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EXPLICIT FABER POLYNOMIALS 
ON CIRCULAR SECTORS 

KARIN GATERMANN, CHRISTOPH HOFFMANN, AND GERHARD OPFER 

ABSTRACT. We present explicit and precise expressions for the Faber polynomi- 
als on circular sectors up to degree 20. The precision is obtained by modifying 
(and simultaneously speeding up) an algorithm of Coleman and Smith so that 
an essential part of the Faber polynomials can be represented using only ra- 
tional numbers. The growth of the coefficients of the Faber polynomials is 
determined. In addition, explicit expressions are given for the area two-norm 
and line two-norm of these polynomials. A conjecture is stated with respect to 
the uniform (infinity) norm which would also allow the explicit computation of 
the corresponding uniform norms of the Faber polynomials. Apart from a table 
of Faber polynomials, there are several other tables and graphs that illustrate 
the behavior of the Faber polynomials. 

1. INTRODUCTION 

Let S c C be a compact set whose complement admits a conformal mapping 
vo onto the exterior of a compact disk D. One may assume that the disk is 
centered at the origin and also that (0 is normalized by the condition 

(1.1) 9(0'(O)=lim Z)=z) 
Z- 00 z 

This condition makes the mapping (0 as well as the radius p of D unique. 
The radius p is called the transfinite diameter or the capacity of S. For its 
properties see Gaier [6, p. 136]. 

The normalized mapping (0 has an expansion of the form 

(1.2) (o(z)=z+ao+-a +.. z 
and thus 

n(~)) n zn-1 fn -1 fn (1.3) ((n(z)) =zI+f z +' nfO+ z + Z2 + z z2 

with certain coefficients fnj j = n - 1, n - 2,..., 0, -1, -2, ...,which 
could be computed from ao, a1, . . 
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The polynomial occurring in (1.3), namely 

(1.4) n (Z) = zn zn- + fo, 
is called the nth Faber polynomial of S. These polynomials are attractive be- 
cause, roughly speaking, they have good approximation power. Some estimates 
are given in ?3.3. For more explicit properties of Faber polynomials, we refer 
to Gaier [7, Chapter I, ?6]. 

The explicit construction of the Faber polynomials of a given set S depends 
essentially on the knowledge of the conformal mapping f . For circular sectors, 
Coleman and Smith [ 1 ] were able to construct the necessary conformal mapping 
via Schwarz-Christoffel and some other auxiliary mappings. By using a general 
recursion for Faber polynomials, the result of Coleman and Smith was a set 
of recursions which ultimately yielded the Faber polynomials. The origin of 
the general recursion for Faber polynomials (appearing in the sequel as Step 4 
of the Coleman and Smith algorithm) is unknown to us. However, it is stated 
and used by Kovari and Pommerenke [9, p. 195]. A statement, including a 
derivation, is contained in a paper by Curtiss [3, p. 578]. The importance for 
numerical purposes has been stressed by Ellacott [4, p. 578]. 

However, this set of recursions is rather involved, so that there is hardly any 
chance to compute manually and explicitly the Faber polynomials for larger 
values of n. Thus, Coleman and Smith presented these polynomials explicitly 
only up to degree three. Beyond that, they used their recursions to compute 
numerically the coefficients of the Faber polynomials Fn for n < 15 for six 
selected opening angles of the sector, to 14 decimals precision (Coleman and 
Smith [2]). 

By simplifying the recursions, and by using symbolic computation, we show 
that it is practical to generate the Faber polynomials explicitly in terms of the 
opening angle to almost any degree. The symbolic computation systems we have 
used, and their limitations, are discussed at the end of the paper. 

We also make use of another property that was at least indicated by Coleman 
and Smith [1, p. 238]. If we compare the coefficients that are in corresponding 
position in the Fn as a function of the degree n, we see that they are the 
values of a certain polynomial. In consequence, the first terms of Fn can be 
given explicitly for all n. We will explain this property later. 

We mention another family of polynomials that are also defined with respect 
to the given compact set S, namely the Chebyshev polynomials Tn. A monic 
polynomial Tn (z) = zn + an, n-I1 z n 1 + * + an, o is a Chebyshev polynomial if 
it has minimal uniform norm on S among all monic complex polynomials of 
the same degree. Formally, this can be stated as 

(1.5) 11 Tn 1Iko = max I Tn(z)I < IJPn Iloo for all Pn E fIn, 
zES 

where all polynomials are monic. 
We will use the notation fIn for the set of all polynomials up to degree n 

over KE , where KEX = C or KEX = IR. The definition of Chebyshev polynomials 
implies for the Faber polynomials Fn that 

(1.6) 11 Tn IIo < IIFn IKoo 
If S is a disk or an interval, the polynomials Fn and Tn coincide. For 

the unit disk we have Fn(z) = Tn(z) = zn and IIFnloo = 1. For the interval 
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S=[0, 1] we have 

Fn(z) = Tn(z) = 21 -2ncos(n arccos(2z - 1)), 

and thus II FnI,, = 21-2n for n > 0. In the latter case, the Fn coincide with the 
ordinary Chebyshev polynomials adjusted to the interval [0, 1] and scaled so 
that the leading coefficient is one. We will consider how to compute the norms 
of Faber polynomials in ?3. Further results on Faber polynomials can be found 
in Ellacott [5]. 

2. COMPUTATION OF FABER POLYNOMIALS FOR CIRCULAR SECTORS 

Since the recursion formulae were derived by Coleman and Smith, we only 
describe those steps necessary to derive Faber polynomials for circular sectors 

(2.1) S=S,={ZEC: IzI <1, largzl <a}, 

where 0 < a < 7r. The opening angle of the sector is 2a. The transfinite 
diameter of Sex, as given by Coleman and Smith, is 

(2.2) P 1/(2 - a/7r)2 {(7r/a)(2 - a/7()}c/7 for a :A 0, 
(2.2) p- 0.25 for a= 0. 

The computational procedure for finding the Faber polynomials Fn accounts 
for the geometry of S. by means of x, where 

ai a 
(2.3) x = 1-2c, c =- (2--) . 

For a given Sc, we do the following steps: 

Step 1. Compute Legendre polynomials P and polynomials a: 

P0(x) = 1; P1 (x) = x; 

(n + 1)Pn+ I(x) - (2n + 1)xPn (x) + nPn- I(x) = 0, n > 0; 
ao = 1; an (x) =Pn (x) +Pn- I(x) , n>0; 

Step 2. Compute coefficients ,8 of the Laurent expansion: 

f3o(x) = a (x)= 1+ x; 
n-1 

(n + 1)lfn(x) = an+1(x) -Z kk(x)anfk(x), n > 0; 
k=1 

Step 3. Define b by multiplying fi with powers of the transfinite diameter p: 

bn(X) = fni(X)pn+l, n > 0; 

Step 4. Compute Faber polynomials F and replace x by 1 - 2c: 

Fo(z) = 1; F1(z) = z - bo(x); 
n-i 

Fn+I (z) = (z - bo(x))Fn (z) - bk (X)Fn-k (Z) 
k=1 

_ (1 + n~bhx 5Y n > 0. 
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Observe that c increases from 0 to 1 and p increases from 0.25 to 1 as a 
increases from 0 to 7r. Apart from small notational differences, Coleman and 
Smith's computation is the same. However, we can make some simplifications. 
When a = 7r, the nth Faber polynomial reduces to zn, which is reflected by 
c - 1 = 0, or, equivalently, by x + 1 = 0. Therefore, the Faber polynomial 
En must have the form Fn(z) = zn + (1 - c)irn-l(z), where 7rn-i E Iln-1 . 

Furthermore, we can eliminate the transfinite diameter p by observing that 

() n(zp) = pn(zn + (1 - C)(Pn-I Ozn-1 +nPn-1,zn 

+(- +Pn-,Zn-1)) n>0. 

This follows from Steps 3 and 4. We use the following notation: 

(Do = 1; 

(2.5) cOln(Z) = zn + (1- c)(pn-1 OZn-1 +Pn-1 ,Zn-2 + **+Pn-n-1) 

n > 0, 

where IOn is now independent of p and the coefficients Pn-l,j E jl i = 
0, 1, ... , n - 1, are polynomials in the variable c. The geometric meaning of 
c is given in (2.3). The polynomials 

(2.6) Fn(z) = n(z)p-n = In (Z/P) 

are the scaled Faber polynomials. 
Now it is easy to see that the functions On obey the same recursion as the 

functions En in Step 4, after the b's are replaced with the fi's. Thus, com- 
puting Dn rather than En eliminates Step 3. But we can do better. Since the 
polynomial factor of 1 - c in (2.5) contains already all the essential informa- 
tion about On , we derive a recursion for this factor. For c < 1, we denote the 
factor by 

(2.7) 4n- I(Z) =Pn-iozni1 +Pn-i, Zn-2 + +Pn-l,n-I, n > 0, 

which changes (2.5) to 

(2.5') (Do = 1; On(Z) = Zn + (1 - C)n-I(Z), fn >0. 

In terms of the newly introduced Onn-I , the recursion of Step 4 reads: 

(2.8a) /o =-2; fk = Ak/(lC), 

n-1 

On = (Z - 30)(/n-I- A fhckn-k-i 

(2.8b) n-i k=i 

Z Zk zn-kf (nl+1) n n>0. 
k=O 

Since an (- 1) = Pn (-Q1) + Pn 1(- 1) = 0, where n > 0, all polynomials a have 
the factor x + 1, or, equivalently, the factor 1 - c. The same applies to the 
polynomials fin, as is evident from Step 2. Therefore, by one sweep of the 
Homer scheme at x = -1 or at c = 1, this factor can be cancelled, thus 
obtaining ftk = Ak/(I - c) . 

It is unreasonable to work with the two closely related geometric quantities x 
and c simultaneously. Therefore, we delete x and work with c only. Since the 
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Legendre polynomials are only used to generate the polynomials a, they need 
not be stored. In the following algorithm we assume that we want to compute 
all Faber polynomials up to a certain degree nmax > 1. We replace the above 
steps by 

Algorithm. Apply simplifications, compute On: 
A. Initialization: 

PO=1; P1=1-2c; q[0]=-2; 
a[l] = 2 - 2c; f/[O] = 2 - 2c; f/[O] = 2; 

B. For n = 1 to nmax - 1 compute 
P2 = ((2n + 1)(1 - 2c)P1 - nPO)/(n + 1); 
PO=Pl; P1=P2; 
a[n+ 1]=PO+Pl; 

f3[n] = (a[n + 1]- _E-j kf3[k]a[n - k])/(n + 1); f3[n] = f3[n]/(l - c); 
4[n] = zq[n - 1] - (n + 1)/3[n] - En-,(k3[k]q[n - k - 1] + fl[k]znk); 
print polynomial coefficients of q[n]; measure the computing time; 
1D[n + 1] = zn+1 + (1 - c)O[n]; {may be deleted} 
F[n + 1](z) = pn+l 4[n + 1](z/p). {may be deleted} 

Example. We compute the quantities necessary to generate the Faber polyno- 
mials Fn and the polynomials On-I for n < 4. We do not list the IDn, since 
they are immediate from On-, and (2.5'). 

Step 1. P0 = 1; PI(x) = x; P2(x) = 1(-1 + 3x2); P3(x) = 2(-3x + 5x3); 
P4(x) = (3 - 3Ox2 + 35x4); ao = 1; a, (x) = 1 +x; a2(x) =(- 1 + 2X + 3X2); 
a3(x) = '(-1 3x + 3X2 + 5x3); a4(x) = ,(3 - 12x - 30X2 + 20x3 + 35x4); 

Step 2. flo(x)= 1 +x; fil (x) = (- 1 +2x+3x2); l2(X)= I (-1 - 7x+x2+7x3); 
f.3(x)= (5+4x-3Ox2 -4x3 +25x4); 

Step 3. bn = pn+ I 
fi; 

Step 4. F0 = 1; Fi (z) = z-p(1 +x); F2(z) = z2-2p(1 +x)z+ I p2(3+2x-x2); 
F3(z) = z3 -3p(l + x)z2 + 3p2(5 + 6x + x2)z - Ip3(3 + x - x2 + x3); F4(z) 
= z4 - 4p(1 + x)z3 + p2(7 + 1Ox + 3x2)z2 - I p3(17 + 23x + 7X2 + x3)z + 

1p4(11 +4x+2x2+4x3-5x4). 

Algorithm. a, (c) = 2 - 2c; a2(C) = 2 - 8c + 6c2; a3(c) = 2 - 18c + 36c2 - 20c3; 
a4(c) = 2 - 32c + 120c2 - 160c3 + 70c4; 

fto = 2; fti(c) = 1 - 3c; fi2(C) = -8/3c + 14/3c2; P3(c) = -4/3c + 
23/3c2 - 25/3c3; 

ko = -2; 01(z) = -4z + 2(1 + c); 02(Z) = -6z2 + 3(3 - c)z - 2(1 + 2c2); 
03(z) = -8z3 + 4(5-3c)z2 + (-16 + 32c - 8C2)z + 2(1 + c-3C2 + 5C3). 

In order to make the structure of the coefficients Pn-I, j defined in (2.5) more 
explicit, we show their dependence on n. For n > 0, for j = 0, 1,..., n, 
and for s = j(j + 1)/2 + 1, we define 

(2.9) Pn,j(c) = Yn+l,s + Yn+ls+lc + + Yn+l,s+jCi 
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Therefore, the coefficients Yn+I, k may be regarded as the elements in row n + 1 
of a matrix 

(2.10) I= (Yjk) j = 1 , 2,...; k = 1 , 2, ...,j(j + )/2, 

which has infinitely many rows. Row j is finite with j(j + 1)/2 elements. As 
an example, we put the above 03 into the form of notation (2.9) and obtain 

03(Z) = -8z3 + 4(5 - 3c)z2 + (-16 + 32c - 8C2)Z + 2(1 + c - 3C2 + 5c3) 

= P30(C)z3 + P31 (c)z2 + p32(c)z + P33 
= Y41Z3+ (Y42 + Y43C)Z2 + (y44 + y45c + Y46C2)Z 

2 3 
+Y47+Y48C+Y49c +y4,1Oc3. 

We denote the submatrix of F consisting of the first n rows by 

(2.11) Fn = (Yjk), i= 1, 2, ..., n; k= 1, 2, ..., j(j+ 1)/2. 

Theorem 1. All entries of the matrix F are rational. 

Proof. Immediate from Steps 1-4 and (2.4), (2.9). o 

In Table 5 of the appendix (see supplement section at the end of this issue), 
we list the polynomials Pn-l,j for j = 0(1)n - 1 and n = 1(1)20. Com- 
pare also (2.9). The polynomials Pn-l,j define the polynomials qn-I(Z) = 

n-1 Pn- I jzn-j-1. The polynomials On-i(z) define the polynomials !n (Z) 
(compare (2.5)). In turn, the polynomials (!n(z) define the Faber polynomials 
Fn(z) (compare (2.6) and (2.2)). 

If we were to store all coefficients for degrees up to n, we would need 1 + 3 + 
6+ .+0.5n(n+1) = n(n+1)(n+2)/6 storage locations. For n = 5, 10, 15, 20, 
and 100, these numbers are 35, 220, 680, 1540, and 171700, respectively. In 
comparison, Coleman and Smith [2] required 628 numerical coefficients for 
the coefficients of the Faber polynomials up to degree 15 on only six selected 
opening angles. 

From Table 5 of the appendix we have 

(2.12) 
-2 
-4 2 2 
-6 9 -3 -2 0 -4 
-8 20 -12 -16 32 8 2 2 -6 10 3 3~ 

-10 35 -25 -50 160 40 25 65 10 10 ... 
Flo 3 3~~~~~ 3 3 3 

-12 54 -42 -112 144 -44 105 -151 65 -7 *.. 
-14 77 -63 -210 896 -308 294 -518 287 -49 ... 3~ 3 

-16 104 -88 -352 1600 592 660 3908 2476 -500 ... 
3 3 3 3 3 

-18 135 -117 -546 864 -336 1287 -2733 1884 -420 ... 
-20 170 -150 -800 3920 1580 2275 -5085 3715 -885 ... 3 3 
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After some calculation, we see that 

Yn1 = -2 - 2(n - 1) = -2n; 

Yn2 = 2 + 7(n - 2) + 2(n - 2)(n - 3); 
Yn3 = 2 - 5(n - 2) - 2(n - 2)(n - 3); 

Yn4 = -2 - 14(n - 3) - 10(n - 3)(n - 4) - 4(n - 3)(n - 4)(n - 5); 

Yn5 = '(32(n - 3) + 48(n - 3)(n - 4) + 8(n - 3)(n - 4)(n - 5)); 

Yn6 = -4 + 4(n - 3) - 6(n - 3)(n - 4) - 4(n - 3)(n - 4)(n - 5); 

Yn7 = 2 + 23(n - 4) + 28.5(n - 4)(n - 5) + 26(n - 4)(n - 5)(n - 6) 

+ 2(n - 4)(n - 5)(n - 6)(n - 7); 

Yn8 = 2 - 73L(n - 4) - 37 (n - 4)(n - 5) - 22(n - 4)(n - 5)(n - 6) 
- 2(n - 4)(n - 5)(n - 6)(n - 7); 

Yn9 = -6 + 238 (n - 4) + 1J7 (n - 4)(n - 5) + 18(n - 4)(n - 5)(n - 6) 
+ 2(n - 4)(n - 5)(n - 6)(n - 7); 

YniO = 10 - 230(n - 4) - I (n - 4)(n - 5) - 14(n - 4)(n - 5)(n - 6) 

- 23(n - 4)(n - 5)(n - 6)(n - 7) 

is valid for all n. This implies that we know the entire column of F as soon 
as the first entries are known. 

The regularity of the above matrix F is expressed in the following theorem. 

Theorem 2. Let F = (Yjk) be the matrix defined in (2.9), (2.10), (2.4), (2.5). 
For each fixed k = 1, 2, ... , there exists a polynomial irk E 1jo such that 

(2.13) Yjk = 7rk(I) for all j > jo, 

where jo is uniquely defined by 

(2.14) jo(jo + 1)/2 < k < (jo + l)(jo + 2)/2. 
Proof. By the recursion (2.8), using induction. 0 

The above Yjk are just the coefficients of the polynomial Pj- 1, jo E Hj1 . In 
order to compute the 7rk, we interpolate the first entries of column k of F. 
That is, we interpolate the points (j, Yjk) for j = jo, jo + 1, ... , 2jo. If we 
choose the Newton form for irk, then the result can be put in the form 

(2.15) irk(n) = dOk + dlk(n-Io) + d2k(n-jo)(n-jo- 1) 
+ * + djok(n - jo)(n -o- 1) ... (n - 2jo + 1), 

and we can store these results in a matrix 

(2.16) D=(djk), k=1,2,...; j=O l,...,jo, 

where jo was already defined in (2.14). Examples were already given directly 
after matrix (2.12). 

Suppose we know the first n Faber polynomials, or, equivalently, the matrix 
f,. By Theorem 2, the first [n/2]([n/2]+ 1)/2 columns of the infinite matrix F 
are known completely. Here, [x] denotes the largest integer less than or equal 
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to x. In particular, Theorem 2 gives full information about the growth of the 
coefficients of the Faber polynomials. 

3. TWO-NORMS AND INFINITY NORM OF FABER POLYNOMIALS 

ON CIRCULAR SECTORS 

We now consider IIFn Io and IIF 112. Note that the latter norm can be 
explicitly computed. In the case of the two-norm, we will consider the area 
norm and the line norm separately. We also state a conjecture about the uniform 
norm that would allow an explicit and easy computation of I, IFIo . 

3.1. The area norm of Faber polynomials on circular sectors. In order to com- 
pute the (area) two-norm, assume first that the opening angle a of the sector 
S, is positive. In this case, the square of the two-norm of the scaled Faber 
polynomials (cf. (2.6)) is 

(3.1) IIFnII2 = j I(n(Z/p)12 dx dy = p2 j IOn(u)n 2 dv dw, 

where z = x + iy, u = v + iw, and S,,,/p is the sector with radius i/p and 
opening angle 2a. Using (2.5') and (2.7), we have 

(3.2) IOn (U) 2 = IUn + (1 - C)On-I (U) 12 
= IuI2n + 2(1 -c)fl{i OnkIM(u)} + (1 -c)2 I+n- (u)I , 

where the overbar denotes complex conjugation and 9f denotes the real part of 
the corresponding complex number. Thus, the problem is reduced to integrating 
terms of the form 91usT, s, t > 0. Using polar coordinates, we obtain 

{ s-tsin(s - t)&a o s#t 

(3.3) Ist = p2J 9us-atdv dw = (s"t)(s +t 2) 

SaIP +~ ~ ~~~1 fors~t 

Combining these results, we obtain for a > 0 the following final formula: 
n-1 

lit 12 - In , n + 2(1 - c) ZPn-1,jIn--i-jn 
j=O 

n-i 

(3.4) + (1-C)2 p_, Jn-1-,n-1-j 
j=O 

n-1 

+ 2(1-_c)2 1:Pn- 1, jPn- 1 XkIn- I-j, n- I-k - 
j>k 

In the disk case (a = T, c = p = 1), this formula reduces to 

(3.5) lIn1 
I 112 - _ _ 

)2 = 2 = 
n +1 

In the interval case (a = c = 0, p =4) we can use the explicit form of the 
Fn given at the end of ?1. The square of the two-norm of the scaled Faber 
polynomials is then 

(3.6) 1[n 112= 4t cos2{narccos(2x- 1)} dx = 2- 
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3.2. The line norm of Faber polynomials on circular sectors. The square of the 
line norm of the scaled Faber polynomials is defined by 

(3.7) ilFni = 12| M jnF(z/p) 12ds = pi/ On (U)12 do, 
aS. aS./P 

where s is the line element in the z-plane, a is the line element in the u- 
plane, and AS is the boundary of S. With these conventions, the results 
of the previous subsection apply essentially unchanged, after replacing the area 
integrals I,, t given in (3.3) with the corresponding line integrals. For 0 < a < ir 
these integrals are 

Ist =p j9 usutda 
JS./P 

(3.8a) ~2p-s- cos(s - t)a sin1s-ta frst 
(3a~~a) _ | p { ~(5 +t+ 1) S - t } 

I2p-2s{2 1 +a} for s =t. 

For a = 0 we delete the factor 2, and for a = ir we omit the integrals over the 
straight parts of the sector. So, we obtain 

( 4s+t/(s+t+1) fora= 0, 

(3.8b) Is't 10 fors O t, f 
27r for s=t, 

^ 
2 Thus, the final formula for H1F n122 is the same as formula (3.4), when replacing 

Ist with Ist from (3.8a) and (3.8b). 

3.3. Infinity norm of Faber polynomials on circular sectors. The results of Cole- 
man and Smith [1], partly due to Pommerenke [10] and Walsh [12, p. 319] 
are: 

(3.9) 11 Tn lloo < JJFn lloo < 21l Tn l10o, 

(3.10) 1 < IIFnII0o < 2, 
f 1 for a = 7r, 

(3.11) lim IjFnloo = 2 n-+c~o{2(1l- aflr) for 0< a<i7r/4, 

where Fn are the scaled Faber polynomials as introduced in (2.6). 
The situation for obtaining explicit expressions for JJFn jj. is not so favor- 

able. However, supported by numerical experiments, we formulate the following 
conjecture. 

Conjecture. Assume that 0 < a < 7r and n > 0. Then the norm IIFnIloK is 
always attained at the origin z = 0 or at the two corners z = e?ia of the sector 
SO,. For fixed n there is a critical angle an such that for a < an the norm 
is attained only at the origin, and for a > an the norm is attained only at the 
two corners. For a = an the norm is attained only at the origin and at the two 
corners. 

For n = 1 we can find the above critical angle by solving IF, (0)I = F1 (e i) 
for a with a pocket calculator (HP 1 5C) and obtain as solution al z 0.61838434 
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TABLE 1 
Critical angles for Faber polynomials Fn on sectors 

n alpha(deg) alpha 

1 35.430813 0.61838434 

2 59.059789 1.03078777 

3 43.672788 0.76223395 

4 46.840804 0.81752625 

5 44.221977 0.77181909 

6 47.007470 0.82043512 

7 45.619633 0.79621279 

8 43.976473 0.76753425 

9 45.575804 0.79544783 

10 45.511724 0.79432944 

11 45.399940 0.79237843 

12 44.403878 0.77499388 

13 45.732598 0.79818441 

14 45.099206 0.78712963 

15 45.112012 0.78735314 

16 44.837307 0.78255863 

17 45.535540 0.79474510 

18 45.097395 0.78709802 

19 44.829223 0.78241755 

20 45.129013 0.78764986 

z 35.4308130. According to our numerical tests, the critical angles for 3 < 
n < 20 are all close to, but not equal to, 7r/4. For n = 2, the critical angle is 
approximately 600. The computed values are shown in Table 1. 

In geometric terms, the above conjecture means that the contour line (or 
lemniscate) L = {z E C: jFn(z)l = IjFnIjj.} contains the underlying sector Sa 
in its interior and touches it at most at the corners of the sector. A graph for 
a = 7r/4, n = 4 is given in Figure 1. It was produced with MATLAB from 
data computed by a Pascal program. Generally, these contour lines approach 
the sector Sa with increasing degree n. A similar graph for a Chebyshev 
polynomial is given by Grothkopf and Opfer [8]. Some selected values of IF10 
for all considered norms are shown in Table 2. 

An upper bound for the two-norms is easily obtained by means of infinity 
norms. If Pn is any polynomial in 1I"n on the sector Sa, we have for o > 0 

(3.12) {Iin 112 < Va-IIn tIoo, b |Pn 112 < CIIPn Iloo, 
f 2+2a for 0 < a < ir, 

C 
v/2-7r for a = 7r. 
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FIGURE 1 
Lemniscate of Faber polynomial F4 on quarter disk (upper half) 

TABLE 2 
Norms of F10 for selected opening angles 

Angle(deg) Area norm Line norm Max norm 

0 1.41244 1.41244 2.00000 

1 0.14464 1.73706 1.99486 

2 0.17507 1.63409 1.98289 

5 0.20528 1.54936 1.93763 

10 0.22675 1.56115 1.88580 

15 0.24195 1.60252 1.84438 

30 0.28744 1.75067 1.65220 

45 0.33064 1.89025 1.51534 

60 0.37649 2.02449 1.49257 

90 0.47260 2.26905 1.49433 

120 0.62861 2.48243 1.47365 

135 0.72261 2.57852 1.38143 

150 0.71351 2.60358 1.68426 

165 0.55964 2.52959 1.68443 

170 0.53384 2.51431 1.43410 

175 0.52961 2.51008 1.14367 

178 0.53194 2.51550 1.02539 

179 0.53307 2.51966 1.00645 

180 0.53441 2.50663 1.00000 
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4. REPORT ON COMPUTATIONS 

We used several computers and symbolic algebra systems, as listed in Table 
3. The SIEMENS 7.882 computer is a large mainframe, the Symbolics 3650 
is a workstation whose native language is Lisp, and the other computers are 
personal microcomputers. 

We tested our algorithms on the various machines by computing the Faber 
polynomials up to a certain degree n and observing the corresponding com- 
puting times. Denote by time, the computing time for computing all Faber 
polynomials up to degree n for a fixed combination of computer and program. 
We observed in our experiments that the quotient qn = time,/timen-I de- 
pended on the specific computer and program, but was almost independent of 
n. Thus, the computing time can be predicted by the formula 

(4.1) time, = (q,0)f-fOtime,0, n > no. 

Table 4 summarizes our observations. 

TABLE 3 
List of computers and languages used 

Case No. Computer Language 

I SIEMENS 7.882 REDUCE 3.3 

ORand Corporation 

II IBM PS/2 Modell 70 A21 REDUCE 3.3 

?Northwest Computer Algorithms 

III Symbolics 3650 MACSYMA 414.62 

?Symbolics 

IV IBM PS/2 Modell 70 A21 MATHEMATICA 

? 1988 Wolfram Research 

V ATARI MEGA ST4 RIEMANN L.b 

? 1989 Jorg Begemann 

und Alexander Niemeyer 

TABLE 4 
Behavior of computer/programsystem with respect to algorithm 

I II III IV V 

time for n = 10 2.7' t 19" 9'25" 9'49" 

last n 20 9 20 15 20 

time for last n 18.0' 1.5' 7.4' 22h50' 10h58' 

timen/timen_. 1.22 1.50 1.63 2.69 1.46 

t Not available because of memory overflow. 
$ Most likely wrongly reported by REDUCE. 
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