
MATHEMATICS OF COMPUTATION
VOLUME 58, NUMBER 197
JANUARY 1992, PAGES 135-159

EMBEDDED DIAGONALLY IMPLICIT RUNGE-KUTTA
ALGORITHMS ON PARALLEL COMPUTERS

P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

ABSTRACT. This paper investigates diagonally implicit Runge-Kutta methods in
which the implicit relations can be solved in parallel and are singly diagonal-
implicit on each processor. The algorithms are based on diagonally implicit
iteration of fully implicit Runge-Kutta methods of high order. The iteration
scheme is chosen in such a way that the resulting algorithm is A(ca)-stable or
L(ca)-stable with ca equal or very close to 7r/2. In this way, highly stable,
singly diagonal-implicit Runge-Kutta methods of orders up to 10 can be con-
structed. Because of the iterative nature of the methods, embedded formulas of
lower orders are automatically available, allowing a strategy for step and order
variation.

1. INTRODUCTION

In N0rsett and Simonsen [21], Jackson and N0rsett [16], and Iserles and
N0rsett [1 5], it was observed that on parallel computers, predictor-corrector
methods (PC methods) based on implicit Runge-Kutta (RK) correctors are par-
ticularly attractive for solving initial value problems for the system of ordinary
differential equations (ODE's)

(1. 1) dy(t) = A y(t)). dt
On sequential computers, implicit RK methods are seldom used as corrector
equations, because of the large number of implicit relations to be solved when
using these correctors. However, matters are different when parallel computers
are used, since PC methods, being a form of functional iteration, possess a high
degree of parallelism. First results based on the PC approach were reported
by Lie [18], who uses a fourth-order, two-stage Gauss-Legendre corrector and a
third-order Hermite extrapolation predictor. In [12], these "parallel, iterated"
RK methods (which we shall briefly call PIRK methods) have been investigated
for a variety of predictor methods and it was concluded that, from an implemen-
tational point of view, one-step predictors are preferable. Related PC methods
were studied by Tam in his thesis [24]. In particular, families of methods were
constructed with elliptically shaped stability regions. An analysis of the error
behavior of a very general class of PC methods, including all methods indicated
above, was given by Burrage [2].

Received June 26, 1989; revised May 17, 1990.
1991 Mathematics Subject Classification. Primary 65M12, 65M20.
Key words and phrases. Runge-Kutta methods, parallelism.

i 1992 American Mathematical Society
0025-5718/92 $1.00 + $.25 per page

135

136 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

An attractive feature of PIRK methods is the availability of embedded for-
mulas of lower orders allowing a strategy for step and order variation without
additional costs. On the other hand, owing to their explicit character, PIRK
methods have rather limited regions of stability and are therefore only suitable
for integrating nonstiff systems.

In this paper, we shall be interested in integrating stiff systems, and we will
investigate the possibility of constructing methods that are more stable than
PIRK methods by diagonally implicit iteration of fully implicit RK methods.
After a fixed number of iterations, such methods belong to the class of DIRK
methods, and are therefore essentially different from the explicit PIRK methods
studied in the aforementioned papers. DIRK methods resulting from diagonally
implicit iteration have the property that effectively they are singly diagonal-
implicit RK (SDIRK) methods when run on parallel computers. Furthermore,
like the PIRK methods, they possess embedded formulas of lower order, which
make them an ideal starting point for developing variable order/variable step
codes. We shall call the "Parallel Diagonal-implicitly Iterated" RK methods
PDIRK methods.

In the literature, various (S)DIRK methods were published for the integration
of stiff systems of ODE's. The most recent contributions are the parallel DIRK
methods of Iserles and N0rsett [15], which are, like PDIRK methods, effectively
of SDIRK-type on multi-processor computers (these methods are the first and,
as far as we know, the only parallel DIRK methods published in the literature).
However, the order of most DIRK methods is limited to p = 4 (the only DIRK
methods exceeding this order are those of Cooper and Sayfy, see this Journal,
Vol. 33, 1979, pp. 541-556). By diagonal iteration of implicit RK methods it
is possible to construct highly stable PDIRK methods of orders up to 10.

Table 1.1 presents the characteristics of a number of SDIRK methods from
the literature, together with the most stable PDIRK methods of order p >
4 derived in the present paper. In this table, DIRK II denotes the Type II
methods of Iserles and N0rsett [15], Pemb indicates that embedded methods
of orders < Pemb are available, and s denotes the number of stages of the
underlying corrector in the PDIRK methods (by choosing Gauss-Legendre or
Radau IIA correctors, we may set s = [(p + 1)/2], where [1] denotes the integer-
part function). Furthermore, the number of sequential stages is defined as the
number of implicit systems to be solved on each processor in each step. Finally,
we introduce the concept of L2-stability, which means that the method possesses
an A-acceptable stability function for which the degree of the numerator is two
less than the degree of the denominator.

This table shows that the PDIRK methods constructed in this paper have
the advantages of high order, high stability, and embedded formulas, but the
disadvantage of quite a large number of sequential stages per step. For example,
in spite of its inherent parallelism, the number of sequential stages per step of
an L2-stable, eighth-order PDIRK method is three times as large as that of the
A-stable, fourth-order SDIRK method of Crouzeix and Alexander, and nine
times as large as that of the BDF methods. However, because of the iterative
nature of PDIRK methods, the "later" stages are relatively cheap since there
are accurate initial iterates available for solving the associated implicit relations.
This feature, and in particular their high order and unconditional stability, make
PDIRK methods a promising starting point to base a code on. This is confirmed

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 137

TABLE 1. 1

(S)DIRK and PDIRK methods

Proces-
Method Order Stages Seq. stages sors Stability Pemb Reference

SDIRK p = 3 p- I p- I 1 A-stable 1 [19]

SDIRK p = 3 p - 1 p - 1 1 Strongly A-stable 1 [6]

SDIRK p = 4 p - I p - 1 A-stable 1 [6], [1]

SDIRK p = 3 p p 1 S-stable p- 1 [4], [5]

SDIRK p = 3 p + I p + 1 L-stable p - 1 [22]

SDIRK p = 4 p + 1 p + 1 S-stable p - 1 [4], [5]

DIRK II p = 4 p p - 2 2 L-stable p - 1 [15]

PDIRK p = 5 3(p - 1) p - 1 3 Strongly A-stable p - 1 ?3.2

PDIRK p = 6 3(p - 1) p - 1 3 Strongly A(a)-stable p - 1 a - 89.970 ?3.2

PDIRK p = 7 4(p - 1) p - 1 4 A(a)-stable p - 1 a :w 89.95? ?3.2

PDIRK p < 6 sp p s L-stable p - 1 ?3.1

PDIRK p = 8 sp p s L-stable p - 1 ?3.1

PDIRK p < 8 s(p+ 1) p+ 1 s L2-stable p - 1 ?3.1

PDIRK p= 10 s(p+ 1) p+1 s L2-stable p-1 ?3.1

by a few preliminary experiments reported in ?4, where we show by means
of two "difficult" test problems taken from the literature that a provisional
implementation of an L2-stable, seventh-order, four-processor PDIRK method
is already far superior to the SDIRK code SIMPLE of N0rsett and Thomsen [22]
and at least competitive with the BDF code LSODE of Hindmarsh [1 1]. The
development of a more sophisticated code based on PDIRK-type methods and
much more extensive comparisons with existing sequential codes on a significant
class of stiff problems will be the subject of our future research and should
provide more reliable data on the efficiency of PDIRK-based codes.

2. PDIRK METHODS

For notational convenience, we shall assume in the following that equation
(1.1) is a scalar equation. However, all considerations below are straightfor-
wardly extended to systems of ODE's, and therefore also to nonautonomous
equations. Our starting point is the s-stage, implicit, one-step RK method

(2. 1 a) Yn+1 = Yn + hbTf(y),

138 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

where Y is implicitly defined by the set of algebraic equations

(2.1b) Y jyne + hAf(Y).

Here, h is the integration step, e is a column vector of dimension s with unit
entries, b is an s-dimensional vector, and A is an s-by- s matrix. Furthermore,
we use the convention that for any given vector v = (v;), f(v) denotes the
vector with entries f(vj).

By iterating, say m times, the equation for Y by diagonally implicit itera-
tion, we obtain the method

2.2) Y(i) = yne + h[A - D]f(Y(j-')) + hDf(Y(i)),

Y().2, =y JhbTf(Y(j)), j = 1, 2, ..., m,

where D is a diagonal matrix with arbitrary, nonnegative diagonal elements
and Y(O) denotes an initial approximation to the vector Y. Notice that after
each iteration the current approximation y(J) to Yn+, can be computed. As
we shall see in ?2.1, the order of these approximations increases by 1 in each
iteration. Therefore, the mth iterate will be used to continue the integration
process and the preceding iterates can be used for error control.

Since the matrix D is of diagonal form, the s components of each vector Y(i)
can be computed in parallel, provided that s processors are available. Thus,
effectively, we obtain a method which requires per integration step the compu-
tational time needed for computing one component of the initial approximation
Y(O) and the successive solution of m equations. In the following, we always
assume that we have s processors at our disposal, and we shall speak about
computational effort per step when we mean the computational time required
per step if s processors are available. We shall call the method providing Y(O)
the predictor method and (2.1) the corrector method.

There are several possibilities for choosing the matrix D. The simplest choice
sets D = 0 to obtain an explicit iteration method (fixed point or functional it-
eration). This approach was followed in, e.g., N0rsett and Simonsen [21], Lie
[18], and van der Houwen and Sommeijer [12]. These papers deal with the
iteration of implicit methods for solving nonstiff ODE's. As stated in the in-
troduction, we are aiming at stiff ODE's, which requires the use of matrices
D : 0. One possibility of exploiting nonzero matrices D is improving the rate
of convergence of the iteration process. For example, by identifying the diag-
onal elements of D with those of A, we obtain the nonlinear Jacobi iteration
method. Alternatively, one may choose D such that the stability region of the
iterated method rapidly converges to that of the corrector (cf. [13]). In this
paper, however, we choose D such that we have for a prescribed number of
iterations favorable stability characteristics, such as A-stability or L-stability
(as far as we know, this approach has not yet been investigated in the litera-
ture). We restrict our considerations to the case where the predictor method is
itself an RK-type method. Hence, by performing m iterations with (2.2) and
by accepting y(m) as the final approximation to Yn+1 , we obtain an RK method
with a fixed number of stages. Furthermore, we assume that the predictor is
explicit or at most diagonally implicit. Then, the resulting parallel RK method
belongs to the class of DIRK methods (Diagonally Implicit RK methods), and
will be briefly called the PDIRK method.

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 139

2.1. Order of PDIRK methods. Assuming that the iteration process (2.2) con-
verges as m -- oo, the values yfj) approximate the solution of the corrector
method (2.1), i.e., y(?c?) = Yn+i . The approximation y(J) differs from y(??) by
the amount

Y/1 Y- /o) - Y(j) - Yn+1 = hbTT[py(j)) - f(Y)].

If the right-hand side function is sufficiently smooth, then the iteration error
Y(i) - Y satisfies the approximate recursion

y(i)- hJI - h LD] -1 [A-D] (i- Y]

so that

(2.3) Y(m) - Yn+i hm+l f bT [Iy-(h D [A-D] O)
(9 y h0D]_ -1 -LA-

Let the predictor be of order q, i.e.,

(2.4) Y(O) - = Q(hq) =* O) - Yn+1 = -(hq+1);

then
Y(M) - Yn+1 = -(hq+m+l) ,

so that y(m) has (global) order q + m.
In this paper, we shall study PDIRK methods with predictors of the form

(2.5) Y(?) := Yne + hEf(yne) + hBf(Y(?)).

Because this predictor is implicit, we will choose the matrix B of diagonal form
in order to exploit parallelism. Since

Y(?) - Y = yne + hEf(yne) + hBf(yne + hEf(yne) + hBf(yne))

- Yne - hAf(Yne + hAf(yne)) + 0(h3),

it is easily verified that the predictor (2.5) is always first-order accurate; it be-
comes of order two if (E + B - A)e vanishes, and of order three if, in addition,
(BA - A2)e vanishes.

By defining Yn+1 according to

(2.6) Yn+l := y(m) = Yn + hbTf(Y(m))

the PDIRK method is completely determined. For this method, we summarize
the above order considerations in the following theorem.

Theorem 2.1. Let the corrector be of order p*; then the approximation Yn+i
generated by the PDIRK method {(2.5), (2.2), (2.6)} has order min{p*, m+ 1}
for all matrices B and E, order min{p*, m + 2} if (E + B)e = Ae, and order
min{p*, m + 3} if in addition, BAe = A2e.

We remark that correctors of any order are explicitly available. Correctors of
any even order p* are provided by the (p*/2)-stage Gauss-Legendre methods,

140 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

and correctors of any odd order p* are provided by the ((p* + 1)/2)-stage Radau
methods.

2.2. Stiffly accurate PDIRK methods. As was discussed by Alexander [1], when
integrating stiff equations, it may be advantageous to use RK methods {A, b}
in which b equals the last row of A, i.e., bT = eTA, where s is the number
of stages of the RK method. Such RK methods are termed stiffly accurate.
Therefore, it is of interest to look for PDIRK methods possessing the property
of stiff accuracy. Formally, we can associate with any PDIRK method a new
PDIRK method possessing the property of stiff accuracy, simply by replacing
(2.6) with

(2.7) Yn 1 eY(m).

Of course, this only yields a feasible method if the last component of the vec-
tor y(m) provides an approximation to Yn+i . For example, this is true if the
corrector itself is stiffly accurate, i.e., bT = eITA. We shall call the two versions
corresponding to (2.6) and (2.7) PDIRK methods of Type I and II, and denote
them by PDIRKI and PDIRKII, respectively. Thus,

Type I: PDIRK method {(2.5), (2.2), (2.6)},
Type II: PDIRK method {(2.5), (2.2), (2.7) }.

The following theorem is the analogue of Theorem 2.1.

Theorem 2.2. Let the corrector be stiffly accurate (bT = eTA) and be of order
p*; then the approximation Yn+i generated by the PDIRKII method is also
stiffly accurate and has order min{p*, m} for all matrices B and E, order
min{p*, m + 1} if (E + B)e = Ae, and order min{p*, m + 2} if in addition,
BAe = A2e.

2.3. Various types of PDIRK methods and their Butcher arrays. Given the gen-
erating RK method (corrector) {A, b} defined by (2.1), we shall investigate
three special families of PDIRK methods, either of Type I or of Type II, which
differ from each other by the way in which the predictor is defined, i.e., the
matrices B and E are chosen. Let 0 denote the s-by-s matrix with zero
entries; then we distinguish:

Type A: Last-step-value predictor (E = B = 0) Y(O) := yne,
Type B: Backward Euler predictor (E = 0, B = D) Y(O) := yne+ hDf(Y(0)),
Type C: Theta method predictor (B =D) Y(O) :=yne+hEf(yne)+hDf(Y(Q)).

Notice that the matrix B either vanishes or is chosen equal to D. Although, in
general, B and D may be different (diagonal) matrices, the particular choice
B = D has advantages with respect to the implementation of the method.
Typically for stiff equations, the implicit relations in which the matrix D =
diag(d1, d2, ... , ds) is involved will be solved by some form of Newton iter-
ation, which requires (in the case of systems of ODE's) the LU-decomposition
of the matrices I - dih(9fl/y. Clearly, if B = D then these decompositions
can also be used in solving the predictor (see also the discussion below). In the
remainder of this paper, the analysis is performed in terms of a general matrix
B, and concrete results are only specified for B = 0 or B = D.

For future reference, we specify the various PDIRK I families of methods in

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 141

terms of their Butcher arrays and give the corresponding orders of accuracy p':

Type IA:

1.D:O0: pI =min{p*, m+ 1}
j =O 0
j = 1 A-D D
j= 2 0 A-D D
j= 3 0 0 A-D D

j =m 0O A-D D

oT oT oT bT

Type IB:

1. D#O 0:pI =min{p*, m+ 1}

2. D := diag(Ae): pI = min{p*, m + 2}
j = O D
j= 1 A-D D
j=2 0 A-D D
j=3 0 0 A-D D

j=m 0 ..O A-D D
oT oT OT bT

Type IC:

1. D#O0,E#O0:pI=min{p*, m+ 1}

2. D:= diag(Ae - Ee), E O4 : pi = min{p*, m+2}

3. D:= diag(Ae - Ee), DAe A2e: pI =min{p*, m + 3}
0

j=O E D
j= OA-D D
j=2 0 A-D D

j=m O O A-D D
oT oT OT bT

In these arrays, 0 denotes the s-dimensional nullvector. Type II versions
are obtained by defining Yn+i by means of (2.7) instead of by (2.6), and, if
the weights of the corrector satisfy bT = e TA, then by virtue of Theorem 2.2,
we may replace pI by pII and m by m - 1. Notice that the b-vector is not
actually needed if the algorithm is based on Type II methods. Furthermore, we
remark that methods of Type B.2 are completely determined by the generating
corrector, and that those of Type C.3 prescribe the matrix D and the row sums
of the matrix E.

As already observed, PDIRK methods all belong to the class of DIRK meth-
ods (since the name DIRK is not consistently used in the literature, we re-
mark that we shall call an RK method of DIRK type if the strictly upper

142 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

triangular part of its Butcher tableau vanishes). Moreover, the ith processor
(i = 1, 2, ... , s) is faced with solving a sequence of implicit relations in each
of which the decomposition of the matrix I - dih fl/y is required (in case of
systems of ODE's). Since this decomposition can be used in all m iterations
in (2.2), we shall say that PDIRK methods are singly diagonally implicit RK
methods (SDIRK methods). Here we remark that this terminology is often re-
served for methods in which all stages are implicit with the same diagonal entry
in their Butcher array. However, the zero diagonal entries in PDIRK methods
of Types A and C (originating from B = 0) do not exclude these methods
from the class of SDIRK methods, since these zeros mean that f(y,) has to be
evaluated prior to the iteration process. Because the bulk of the computational
effort per step consists in solving the implicit relations, the costs of this explicit
stage are relatively negligible.

Therefore, taking parallelism into account, we shall say that PDIRK methods
require k sequential stages if each processor has to solve k implicit relations
per step. Thus, Type A methods require m sequential stages, whereas for Type
B and Type C methods this number is given by m + 1 .

Finally, we observe that if the diagonal matrix D has equal diagonal entries,
then all processors need the same LU-decomposed matrix in their solution pro-
cesses. In such cases, this decomposition, as well as the evaluation of the Jaco-
bian matrix a&f/&y, may be performed by an additional processor, providing
a "fresh" decomposition for all processors as soon as it is available.

3. STABILITY

Applying the PDIRK method to the test equation

(3.1) y'(t) = Ay(t)
yields a relation of the form y,+I = Rm(z)yn , where z := Ah and Rm(z) is a
rational function, the so-called stability function. The stability functions corre-
sponding to PDIRKI and PDIRKII methods will be denoted by RI (z) and
RII (z), respectively. They can be directly derived from the Butcher arrays by
using the familiar "determinant formula" (cf., e.g., [7, p. 72]). However, the
dimension of these arrays is usually so high that the evaluation of the determi-
nants is rather tedious, even for small values of the number of iterations m.
Therefore, we shall derive alternative formulas.

From (2.6) and (2.7) we see that the stability functions are respectively de-
termined by
(3.2) Yn+I = Yn + zbTy(m) = RI_(z)yn and Yn+I = eTY(m) = RI (z)yn.

In order to derive an expression for y(m), we write
y(i) = [I - zD]- 1 Qyne,

where the matrix Qj follows from

Y(i) = [I - zD]f'[yne + z(A - D)Y(j-')]
= [I - zD]-'[yne + z(A - D)[I - zD]-'Qj>1Yne].

Introducing the matrix function Z = Z(z) z(A -D)(I- zD)' , we find that
Qj satisfies the recursion

Qo = [I-zD][I-zB]-'[I + zE], Qj = I+ ZQj>.

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 143

Hence, the stability functions are given by

RI (z) = 1 + ZbT[IzD]-lQm(z)e, RIm(z) =eT[I-zD]E'Qm(z)e,

(3.3) Qm=Qm(z):=I+Z+Z2+ +Zm-l
+ Zm[I - zD][I - zB]-'[I + zE].

We shall separately consider the case where the diagonal matrices B and D
have constant diagonal elements, and the case where the matrices B and D are
arbitrary diagonal matrices.

3.1. PDIRK methods with constant diagonal elements. First, we consider the
effect of setting D = dI on the attainable order of those PDIRK methods
which already impose conditions on the matrix D. Assuming that the gener-
ating corrector always satisfies the condition Ae = c, we find, according to the
specification of PDIRK methods in ?2.3, that

Type B.2: D = diag(Ae) =X de = c,
Type C.3: DAe = A2e ?# dc = Ac.

By observing that third-order correctors require bTe = 1 bTC =2 bTAc = 6

and bTC2 = ., we see that PDIRK methods of Type B.2 cannot satisfy these
conditions, so that their order is limited to p* = 2, which is obtained for
d = I . A necessary condition for Type C.3 methods to satisfy these third-order
conditions requires d = . However, the fourth-order condition bTA2c = 214
cannot be satisfied, so that the order of Type C.3 methods is limited to p* = 3.
Obviously, we are not interested in such low-order methods. Furthermore, as
will be shown below, we shall exclude methods of Type C. 1, because the number
of sequential stages is not optimal with respect to the order p. Thus, in this
section we shall concentrate on PDIRK methods of Type A. 1, Type B. 1, and
Type C.2.

Next, we return to the stability functions (3.3). For B = bI and D = dI,
the matrix Qm(z) can be written as

Qm (Z) = 1-b)Nm (z)

where Nm(z) is a polynomial in z with matrix-valued coefficients; (3.3) be-
comes

(3.4) RI (z) = 1 + bTzNm(z)e RI esNM (z)e
(*) m((1 -bz)(- dz)m ' M(Z

=
(1- bz)(- dz)m

This representation shows that both stability functions are of the form
r

(3.5a) R(z) := (1 - dz)-qP(dz), P(d z) :E cj(d z),
j=0

where the coefficients cj depend on q and d (recall that either b = 0 or
b = d) . For future reference, it is convenient to specify the values of r and q
for the various types of methods. In Table 3.1 these values are listed for general
values of d.

For an arbitrary given value of d, the order of consistency of the stability
function (3.5a) cannot exceed r, hence, by choosing m such that the order
p of the PDIRK method equals r, we achieve that the number of sequential
stages is minimal with respect to the order p.

144 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

TABLE 3.1
Values of r and q in the stability function (3.5a)

Type IA IB IC IIA IIB IIC

r= m+ 1 m+ 1 m+2 m m m+ 1

q= m m+1 m+1 m m+1 m+1

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The fol-
lowing theorem defines an explicit representation of the stability function.

Theorem 3.1. Let p be the order of the method, and let m be such that r = p;
then the coefficients of (3.5a) are given by

(3.5b) (i-i) i=d i=(q\,(-1)

Cj=O (i i)!dj-i S iq ,q2 . p

where 0! := 1.
Proof. Since it is assumed that the method is of order p, we necessarily have
R(z) = exp(z) + O(zP+l). By expanding the function (1 - dz)q exp(z) in
a Taylor series at z = 0, and by equating corresponding coefficients in this
expansion and in the polynomial P(z), defined in (3.5a), we can find the first
p + 1 coefficients of P. Hence, all coefficients of P are uniquely determined
and are given by (3.5b) (see also N0rsett [19] and Butcher [3, p. 246] for
expressions in terms of derivatives of Laguerre polynomials). o

Notice that the condition r = p excludes methods of Type C. 1, because for
Type I and Type II variants the maximal order is m + 1 and m, respectively,
which is one lower than the corresponding value of r. As a consequence, for
methods of Type C with stability functions of the form (3.5), the order should
be increased by one, which is obtained by requiring the matrix E to satisfy the
condition Ee = Ae - de.

By means of Theorem 3.1 the stability analysis is now rather straightforward.
Following N0rsett [20] and Butcher [3], we write u = y2 and define the so-called
E-polynomial

E(u) 1(1 - iy)ql2[1 - JR(iy/d)12] = 1(1- iy)ql2 - lP(iy)12
=(1 + U)q-[Co-C2U + C4U2 _...]2_ U[Ci-C3U + C5U2 _]2.

From the condition R(z) = exp(z) + O(zP+l) it follows that JR(iy/d)12 -

1 + Q(yP+l), so that E(y2) - Q(yP+l). Hence, all terms of E(y2) of degree
less than p + 1 in y vanish, so that

q

E(u)= ejui, ej = ej(d) :=(q - C2 _) 2E(icj- icj+i ,
j=[p/2]+1 i=l

with cj := 0 if j > p or j < 0. Because of the maximum principle, we have

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 145

A-stability if IR(iy)l is bounded by 1 for all real y, so that the method is
A-stable if and only if E(u) is nonnegative for u > 0.

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let
the range of d-values which are A-acceptable be denoted by Ipq, i.e., Ipq :=
{d: E(u) > 0 for all u > 0}; then the following summary is easily obtained by
using Table 3.1 and the order results obtained for the various types of methods
(p* denotes the order of the corrector {A, b}):

TABLE 3.2
Summary of properties of PDIRK methods with constant diago-
nal elements

Type Condition Order Sequential stages A-acceptable d-values

IA.1 m<p*-1 m+1 m Im+I,m

IB.1 m < p*-1 m+1 m+1 Im+1,m+1

IC.2 m < p* -2 m+2 m+ 1 Im+2,m+

IIA.1 m <p* m m Im,m

IIB.1 m <p* m m+ 1 Im,m+I

IIC.2 m <p* - 1 m+ 1 m+ 1 Im+1,m+1

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if q > p.
From Table 3.2 we see that the methods of Type IIB. 1 possess L-acceptable
stability functions. Since L-stable methods are usually more suitable for inte-
grating stiff equations than A-stable methods, the methods of Type IIB. 1 are
of interest in spite of the additional sequential stage when compared with the
other methods. However, just as in the case of SDIRK methods, it is possible
that an A-stable method can be made L-stable if the interval of A-acceptable
d-values contains a value for which cp vanishes. For q = p < 15, this has been
investigated by Wolfbrandt [25] and it was found that such values of d exist
for p < 6 and p = 8. This information is summarized in Table 3.3a.

In a similar way, L-acceptable ranges of d-values can be found in the case
q = p + 1 . These ranges turn out to be nonempty for p < 8 and for p = 10,
and are given in Table 3.3b. Moreover, we list the values of dp,p+1, which
are inside these L-acceptable ranges and cause cp to vanish, resulting in even
stronger damping at "infinity" (L2-stability).

Finally, we considered the case q = p - 1, resulting from IA. 1 and IC.2
type methods. Since now the degree of the numerator in R(z) is larger than
that of the denominator, a necessary condition for this case to yield A-stability
is that cp vanishes. For p = 2, 3, ... , 10 we determined the zeros of cp(d)
and checked the resulting stability function on A-acceptability. Only for p = 2
(d = 2) p = 3 (d = (3+ V)/6), and p = 4 (d = 1.0685790213) A-stability
can be obtained. Hence, in this way we have found A-stable methods of orders
p up to 4 requiring p - 1 sequential stages. This result is similar to what is
possible in the case of RK methods for sequential computers (cf. [1]); however,
the present methods contain embedded formulas of lower order.

146 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

TABLE 3.3a
A-acceptable and L-acceptable values of d for p = q

p = q Range Ipp dpp

1 [1/2, o] 1

2 [1/4, o] 1 ?Vi 72

3 [1/3, 1.068] 0.43586650

4 [0.395, 1.280] 0.5728160625

5 [0.247, 0.361] + [0.421, 0.473] 0.2780538410

6 [0.285, 0.54] 0.3341423671

7 empty

8 [0.218, 0.264] 0.2343731596

9 empty

10 empty

TABLE 3.3b
Ranges of L-acceptable values of d for p = q - 1

p=q- 1 Range Ip,p+1 dpp+

1 [1 - V172, 1 + VI72] 0.5

2 [0.181, 2.185] 0.5] ? V

3 [0.224, 0.572] 0.3025345782

4 [0.248, 0.676] 0.3888576711

5 [0.184, 0.334] 0.2168805435

6 [0.205, 0.378] 0.2579552416

7 [0.157, 0.2029] + [0.2052, 0.234] 0.1690246379

8 [0.171, 0.259] 0.1929778040

9 empty

10 [0.147, 0.165] + [0.1938, 0.1961] 0.1541460739

Notice that any s-stage, pth-order corrector (even explicit corrector methods)
can be used for generating A-stable methods of Type IB, and any pth-order
corrector satisfying the condition bT = eTA for generating the A-stable methods
of Type IIA and IIC, or the L-stable methods of Type IIB.

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 147

Furthermore, we have seen that the stability can be improved by selecting spe-
cial d-values. Another possibility, which might be useful in a variable-stepsize
implementation, is to exploit the length of the A- and L-acceptable ranges: for
small changes in the stepsize h, the value of hd could be kept fixed (as long
as the corresponding d-value is still in the allowed range, of course), so that a
new decomposition of I - hdOf/Oy can be avoided.

3.1.2. Accuracy test. It is well known [7] that, when integrating general stiff
systems, the actually observed order is usually much lower than the classical
order p . In fact, the order behavior is often dictated by the so-called stage-order
r (for a definition of this notion and its consequences the reader is referred to
[7]). Since most (P)DIRK methods have stage order r = 1 , one might question
the relevance of PDIRK methods possessing a high classical order. And indeed,
for a general stiff problem, this order-reduction phenomenon has great impact
on the accuracy of this type of methods.

However, in [10], Hairer et al. give a thorough analysis of the behavior of
RK methods when applied to a singularly perturbed problem of the form

(3.6) e
dy

= fi(YI, Y2), dY2 = f2(YI, Y2), withe << 1,

and show that for special RK methods the classical order may still dominate the
global error, especially if stiffness increases (i.e., if e -? 0) . The motivation for
considering this particular problem class is that it has practical significance and
has been extensively studied in the literature (see the references cited in [10]).
An important characteristic of problems of the form (3.6) is that the eigenvalues
of the Jacobian matrix can be clustered into two groups, and behave as 0(1)
and O(e-1), respectively. Here we give the essential result of Hairer, Lubich,
and Roche concerning the global error (cf. [10, Theorem 1 on p. 680]):

Theorem 3.2. Let the RK method be A-stable and let e < Constant -h. Then the
global error for the stiff component Yi behaves as O(ehr) + O(hP) if bT = eTA

and as 0(hr+1) if IR(oc)l < 1. For both cases, the global error for the nonstiff
component Y2 behaves as O(6hr+l) + O(hP).

This result indicates that Type II methods are to be preferred if e -+ 0, since
then the global error is dominated by the classical order, whereas methods of
Type I will behave according to their (low) stage order.

To illustrate these properties, we applied a few of the PDIRK methods de-
rived in the preceding subsection to a problem of the form (3.6), proposed by
Kaps [17]:

(3.6 t) dy, = -(2 + e- I y + e6-I (Y2)2, dd 2 =Y1 - Y2(0 + Y2), (3.61) dy dyt

Y1(O) =Y2(0) = 1, 0< t 1,
with the smooth exact solution Yi = exp(-2t) and Y2 = exp(-t) for all values
of the parameter e.

The methods we have used in our tests are based on correctors of different
classical order (a specification of these correctors can be found in the appendix
to the report [14]). Moreover, all methods were equipped with the special dpp
or dp,p+1 values given in Table 3.3 and, consequently, are L-stable and L2-
stable, respectively.

148 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

4.) C4 l ~ ~ C ~ C ~~ l e

00

I-I-

i0 _ t00 t Om
00 Cl

o O co o N i

II t t < <1 -? - -? -4

0

00

0 t t -m st st st t st m o ? ? ? m o~~~~~~~~IC 00 n t

Cl 000 . o o C O0 - 0000

HO 10O

o II

_ C~~~~~~~~~~~~) ~~~~~~~~~ ~ ~ ~ 4 C

I-~~~~~~~~~~~~~~~~~r-

p -- - -- -

-~~~~~~ 0 c ~ ~ 6 r 0 4 0

0 0 c0 7 0 07

CZ CZ CZ~ CZ C Z C CZl

Cgs Cgs P4~

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 149

For e = 10-8 the absolute error for the stiff component Yi at the endpoint
t = 1 is given in Table 3.4 (see p. 148); here, the error is written in the form
10-A and the values of A are listed. Notice that the Type II methods require
a stiffly accurate corrector (such as the Radau IIA formulas) and that L-stable,
seventh-order PDIRK methods are only possible within the family of Type
IIB.1 methods (cf. Tables 3.2 and 3.3b). This table clearly demonstrates the
superiority of the stiffly accurate Type II methods over the Type I methods,
which show only a second-order behavior for the global error (recall that r = 1
for the Type IB.1 methods). On the other hand, the stiffly accurate methods
exhibit the classical order in the error behavior and thus both results are in
perfect agreement with the estimates in the theorem of Hairer et al.

From this experiment we may conclude that it is relevant indeed to have
high-order PDIRK methods for integrating stiff systems of the form (3.6), in
spite of their low stage order.

Comparing the efficiency of the various parallel methods of Type II, we ob-
serve that schemes of Types A and C are equally efficient, since they require
the same number of sequential stages (cf. Table 3.2). Type IIB. 1 methods yield
slightly more accurate results, but need an additional stage to reach the same
order (we remark that the seventh-order method of this type does not show full
advantage, since the integration process was impeded by the machine precision).

3.2. PDIRK methods with arbitrary diagonal matrices. In the case where B
and D are allowed to be arbitrary diagonal matrices, it is convenient to express
Qm(z) in the form

Qm(Z) = [I - Zf-[I - zm] + ZmQO
= [I -Z]- 1[I - Zm] + Zm[I - zD][I - zB]-f[I + zE].

Since [I - zD]-I = [I - zA]-I[I - Z], we find

Qm(z) = [I-zD][I-zA]- [I - Zm + [I-Z]Zm[I-zD][I-zB]-'[I + zE] ,

so that (3.3) yields

RI (z) = 1 + zbT[IzA]-l EI -Zm + [I -Z] Zm

x [I - zD][I - zB]-'[I + zE]] e,

RII (Z) = eT[I _ zA]-i [I _ZM + [I _ Z1ZM
(3.3 1A

x [I - zD][I - zB]-I[I + zE]] e

= 1 + eT[I _zA]-l [zA - zm + [I - Z]Zm

x [I - zD][I - zB]- '[I + zE]] e.

In the following two subsections, a representation for the stability functions
without inverses of matrices will be given, and stability characteristics of PDIRK
methods of Types IB.2, IIB.2, and IIC.3 are presented.

3.2.1. Representation theorems. The following theorem gives a representation
of the stability functions in terms of determinants containing only inverses of
diagonal matrices.

150 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

Theorem 3.3. The stability functions (3.3') can be represented by

RI -z det{I-zA+z [I_ zm+[I-Z]Zm [i-zD][I-zB] - I [I+zE]b}
= det{I-zA}

(3.7
DII(_ det=I-zA+[zA-Zm+[I-Z]Zm[I-zD][I-zB]-=[I+zE]]eei}

m Z) =
det{I-zA}

Proof. Applying the identity

1 + TN- = det{N + yxT}
det{N}

to the stability functions (3.3') straightforwardly leads to the representations
(3.7). El

The expressions (3.7) can be simplified for the respective Types A, B, and C:

Corollary 3.1. Let the matrix Z be given by Z = z(A - D)(I - zD) ;then the
following assertions hold:

(a) The stability function of PDIRK methods of Type A. 1 are given by

RI (z) - det{I - zA + z[I - zZmA]ebT}
RMz det{I - zA}

(3.8a) det{I - zA + z[I - Zm]AeeT}
M(Z) = det{I -zA}

(b) The stability function of PDIRK methods of Type B are given by

RI()=det{I - zA + z[I - Zm+llebT}
(3.8b) Rm(z)- detA{I -zA}

R3(z)- det{I - zA + [zA - Zm+l]eeT} M(Z) =
det{I - zA}

(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are
given by

RI (z) = det{I - zA + z[I - zZm+lA]ebT}
M ~~~det{I -zA}

(3.8c) det{I - zA + z[I - Zm+l]AeeT}
M(Z) = det{I -zA}

Notice that these expressions no longer explicitly depend on E and B, and
are completely determined by the corrector and the matrix Z.

3.2.2. Stability characteristics. In this subsection, we consider the stability of
PDIRK methods. We shall distinguish between methods based on Radau IIA
correctors and on Gauss-Legendre correctors.

The Radau IIA correctors have order p = 2s - 1, where s is the num-
ber of stages, and satisfy the condition bT = eTA (their Butcher arrays for
s = 1, ... , 4 are given in the appendix to [14]). Owing to this property, PDIRK
methods of Type I and Type II are both relevant. We confine our considerations
to types which require (with respect to their order) less sequential stages than
the corresponding methods indicated in Table 3.2, that is, we consider meth-
ods of Types IB.2, IIB.2, and IIC.3. For these types of methods, the stability

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 151

functions are completely determined. In Table 3.5, we present a summary of
the characteristics of these methods for several orders. Based on the stability
functions (3.8), the stability region of the methods was determined numerically.
It turned out that some stability functions are only A(ca)-acceptable. However,
in these cases al is very close to 900 (in the Appendix to [14], a set of stability
regions is given, including the regions of the embedded lower-order methods).

Furthermore, we considered PDIRK methods based on Gauss-Legendre cor-
rectors. Such s-stage correctors have order 2s, but are not stiffly accurate and,
hence, only Type I methods are relevant. In Table 3.5 we have included the
characteristics of fourth- and sixth-order methods of Type IB.2 (the generating
correctors can be found in [3, p. 219]).

TABLE 3.5
Characteristics of PDIRK methods based on arbitrary B and
D matrices

Seq. Proces-
Type Corrector Order Stages sors Stability

IB.2 Radau IIA 3 2 2 Strongly A-stable

Gauss-Legendre 4 3 2 Strongly A-stable

Radau IIA 5 4 3 Strongly A-stable

Gauss-Legendre 6 5 3 Strongly A(a)-stable, a = 89.970

Radau-IIA 7 6 4 Strongly A(a)-stable, a = 83.30

IIB.2 Radau IIA 3 3 2 L(a)-stable, a = 89.75?

Radau IIA 5 5 3 L(a)-stable, a = 89.120

Radau IIA 7 7 4 L(a)-stable, a = 89.020

IIC.3 Radau IIA 3 2 2 A-stable

Radau IIA 5 4 3 A(a)-stable, a = 89.997?

Radau IIA 7 6 4 A(a)-stable, a = 89.95?

In comparison with the PDIRK methods constructed in ?3.1, we observe
that the above PDIRK methods of Types IB.2 and IIC.3 require one sequential
stage less to obtain a given order of accuracy. Moreover, with the exception of
the seventh-order method of Type IB.2, these methods possess almost the same
good stability properties.

For the methods of Type IIB.2 (for which the order equals the number of
sequential stages), only the seventh-order is relevant, since in ?3.1 it turned
out to be impossible to construct an L-stable method of order 7 with seven
sequential stages; the third- and fifth-order methods of Type IIB.2 do not have
an advantage over the L-stable methods described in ?3.1.
3.2.3. Accuracy test. We conclude this section by applying the methods specified
in Table 3.5 to the problem (3.6'). Using the same notation as described in
?3.1.3, we give the results in Table 3.6 (see p. 152).

152 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

I4 ^ ^ tIN ^
Z

. ~ C 11 en en oo t t CIA en't T en ItT

<~~~- en It tn 10 e tn r- C It 'IC

c So tNomtO

M; t 1~~~~es

Ev?11 otXm
2 < ^ 0 0 ^ tn t- - - C1 C) O

NS~~f Cf 1 f t60 ~0

Q~ ~ 0 r- C'

c i Ci C- Ci 4 4 4 0 i i

0 Cd
V CdX X

; .

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 153

Again, the stiffly accurate Type II methods are much more efficient than the
methods of Type I. Moreover, the order behavior nicely illustrates the results
of the theorem of Hairer et al. (cf. ?3.1.2). Furthermore, within the class of
stiffly accurate methods, the C-variant is superior to the B-variant, since it is
cheaper and yields, for this example, more accuracy.

4. EFFICIENCY TESTS

Finally, we investigate the performance of PDIRK methods when run on a
parallel computer. Because it is highly desirable to use an unconditionally stable
method of high order, we selected a PDIRK method of Type IIB. 1 with a D-
matrix of the form D = dI. On the basis of the accuracy test described in
?3.1.2, we decided to choose the seventh-order, four-point Radau IIA corrector
(see (A.3) in the Appendix to [14]), with m = 7 iterations. The resulting
method is of order seven (cf. Theorem 2.2), and by choosing d = 0.1690246379
we achieve strong damping at infinity (L2-stability, cf. Table 3.3b). Hence,
taking into account the (implicit) predictor, the method requires eight sequential
stages per step. We have implemented this method on an Alliant FX/4 computer
having four parallel (vector-) processors, shared memory, and approximately 16-
digit arithmetic precision. Since the underlying Radau method has four stages,
we may expect an efficient use of this machine.

In order to be able to test problems with a strongly fluctuating solution, we
equipped the above fixed-order PDIRK method with a simple strategy for error
control and stepsize selection. Since the PDIRK approach provides a whole set
of embedded reference solutions of lower order, we can construct an estimate
of the local truncation error without additional costs. For this purpose we take
IleiY(m) - eiY(m-1)11 as an estimate for the local error. All implicit relations
are iterated using modified Newton iteration. If convergence happens to fail
within a fixed number of iterations (in our version, we choose this number
equal to 10), then we update the Jacobian and, if still no convergence can be
obtained, we halve the stepsize (repeatedly, if necessary). Furthermore, the
Newton process to solve for y(i) is started with the initial guess y(j- 1), which
is of increasing accuracy for increasing j. It should be observed that this
provisional implementation certainly can be improved by a better tuning of the
separate elements (for example, all kinds of thresholds and strategy parameters
should be tuned on the basis of extensive testing). Since it is not the aim of this
paper to present such a "production code," we will give results for our "research
version."

The goal of our tests is twofold:
(i) We want to investigate (for realistic problems) to what extent the theo-

retical parallelization can be realized in practice; in other words, what speedup
factor can be obtained on this four-processor machine. Obviously, the ideal
factor of four will be too optimistic because of unavoidable overhead, like com-
munication and sequential parts in the program.

(ii) We want to compare the performance of the parallelized PDIRK code
with that of a good sequential ODE solver. Within the class of sequential
solvers based on unconditionally stable methods, we selected the code SIM-
PLE of N0rsett and Thomsen [22]. The method underlying this robust and
reliable code is closely related to the PDIRK method, i.e., it is also based on an
unconditionally stable, diagonally implicit Runge-Kutta method. Furthermore,
SIMPLE is, like PDIRK, equipped with embedding techniques to control the

154 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

local error. A disadvantage of this code is that its order is rather low; it is based
on a third-order DIRK method. However, high-order A-stable DIRK-codes are
not available in the literature. Since many problems are more efficiently in-
tegrated if high-order formulas are available, we also looked for a code based
on methods of various orders. This led us to LSODE of Hindmarsh [1 1]. This
BDF-based code has enjoyed very successful usage over a long period. However,
the fact that only the first- and second-order formula in this code are uncon-
ditionally stable makes LSODE less robust as a general stiff solver. It is well
known that the performance of this code may deteriorate significantly when it
is applied to problems with eigenvalues in the vicinity of the imaginary axis
(see, for example, Stewart [23]). On the other hand, since LSODE is generally
accepted as being a good sequential ODE solver, we decided to include it in our
tests.

In the next subsections, we describe the results obtained when the aforemen-
tioned three codes are applied to some hard problems. Since the codes are
different in nature (low order versus high order, one-step versus multistep), we
refrain from indicating the traditional statistical output of an automatic ODE
solver, like number of steps, number of LU decompositions, etc. It should be
observed that the work involved per step is quite different for the various codes:
for instance, the sequential number of implicit relations to be solved per step
equals one for LSODE, four for SIMPLE, and eight for PDIRK. Since the codes
do not yield equal accuracy for the same value of the local error control param-
eter TOL, we list results for various values of TOL and measure the accuracy
produced as well as the CPU-time required. All accuracies are given in terms
of A, the number of correct digits at the endpoint of the integration interval
(see ?3.1.2), and the CPU-times are given in seconds.

4.1. Robertson kinetics example. In our first example we solve a set of reaction-
rate equations:

dl = - 0.04y + 1?04Y2Y3, dt

(4.1) dy2 = 0.04yi - 104y2Y3 - 3. 107(y2)2, dt

dt3 = 3- 107 (y2)2,

defined on the interval [0, 108] with initial conditions Yi(0) = 1, Y2(0) =

Y3(0) = 0. This problem is also used by Hindmarsh and N0rsett & Thomsen
to illustrate the performance of LSODE and SIMPLE.

Initially, the solution changes rapidly, and small stepsizes are required; grad-
ually the solution reaches a steady state, and the stepsize can be increased con-
siderably. In a typical situation we observed stepsizes in the range [10-3, 106].
Hence, this problem imposes a severe test on the stepsize selection procedure.
The results obtained by the various codes are collected in Table 4.1. Here T1
means the CPU-time when only one processor is used, and T4 denotes the
CPU-time required when the program is run on four processors.

These results give rise to the following conclusions:
(i) Concerning the parallelization of the PDIRK code we observe a speedup

by a factor (T1/T4 ~) 2.68 and 2.91 for the two values of TOL that we have
used. One reason why these numbers are less than the optimal speedup factor 4

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 155

TABLE 4.1
A-values and CPU-times for problem (4. 1)

Method TOL A T1 T4

10-4 6.5 0.63 0.85

SIMPLE 10-5 7.8 1.38 > T,

10-6 9.5 3.67 > T,

10-5 7.4 0.35 > T,

LSODE 10-7 8.6 0.80 > T,
10-9 10.3 1.71 > T,

PDIRK 102 8.5 0.51 0.19

100 11.1 1.08 0.37

is the introduction of inevitable overhead (and of scalar code). Another reason
is algorithmic in nature. Each component of the prediction Y(O) is a numerical
approximation to the ODE solution at the point In + dh (actually, all processors
have solved exactly the same implicit relation in this predictor stage). These
components are used as an initial guess in the various Newton processes com-
puting y*). Since the components of y(l) are approximations to the ODE
solution at different points (i.e., the Radau points), these initial guesses do not
have equal accuracy, so that we may expect different numbers of Newton iter-
ations on the various processors. In the case TOL = 1, we measured the actual
numbers of Newton iterations over the whole integration interval and found,
for the four processors, 848, 924, 1012, and 1043, respectively. This means
that in some steps a few processors have met the convergence criterion in the
Newton process, and thus have been idle for some time while waiting for the
other processors to complete solving their implicit relation. Taking this aspect
into account, the optimal parallelization cannot exceed a speedup factor equal
to (848 + 924 + 1012 + 1043)/1043 e 3.67. The measured speedup in this case
equals 2.91 (i.e., 79%), showing that the overhead (communication, scalar code,
etc.) only slightly degrades the performance. The reduction of the ideal factor
4 to 3.67 is a price we have to pay for choosing a PDIRK method. We may
conclude that the actual efficiency of the method as a whole, defined as the total
speedup divided by the number of processors used, equals 2.91/4 = 0.73.

(ii) Concerning the scalar codes SIMPLE and LSODE, we observe that they
run faster on one processor than on four (see the result obtained by SIMPLE for
TOL = 10-4) . Apparently, the parallelization and vectorization overhead does
not pay for this problem (this might be different in case of an ODE with many
components). Therefore, we only give timings for the uniprocessor experiments.

156 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

(iii) When compared with PDIRK, we see that SIMPLE needs much more
time in the high-accuracy range. This is obviously due to its low order. LSODE,
which can utilize higher orders, is more efficient in this range but, when com-
pared to PDIRK, its CPU-time is approximately four times larger to obtain
8.5 digits precision, and this factor increases if still higher-precision results are
requested (notice that even on one processor, PDIRK is faster than LSODE on
this problem).

(iv) Finally, we observe that the value for TOL used by PDIRK is several
orders of magnitude larger than the value used by either SIMPLE or LSODE
to achieve the same global error. This can be explained as follows: Owing to
its high order, the local truncation error of PDIRK is usually relatively small.
Therefore, if crude tolerances are used, the error control mechanism signals that
a large stepsize can be used in order to balance the estimated and the requested
local error. On the other hand, the Newton process imposes a limitation on
the stepsize. In our implementation, the Newton processes to solve for Y(O)
are given the value Yn as initial iterate. Unfortunately, for large values of h
(as suggested by the error estimator) this initial iterate is not always inside the
contraction domain for the Newton process, resulting in an adequate reduction
of the stepsize. As a consequence, this high-order scheme, using a small(er)
stepsize, will produce a local error which is much smaller than requested.

In conclusion, for this test problem (and also for the problem to be discussed
in the next subsection), the restriction on the stepsize imposed by the Newton
process is more stringent than that imposed by the local error control, unless
very small values for TOL are used. We have also integrated some linear ODE's
(for which the convergence problems are not relevant, of course) and observed
a relation between TOL and the global error similar to that of SIMPLE and
LSODE.

Summarizing, for obtaining highly accurate results, the above experiment
shows that the high order of the PDIRK method is worth the large amount of
redundancy introduced in its construction. In this connection we remark that
the order of these methods can still be raised to 10, whereas an increase of the
order is not possible for BDF methods and not feasible for embedded DIRK
methods underlying the SIMPLE code.

4.2. Van der Pol's equation. Our second example is given by the van der Pol
equation

(4.2) y"f - t(1 _ y2)yl + y = 0.
For ju = 5, this is problem E2 from the test set of Enright et al. [8]. However,
as reported there, on the interval [0, 1] the spectral radius of the Jacobian does
not exceed 15, so that the problem is not really stiff. Therefore, we set this pa-
rameter equal to 50. For this tu-value the equation exhibits so-called "relaxation
oscillations," which means that the solution possesses internal boundary layers.
Furthermore, we select an integration interval sufficiently large to capture such
an internal layer, which again requires an adequate stepsize selection procedure.
The problem tested in this section is defined by

dy
-Y2, y(0) = 2,

(4.3) dt 0< t <41.5.
(4.) d2 =50(10-(y)2)Y2-1, Y2(O) =

dt

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 157

TABLE 4.2
A-values and CPU-times for problem (4.2)

Method TOL A T1 T4

10-6 5.6 1.07 > T7

SIMPLE 10-8 6.9 5.64 > T'

10-10 7.8 25.5 > T7

10-6 4.3 0.24 > T7

LSODE 10-8 6.3 0.42 > T7

10-10 7.8 0.83 > T7

10 5.1 0.56 0.20

PDIRK 10-2 6.1 1.20 0.41

10-5 7.2 2.44 0.82

This test example has also been discussed by Gottwald and Wanner in [9].
At approximately t = 40.7, the solution yi drops from 1 to -2 on a very
short interval, forcing the codes to reduce their steplengths dramatically (several
orders of magnitude) The results of the various codes applied to this problem
are given in Table 4.2.

Again, we see that PDIRK can take advantage from the availability of four
processors: on the average, the speedup is 2.9 (or, equivalently, the efficiency
is z 0.72). For this problem, the loss in efficiency due to overhead is less than
(1 - 0.72 =) 0.28, because the various processors required a different number
of Newton iterations (viz., for TOL = i0-5 we found 3186, 3561, 3882, and
4092 iterations, respectively, which reduces the optimal speedup factor from 4
to 3.6).

Furthermore, it is quite clear that the low-order SIMPLE code becomes exces-
sively more expensive for smaller values of TOL. On the other hand, LSODE
behaves rather efficiently for this problem and is approximately equally efficient
as PDIRK.

4.3. Conclusions. On the basis of these (difficult) problems we may draw the
following conclusions:

- The actually obtained degree of parallelization of the PDIRK method is
fairly close to its ideal value.

- The reason that SIMPLE is less efficient than the other two codes, especially
in the high-accuracy range, is because of its low order.

- It is well known that the higher-order BDF formulas lack the property of
L-stability. This may result in serious difficulties for LSODE in the case that
the Jacobian has eigenvalues in the vicinity of the imaginary axis. However, the

158 P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND W. COUZY

two test problems do not belong to this category; hence, LSODE has not been
faced with the limitation of the stability regions of the higher-order BDF's.

- Unlike the implementation of SIMPLE and LSODE, the implementation
of PDIRK does not require additional costs in calculating a reference solution.

- The present research version of the PDIRK code is at least as efficient as
the well-balanced, extensively tested LSODE code.

- A future version of a PDIRK code can be improved as follows:
(i) better tuning of the stepsize strategy parameters and, particularly, find-

ing more accurate initial iterates for the Newton process in the predic-
tion stage;

(ii) implementation of a variable-order strategy; L-stable PDIRK formulas
of orders up to 10 (excluding order 9) are available;

(iii) implementation of a stiffness detector, like the one in SIMPLE, and
switching to parallel fixed-point iteration (PIRK methods, cf. [12]) in
nonstiff regions of the integration interval.

ACKNOWLEDGMENT

The authors would like to thank Dr. W. Hundsdorfer for the fruitful discus-
sions on the order-reduction phenomenon and W. Lioen for assisting them with
the experiments on the Alliant FX/4.

BIBLIOGRAPHY

1. R. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODE's, SIAM J. Numer.
Anal. 14 (1977), 1006-1021.

2. K. Burrage, The error behaviour of a general class of predictor-corrector methods, CMSR
Report, University of Liverpool, 1989.

3. J. C. Butcher, The numerical analysis of ordinary differential equations, Runge-Kutta and
general linear methods, Wiley, New York, 1987.

4. J. R. Cash, Diagonally implicit Runge-Kutta formulae with error estimates, J. Inst. Math.
Appl. 24 (1979), 293-301.

5. J. R. Cash and C. B. Liem, On the design of a variable order, variable step diagonally implicit
Runge-Kutta algorithm, J. Inst. Math. Appl. 26 (1980), 87-91.

6. M. Crouzeix, Sur l'approximation des equations diffeirentielles operationnelles lineaires par
des methodes de Runge-Kutta, Ph. D. Thesis, Universit6 de Paris, 1975.

7. K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential
equations, CWI Monograph, no. 2, North-Holland, Amsterdam-New York-Oxford, 1984.

8. W. H. Enright, T. E. Hull, and B. Lindberg, Comparing numerical methods for stiff systems
of ODEs, BIT 15 (1975), 10-48.

9. B. A. Gottwald and G. Wanner, A reliable Rosenbrock integrator for stiff differential equa-
tions, Computing 26 (1981), 355-360.

10. E. Hairer, Ch. Lubich, and M. Roche, Error of Runge-Kutta methods for stiff problems
studied via differential algebraic equations, BIT 28 (1988), 678-700.

11. A. C. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation
solvers, ACM/SIGNUM Newsletter (4) 15 (1980), 10-11.

12. P. J. van der Houwen and B. P. Sommeijer, Variable step iteration ofhigh-order Runge-Kutta
methods on parallel computers, J. Comp. Appl. Math. 29 (1990), 111-127.

13. , Iterated Runge-Kutta methods on parallel computers, SIAM J. Sci. Statist. Comput.
12 (1991), 1000-1028.

DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHMS 159

14. P. J. van der Houwen, B. P. Sommeijer, and W. Couzy, Embedded diagonally implicit
Runge-Kutta algorithms on parallel computers, Report NM-R8912, Centre for Mathematics
and Computer Science, Amsterdam, 1989.

15. A. Iserles and S. P. N0rsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer.
Anal. 10 (1990), 463-488.

16. K. Jackson and S. P. N0rsett, Parallel Runge-Kutta methods, manuscript, 1988.
17. P. Kaps, Rosenbrock-type methods, Numerical Methods for Stiff Initial Value Problems

(G. Dahlquist and R. Jeltsch, eds.), Bericht Nr. 9, Inst. fur Geometrie und Praktische
Mathematik der RWTH Aachen, 1981.

18. I. Lie, Some aspects of parallel Runge-Kutta methods, Report No. 3/87, Division of Nu-
merical Mathematics, University of Trondheim, 1987.

19. S. P. N0rsett, Semi-explicit Runge-Kutta methods, Report Mathematics and Computation
No. 6/74, Dept. of Mathematics, University of Trondheim, 1974.

20. , C-polynomials for rational approximation to the exponential function, Numer. Math.
25 (1975), 39-56.

21. S. P. N0rsett and H. H. Simonsen, Aspects of parallel Runge-Kutta methods, Numerical
Methods for Ordinary Differential Equations (A. Bellen, C. W. Gear, and E. Russo, eds.),
Proceedings L'Aquila 1987, Lecture Notes in Math., vol. 1386, Springer-Verlag, Berlin,
1989, pp. 103-117.

22. S. P. N0rsett and P. G. Thomsen, Embedded SDIRK-methods of basic order three, BIT 24
(1984), 634-646.

23. K. Stewart, Avoiding stability-induced inefficiencies in BDF methods, J. Comput. Appl. Math.
29 (1990), 357-367.

24. H. W. Tam, Parallel methods for the numerical solution of ordinary differential equations,
Report NO. UIUCDCS-R-89-1516, Computer Science Department, University of Illinois,
1989.

25. A. Wolfbrandt, A study of Rosenbrock processes with respect to order conditions and stiff
stability, Ph. D. Thesis, Chalmers University of Technology, Goteborg, 1977.

CENTRE FOR MATHEMATICS AND COMPUTER SCIENCE, P. 0. Box 4079, 1009 AB AMSTERDAM,
THE NETHERLANDS

	Cit r128_c128:

