r= m+ 1 m+ 1 m+2 m m m+ 1 

q= m m+1 m+1 m m+1 m+1 

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The fol- 
lowing theorem defines an explicit representation of the stability function. 

Theorem 3.1. Let p be the order of the method, and let m be such that r = p; 
then the coefficients of (3.5a) are given by 

(3.5b) (i-i) i=d i=(q\,(-1) 

Cj=O (i i)!dj-i S iq ,q2 . p 

where 0! := 1. 
Proof. Since it is assumed that the method is of order p, we necessarily have 
R(z) = exp(z) + O(zP+l). By expanding the function (1 - dz)q exp(z) in 
a Taylor series at z = 0, and by equating corresponding coefficients in this 
expansion and in the polynomial P(z), defined in (3.5a), we can find the first 
p + 1 coefficients of P. Hence, all coefficients of P are uniquely determined 
and are given by (3.5b) (see also N0rsett [19] and Butcher [3, p. 246] for 
expressions in terms of derivatives of Laguerre polynomials). o 

Notice that the condition r = p excludes methods of Type C. 1, because for 
Type I and Type II variants the maximal order is m + 1 and m, respectively, 
which is one lower than the corresponding value of r. As a consequence, for 
methods of Type C with stability functions of the form (3.5), the order should 
be increased by one, which is obtained by requiring the matrix E to satisfy the 
condition Ee = Ae - de. 

By means of Theorem 3.1 the stability analysis is now rather straightforward. 
Following N0rsett [20] and Butcher [3], we write u = y2 and define the so-called 
E-polynomial 

E(u) 1(1 - iy)ql2[1 - JR(iy/d)12] = 1(1- iy)ql2 - lP(iy)12 
=(1 + U)q-[Co-C2U + C4U2 _... ]2_ U[Ci-C3U + C5U2 _ ]2. 

From the condition R(z) = exp(z) + O(zP+l) it follows that JR(iy/d)12 - 

1 + Q(yP+l), so that E(y2) - Q(yP+l). Hence, all terms of E(y2) of degree 
less than p + 1 in y vanish, so that 

q 

E(u)= ejui, ej = ej(d) :=( q - C2 _) 2E( icj- icj+i , 
j=[p/2]+1 i=l 

with cj := 0 if j > p or j < 0. Because of the maximum principle, we have 
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A-stability if IR(iy)l is bounded by 1 for all real y, so that the method is 
A-stable if and only if E(u) is nonnegative for u > 0. 

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let 
the range of d-values which are A-acceptable be denoted by Ipq, i.e., Ipq := 
{d: E(u) > 0 for all u > 0}; then the following summary is easily obtained by 
using Table 3.1 and the order results obtained for the various types of methods 
(p* denotes the order of the corrector {A, b}): 

TABLE 3.2 
Summary of properties of PDIRK methods with constant diago- 
nal elements 

Type Condition Order Sequential stages A-acceptable d-values 

IA.1 m<p*-1 m+1 m Im+I,m 

IB.1 m < p*-1 m+1 m+1 Im+1,m+1 

IC.2 m < p* -2 m+2 m+ 1 Im+2,m+ 

IIA.1 m <p* m m Im,m 

IIB.1 m <p* m m+ 1 Im,m+I 

IIC.2 m <p* - 1 m+ 1 m+ 1 Im+1,m+1 

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if q > p. 
From Table 3.2 we see that the methods of Type IIB. 1 possess L-acceptable 
stability functions. Since L-stable methods are usually more suitable for inte- 
grating stiff equations than A-stable methods, the methods of Type IIB. 1 are 
of interest in spite of the additional sequential stage when compared with the 
other methods. However, just as in the case of SDIRK methods, it is possible 
that an A-stable method can be made L-stable if the interval of A-acceptable 
d-values contains a value for which cp vanishes. For q = p < 15, this has been 
investigated by Wolfbrandt [25] and it was found that such values of d exist 
for p < 6 and p = 8. This information is summarized in Table 3.3a. 

In a similar way, L-acceptable ranges of d-values can be found in the case 
q = p + 1 . These ranges turn out to be nonempty for p < 8 and for p = 10, 
and are given in Table 3.3b. Moreover, we list the values of dp,p+1, which 
are inside these L-acceptable ranges and cause cp to vanish, resulting in even 
stronger damping at "infinity" (L2-stability). 

Finally, we considered the case q = p - 1, resulting from IA. 1 and IC.2 
type methods. Since now the degree of the numerator in R(z) is larger than 
that of the denominator, a necessary condition for this case to yield A-stability 
is that cp vanishes. For p = 2, 3, ... , 10 we determined the zeros of cp(d) 
and checked the resulting stability function on A-acceptability. Only for p = 2 
(d = 2) p = 3 (d = (3+ V)/6), and p = 4 (d = 1.0685790213) A-stability 
can be obtained. Hence, in this way we have found A-stable methods of orders 
p up to 4 requiring p - 1 sequential stages. This result is similar to what is 
possible in the case of RK methods for sequential computers (cf. [1]); however, 
the present methods contain embedded formulas of lower order. 
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TABLE 3.3a 
A-acceptable and L-acceptable values of d for p = q 

p = q Range Ipp dpp 

1 [1/2, o] 1 

2 [1/4, o] 1 ?Vi 72 

3 [1/3, 1.068] 0.43586650 

4 [0.395, 1.280] 0.5728160625 

5 [0.247, 0.361] + [0.421, 0.473] 0.2780538410 

6 [0.285, 0.54] 0.3341423671 

7 empty 

8 [0.218, 0.264] 0.2343731596 

9 empty 

10 empty 

TABLE 3.3b 
Ranges of L-acceptable values of d for p = q - 1 

p=q- 1 Range Ip,p+1 dpp+ 

1 [1 - V172, 1 + VI72] 0.5 

2 [0.181, 2.185] 0.5] ? V 

3 [0.224, 0.572] 0.3025345782 

4 [0.248, 0.676] 0.3888576711 

5 [0.184, 0.334] 0.2168805435 

6 [0.205, 0.378] 0.2579552416 

7 [0.157, 0.2029] + [0.2052, 0.234] 0.1690246379 

8 [0.171, 0.259] 0.1929778040 

9 empty 

10 [0.147, 0.165] + [0.1938, 0.1961] 0.1541460739 

Notice that any s-stage, pth-order corrector (even explicit corrector methods) 
can be used for generating A-stable methods of Type IB, and any pth-order 
corrector satisfying the condition bT = eTA for generating the A-stable methods 
of Type IIA and IIC, or the L-stable methods of Type IIB. 
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Furthermore, we have seen that the stability can be improved by selecting spe- 
cial d-values. Another possibility, which might be useful in a variable-stepsize 
implementation, is to exploit the length of the A- and L-acceptable ranges: for 
small changes in the stepsize h, the value of hd could be kept fixed (as long 
as the corresponding d-value is still in the allowed range, of course), so that a 
new decomposition of I - hdOf/Oy can be avoided. 

3.1.2. Accuracy test. It is well known [7] that, when integrating general stiff 
systems, the actually observed order is usually much lower than the classical 
order p . In fact, the order behavior is often dictated by the so-called stage-order 
r (for a definition of this notion and its consequences the reader is referred to 
[7]). Since most (P)DIRK methods have stage order r = 1 , one might question 
the relevance of PDIRK methods possessing a high classical order. And indeed, 
for a general stiff problem, this order-reduction phenomenon has great impact 
on the accuracy of this type of methods. 

However, in [10], Hairer et al. give a thorough analysis of the behavior of 
RK methods when applied to a singularly perturbed problem of the form 

(3.6) e 
dy 

= fi(YI, Y2), dY2 = f2(YI, Y2), withe << 1, 

and show that for special RK methods the classical order may still dominate the 
global error, especially if stiffness increases (i.e., if e -? 0) . The motivation for 
considering this particular problem class is that it has practical significance and 
has been extensively studied in the literature (see the references cited in [10]). 
An important characteristic of problems of the form (3.6) is that the eigenvalues 
of the Jacobian matrix can be clustered into two groups, and behave as 0(1) 
and O(e-1), respectively. Here we give the essential result of Hairer, Lubich, 
and Roche concerning the global error (cf. [10, Theorem 1 on p. 680]): 

Theorem 3.2. Let the RK method be A-stable and let e < Constant -h. Then the 
global error for the stiff component Yi behaves as O(ehr) + O(hP) if bT = eTA 

and as 0(hr+1) if IR(oc)l < 1. For both cases, the global error for the nonstiff 
component Y2 behaves as O(6hr+l) + O(hP). 

This result indicates that Type II methods are to be preferred if e -+ 0, since 
then the global error is dominated by the classical order, whereas methods of 
Type I will behave according to their (low) stage order. 

To illustrate these properties, we applied a few of the PDIRK methods de- 
rived in the preceding subsection to a problem of the form (3.6), proposed by 
Kaps [17]: 

(3.6 t) dy, = -(2 + e- I y + e6-I (Y2)2, dd 2 =Y1 - Y2(0 + Y2), (3.61) dy dyt 

Y1(O) =Y2(0) = 1, 0< t 1, 
with the smooth exact solution Yi = exp(-2t) and Y2 = exp(-t) for all values 
of the parameter e. 

The methods we have used in our tests are based on correctors of different 
classical order (a specification of these correctors can be found in the appendix 
to the report [14]). Moreover, all methods were equipped with the special dpp 
or dp,p+1 values given in Table 3.3 and, consequently, are L-stable and L2- 
stable, respectively. 
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For e = 10-8 the absolute error for the stiff component Yi at the endpoint 
t = 1 is given in Table 3.4 (see p. 148); here, the error is written in the form 
10-A and the values of A are listed. Notice that the Type II methods require 
a stiffly accurate corrector (such as the Radau IIA formulas) and that L-stable, 
seventh-order PDIRK methods are only possible within the family of Type 
IIB.1 methods (cf. Tables 3.2 and 3.3b). This table clearly demonstrates the 
superiority of the stiffly accurate Type II methods over the Type I methods, 
which show only a second-order behavior for the global error (recall that r = 1 
for the Type IB.1 methods). On the other hand, the stiffly accurate methods 
exhibit the classical order in the error behavior and thus both results are in 
perfect agreement with the estimates in the theorem of Hairer et al. 

From this experiment we may conclude that it is relevant indeed to have 
high-order PDIRK methods for integrating stiff systems of the form (3.6), in 
spite of their low stage order. 

Comparing the efficiency of the various parallel methods of Type II, we ob- 
serve that schemes of Types A and C are equally efficient, since they require 
the same number of sequential stages (cf. Table 3.2). Type IIB. 1 methods yield 
slightly more accurate results, but need an additional stage to reach the same 
order (we remark that the seventh-order method of this type does not show full 
advantage, since the integration process was impeded by the machine precision). 

3.2. PDIRK methods with arbitrary diagonal matrices. In the case where B 
and D are allowed to be arbitrary diagonal matrices, it is convenient to express 
Qm(z) in the form 

Qm(Z) = [I - Zf-[I - zm] + ZmQO 
= [I -Z]- 1[I - Zm] + Zm[I - zD][I - zB]-f[I + zE]. 

Since [I - zD]-I = [I - zA]-I[I - Z], we find 

Qm(z) = [I-zD][I-zA]- [I - Zm + [I-Z]Zm[I-zD][I-zB]-'[I + zE] , 

so that (3.3) yields 

RI (z) = 1 + zbT[IzA]-l EI -Zm + [I -Z] Zm 

x [I - zD][I - zB]-'[I + zE]] e, 

RII (Z) = eT[I _ zA]-i [I _ZM + [I _ Z1ZM 
(3.3 1A 

x [I - zD][I - zB]-I[I + zE]] e 

= 1 + eT[I _zA]-l [zA - zm + [I - Z]Zm 

x [I - zD][I - zB]- '[I + zE]] e. 

In the following two subsections, a representation for the stability functions 
without inverses of matrices will be given, and stability characteristics of PDIRK 
methods of Types IB.2, IIB.2, and IIC.3 are presented. 

3.2.1. Representation theorems. The following theorem gives a representation 
of the stability functions in terms of determinants containing only inverses of 
diagonal matrices. 
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Theorem 3.3. The stability functions (3.3') can be represented by 

RI -z det{I-zA+z [I_ zm+[I-Z]Zm [i-zD][I-zB] - I [I+zE]b} 
= det{I-zA} 

(3.7 
DII(_ det=I-zA+[zA-Zm+[I-Z]Zm[I-zD][I-zB]-=[I+zE]]eei} 

m Z) = 
det{I-zA} 

Proof. Applying the identity 

1 + TN- = det{N + yxT} 
det{N} 

to the stability functions (3.3') straightforwardly leads to the representations 
(3.7). El 

The expressions (3.7) can be simplified for the respective Types A, B, and C: 

Corollary 3.1. Let the matrix Z be given by Z = z(A - D)(I - zD) ;then the 
following assertions hold: 

(a) The stability function of PDIRK methods of Type A. 1 are given by 

RI (z) - det{I - zA + z[I - zZmA]ebT} 
RMz det{I - zA} 

(3.8a) det{I - zA + z[I - Zm]AeeT} 
M(Z) = det{I -zA} 

(b) The stability function of PDIRK methods of Type B are given by 

RI()=det{I - zA + z[I - Zm+llebT} 
(3.8b) Rm(z)- detA{I -zA} 

R3(z)- det{I - zA + [zA - Zm+l]eeT} M(Z) = 
det{I - zA} 

(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are 
given by 

RI (z) = det{I - zA + z[I - zZm+lA]ebT} 
M ~~~det{I -zA} 

(3.8c) det{I - zA + z[I - Zm+l]AeeT} 
M(Z) = det{I -zA} 

Notice that these expressions no longer explicitly depend on E and B, and 
are completely determined by the corrector and the matrix Z. 

3.2.2. Stability characteristics. In this subsection, we consider the stability of 
PDIRK methods. We shall distinguish between methods based on Radau IIA 
correctors and on Gauss-Legendre correctors. 

The Radau IIA correctors have order p = 2s - 1, where s is the num- 
ber of stages, and satisfy the condition bT = eTA (their Butcher arrays for 
s = 1, ... , 4 are given in the appendix to [14]). Owing to this property, PDIRK 
methods of Type I and Type II are both relevant. We confine our considerations 
to types which require (with respect to their order) less sequential stages than 
the corresponding methods indicated in Table 3.2, that is, we consider meth- 
ods of Types IB.2, IIB.2, and IIC.3. For these types of methods, the stability 
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functions are completely determined. In Table 3.5, we present a summary of 
the characteristics of these methods for several orders. Based on the stability 
functions (3.8), the stability region of the methods was determined numerically. 
It turned out that some stability functions are only A(ca)-acceptable. However, 
in these cases al is very close to 900 (in the Appendix to [14], a set of stability 
regions is given, including the regions of the embedded lower-order methods). 

Furthermore, we considered PDIRK methods based on Gauss-Legendre cor- 
rectors. Such s-stage correctors have order 2s, but are not stiffly accurate and, 
hence, only Type I methods are relevant. In Table 3.5 we have included the 
characteristics of fourth- and sixth-order methods of Type IB.2 (the generating 
correctors can be found in [3, p. 219]). 

TABLE 3.5 
Characteristics of PDIRK methods based on arbitrary B and 
D matrices 

Seq. Proces- 
Type Corrector Order Stages sors Stability 

IB.2 Radau IIA 3 2 2 Strongly A-stable 

Gauss-Legendre 4 3 2 Strongly A-stable 

Radau IIA 5 4 3 Strongly A-stable 

Gauss-Legendre 6 5 3 Strongly A(a)-stable, a = 89.970 

Radau-IIA 7 6 4 Strongly A(a)-stable, a = 83.30 

IIB.2 Radau IIA 3 3 2 L(a)-stable, a = 89.75? 

Radau IIA 5 5 3 L(a)-stable, a = 89.120 

Radau IIA 7 7 4 L(a)-stable, a = 89.020 

IIC.3 Radau IIA 3 2 2 A-stable 

Radau IIA 5 4 3 A(a)-stable, a = 89.997? 

Radau IIA 7 6 4 A(a)-stable, a = 89.95? 

In comparison with the PDIRK methods constructed in ?3.1, we observe 
that the above PDIRK methods of Types IB.2 and IIC.3 require one sequential 
stage less to obtain a given order of accuracy. Moreover, with the exception of 
the seventh-order method of Type IB.2, these methods possess almost the same 
good stability properties. 

For the methods of Type IIB.2 (for which the order equals the number of 
sequential stages), only the seventh-order is relevant, since in ?3.1 it turned 
out to be impossible to construct an L-stable method of order 7 with seven 
sequential stages; the third- and fifth-order methods of Type IIB.2 do not have 
an advantage over the L-stable methods described in ?3.1. 
3.2.3. Accuracy test. We conclude this section by applying the methods specified 
in Table 3.5 to the problem (3.6'). Using the same notation as described in 
?3.1.3, we give the results in Table 3.6 (see p. 152). 
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Again, the stiffly accurate Type II methods are much more efficient than the 
methods of Type I. Moreover, the order behavior nicely illustrates the results 
of the theorem of Hairer et al. (cf. ?3.1.2). Furthermore, within the class of 
stiffly accurate methods, the C-variant is superior to the B-variant, since it is 
cheaper and yields, for this example, more accuracy. 

4. EFFICIENCY TESTS 

Finally, we investigate the performance of PDIRK methods when run on a 
parallel computer. Because it is highly desirable to use an unconditionally stable 
method of high order, we selected a PDIRK method of Type IIB. 1 with a D- 
matrix of the form D = dI. On the basis of the accuracy test described in 
?3.1.2, we decided to choose the seventh-order, four-point Radau IIA corrector 
(see (A.3) in the Appendix to [14]), with m = 7 iterations. The resulting 
method is of order seven (cf. Theorem 2.2), and by choosing d = 0.1690246379 
we achieve strong damping at infinity (L2-stability, cf. Table 3.3b). Hence, 
taking into account the (implicit) predictor, the method requires eight sequential 
stages per step. We have implemented this method on an Alliant FX/4 computer 
having four parallel (vector-) processors, shared memory, and approximately 16- 
digit arithmetic precision. Since the underlying Radau method has four stages, 
we may expect an efficient use of this machine. 

In order to be able to test problems with a strongly fluctuating solution, we 
equipped the above fixed-order PDIRK method with a simple strategy for error 
control and stepsize selection. Since the PDIRK approach provides a whole set 
of embedded reference solutions of lower order, we can construct an estimate 
of the local truncation error without additional costs. For this purpose we take 
IleiY(m) - eiY(m-1)11 as an estimate for the local error. All implicit relations 
are iterated using modified Newton iteration. If convergence happens to fail 
within a fixed number of iterations (in our version, we choose this number 
equal to 10), then we update the Jacobian and, if still no convergence can be 
obtained, we halve the stepsize (repeatedly, if necessary). Furthermore, the 
Newton process to solve for y(i) is started with the initial guess y(j- 1), which 
is of increasing accuracy for increasing j. It should be observed that this 
provisional implementation certainly can be improved by a better tuning of the 
separate elements (for example, all kinds of thresholds and strategy parameters 
should be tuned on the basis of extensive testing). Since it is not the aim of this 
paper to present such a "production code," we will give results for our "research 
version." 

The goal of our tests is twofold: 
(i) We want to investigate (for realistic problems) to what extent the theo- 

retical parallelization can be realized in practice; in other words, what speedup 
factor can be obtained on this four-processor machine. Obviously, the ideal 
factor of four will be too optimistic because of unavoidable overhead, like com- 
munication and sequential parts in the program. 

(ii) We want to compare the performance of the parallelized PDIRK code 
with that of a good sequential ODE solver. Within the class of sequential 
solvers based on unconditionally stable methods, we selected the code SIM- 
PLE of N0rsett and Thomsen [22]. The method underlying this robust and 
reliable code is closely related to the PDIRK method, i.e., it is also based on an 
unconditionally stable, diagonally implicit Runge-Kutta method. Furthermore, 
SIMPLE is, like PDIRK, equipped with embedding techniques to control the 
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local error. A disadvantage of this code is that its order is rather low; it is based 
on a third-order DIRK method. However, high-order A-stable DIRK-codes are 
not available in the literature. Since many problems are more efficiently in- 
tegrated if high-order formulas are available, we also looked for a code based 
on methods of various orders. This led us to LSODE of Hindmarsh [1 1]. This 
BDF-based code has enjoyed very successful usage over a long period. However, 
the fact that only the first- and second-order formula in this code are uncon- 
ditionally stable makes LSODE less robust as a general stiff solver. It is well 
known that the performance of this code may deteriorate significantly when it 
is applied to problems with eigenvalues in the vicinity of the imaginary axis 
(see, for example, Stewart [23]). On the other hand, since LSODE is generally 
accepted as being a good sequential ODE solver, we decided to include it in our 
tests. 

In the next subsections, we describe the results obtained when the aforemen- 
tioned three codes are applied to some hard problems. Since the codes are 
different in nature (low order versus high order, one-step versus multistep), we 
refrain from indicating the traditional statistical output of an automatic ODE 
solver, like number of steps, number of LU decompositions, etc. It should be 
observed that the work involved per step is quite different for the various codes: 
for instance, the sequential number of implicit relations to be solved per step 
equals one for LSODE, four for SIMPLE, and eight for PDIRK. Since the codes 
do not yield equal accuracy for the same value of the local error control param- 
eter TOL, we list results for various values of TOL and measure the accuracy 
produced as well as the CPU-time required. All accuracies are given in terms 
of A, the number of correct digits at the endpoint of the integration interval 
(see ?3.1.2), and the CPU-times are given in seconds. 

4.1. Robertson kinetics example. In our first example we solve a set of reaction- 
rate equations: 

dl = - 0.04y + 1?04Y2Y3, dt 

(4.1) dy2 = 0.04yi - 104y2Y3 - 3. 107(y2)2, dt 

dt3 = 3- 107 (y2)2, 

defined on the interval [0, 108] with initial conditions Yi(0) = 1, Y2(0) = 

Y3(0) = 0. This problem is also used by Hindmarsh and N0rsett & Thomsen 
to illustrate the performance of LSODE and SIMPLE. 

Initially, the solution changes rapidly, and small stepsizes are required; grad- 
ually the solution reaches a steady state, and the stepsize can be increased con- 
siderably. In a typical situation we observed stepsizes in the range [10-3, 106]. 
Hence, this problem imposes a severe test on the stepsize selection procedure. 
The results obtained by the various codes are collected in Table 4.1. Here T1 
means the CPU-time when only one processor is used, and T4 denotes the 
CPU-time required when the program is run on four processors. 

These results give rise to the following conclusions: 
(i) Concerning the parallelization of the PDIRK code we observe a speedup 

by a factor (T1/T4 ~) 2.68 and 2.91 for the two values of TOL that we have 
used. One reason why these numbers are less than the optimal speedup factor 4 
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TABLE 4.1 
A-values and CPU-times for problem (4. 1) 

Method TOL A T1 T4 

10-4 6.5 0.63 0.85 

SIMPLE 10-5 7.8 1.38 > T, 

10-6 9.5 3.67 > T, 

10-5 7.4 0.35 > T, 

LSODE 10-7 8.6 0.80 > T, 
10-9 10.3 1.71 > T, 

PDIRK 102 8.5 0.51 0.19 

100 11.1 1.08 0.37 

is the introduction of inevitable overhead (and of scalar code). Another reason 
is algorithmic in nature. Each component of the prediction Y(O) is a numerical 
approximation to the ODE solution at the point In + dh (actually, all processors 
have solved exactly the same implicit relation in this predictor stage). These 
components are used as an initial guess in the various Newton processes com- 
puting y*). Since the components of y(l) are approximations to the ODE 
solution at different points (i.e., the Radau points), these initial guesses do not 
have equal accuracy, so that we may expect different numbers of Newton iter- 
ations on the various processors. In the case TOL = 1, we measured the actual 
numbers of Newton iterations over the whole integration interval and found, 
for the four processors, 848, 924, 1012, and 1043, respectively. This means 
that in some steps a few processors have met the convergence criterion in the 
Newton process, and thus have been idle for some time while waiting for the 
other processors to complete solving their implicit relation. Taking this aspect 
into account, the optimal parallelization cannot exceed a speedup factor equal 
to (848 + 924 + 1012 + 1043)/1043 e 3.67. The measured speedup in this case 
equals 2.91 (i.e., 79%), showing that the overhead (communication, scalar code, 
etc.) only slightly degrades the performance. The reduction of the ideal factor 
4 to 3.67 is a price we have to pay for choosing a PDIRK method. We may 
conclude that the actual efficiency of the method as a whole, defined as the total 
speedup divided by the number of processors used, equals 2.91/4 = 0.73. 

(ii) Concerning the scalar codes SIMPLE and LSODE, we observe that they 
run faster on one processor than on four (see the result obtained by SIMPLE for 
TOL = 10-4) . Apparently, the parallelization and vectorization overhead does 
not pay for this problem (this might be different in case of an ODE with many 
components). Therefore, we only give timings for the uniprocessor experiments. 
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(iii) When compared with PDIRK, we see that SIMPLE needs much more 
time in the high-accuracy range. This is obviously due to its low order. LSODE, 
which can utilize higher orders, is more efficient in this range but, when com- 
pared to PDIRK, its CPU-time is approximately four times larger to obtain 
8.5 digits precision, and this factor increases if still higher-precision results are 
requested (notice that even on one processor, PDIRK is faster than LSODE on 
this problem). 

(iv) Finally, we observe that the value for TOL used by PDIRK is several 
orders of magnitude larger than the value used by either SIMPLE or LSODE 
to achieve the same global error. This can be explained as follows: Owing to 
its high order, the local truncation error of PDIRK is usually relatively small. 
Therefore, if crude tolerances are used, the error control mechanism signals that 
a large stepsize can be used in order to balance the estimated and the requested 
local error. On the other hand, the Newton process imposes a limitation on 
the stepsize. In our implementation, the Newton processes to solve for Y(O) 
are given the value Yn as initial iterate. Unfortunately, for large values of h 
(as suggested by the error estimator) this initial iterate is not always inside the 
contraction domain for the Newton process, resulting in an adequate reduction 
of the stepsize. As a consequence, this high-order scheme, using a small(er) 
stepsize, will produce a local error which is much smaller than requested. 

In conclusion, for this test problem (and also for the problem to be discussed 
in the next subsection), the restriction on the stepsize imposed by the Newton 
process is more stringent than that imposed by the local error control, unless 
very small values for TOL are used. We have also integrated some linear ODE's 
(for which the convergence problems are not relevant, of course) and observed 
a relation between TOL and the global error similar to that of SIMPLE and 
LSODE. 

Summarizing, for obtaining highly accurate results, the above experiment 
shows that the high order of the PDIRK method is worth the large amount of 
redundancy introduced in its construction. In this connection we remark that 
the order of these methods can still be raised to 10, whereas an increase of the 
order is not possible for BDF methods and not feasible for embedded DIRK 
methods underlying the SIMPLE code. 

4.2. Van der Pol's equation. Our second example is given by the van der Pol 
equation 

(4.2) y"f - t(1 _ y2)yl + y = 0. 
For ju = 5, this is problem E2 from the test set of Enright et al. [8]. However, 
as reported there, on the interval [0, 1] the spectral radius of the Jacobian does 
not exceed 15, so that the problem is not really stiff. Therefore, we set this pa- 
rameter equal to 50. For this tu-value the equation exhibits so-called "relaxation 
oscillations," which means that the solution possesses internal boundary layers. 
Furthermore, we select an integration interval sufficiently large to capture such 
an internal layer, which again requires an adequate stepsize selection procedure. 
The problem tested in this section is defined by 

dy 
-Y2, y(0) = 2, 

(4.3) dt 0< t <41.5. 
(4.) d2 =50(10-(y)2)Y2-1, Y2(O) = 

dt 
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TABLE 4.2 
A-values and CPU-times for problem (4.2) 

Method TOL A T1 T4 

10-6 5.6 1.07 > T7 

SIMPLE 10-8 6.9 5.64 > T' 

10-10 7.8 25.5 > T7 

10-6 4.3 0.24 > T7 

LSODE 10-8 6.3 0.42 > T7 

10-10 7.8 0.83 > T7 

10 5.1 0.56 0.20 

PDIRK 10-2 6.1 1.20 0.41 

10-5 7.2 2.44 0.82 

This test example has also been discussed by Gottwald and Wanner in [9]. 
At approximately t = 40.7, the solution yi drops from 1 to -2 on a very 
short interval, forcing the codes to reduce their steplengths dramatically (several 
orders of magnitude) The results of the various codes applied to this problem 
are given in Table 4.2. 

Again, we see that PDIRK can take advantage from the availability of four 
processors: on the average, the speedup is 2.9 (or, equivalently, the efficiency 
is z 0.72). For this problem, the loss in efficiency due to overhead is less than 
(1 - 0.72 =) 0.28, because the various processors required a different number 
of Newton iterations (viz., for TOL = i0-5 we found 3186, 3561, 3882, and 
4092 iterations, respectively, which reduces the optimal speedup factor from 4 
to 3.6). 

Furthermore, it is quite clear that the low-order SIMPLE code becomes exces- 
sively more expensive for smaller values of TOL. On the other hand, LSODE 
behaves rather efficiently for this problem and is approximately equally efficient 
as PDIRK. 

4.3. Conclusions. On the basis of these (difficult) problems we may draw the 
following conclusions: 

- The actually obtained degree of parallelization of the PDIRK method is 
fairly close to its ideal value. 

- The reason that SIMPLE is less efficient than the other two codes, especially 
in the high-accuracy range, is because of its low order. 

- It is well known that the higher-order BDF formulas lack the property of 
L-stability. This may result in serious difficulties for LSODE in the case that 
the Jacobian has eigenvalues in the vicinity of the imaginary axis. However, the 
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two test problems do not belong to this category; hence, LSODE has not been 
faced with the limitation of the stability regions of the higher-order BDF's. 

- Unlike the implementation of SIMPLE and LSODE, the implementation 
of PDIRK does not require additional costs in calculating a reference solution. 

- The present research version of the PDIRK code is at least as efficient as 
the well-balanced, extensively tested LSODE code. 

- A future version of a PDIRK code can be improved as follows: 
(i) better tuning of the stepsize strategy parameters and, particularly, find- 

ing more accurate initial iterates for the Newton process in the predic- 
tion stage; 

(ii) implementation of a variable-order strategy; L-stable PDIRK formulas 
of orders up to 10 (excluding order 9) are available; 

(iii) implementation of a stiffness detector, like the one in SIMPLE, and 
switching to parallel fixed-point iteration (PIRK methods, cf. [12]) in 
nonstiff regions of the integration interval. 
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