
MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 197 
JANUARY 1992, PAGES 285-304 

ON THE POWER OF ADAPTIVE INFORMATION 
FOR FUNCTIONS WITH SINGULARITIES 

G. W. WASILKOWSKI AND F. GAO 

ABSTRACT. We study from a probabilistic viewpoint the problem of locating 
singularities of functions using function evaluations. We show that, under the 
assumption of a Wiener-like probability distribution on the class of singular 
functions, an adaptive algorithm can locate a singular point accurately with only 
a small probability of failure. As an application, we show that an integration 
algorithm that adaptively locates a singular point is probabilistically superior to 
nonadaptive algorithms. 

1. INTRODUCTION 

We study the problem of locating singular points of functions. More specif- 
ically, let f: [0, 1] -? R be such that for some point z = Zf E (0, 1) the 
function f restricted to [O z) and to (z, 1] is in Ck, while over the interval 
[0, 1], f is in C-1- and f(s) does not exist at zf . Here s and k are integers, 
o < s < k. We assume that the position of zf is unknown. Instead, we want 
to locate zf through evaluating f at a (presumably small) number of points. 

Locating singular points is an important problem by itself. It is also a key 
subproblem in a number of numerical problems including adaptive integration. 

To be more specific, let us consider the integration problem for functions 
with k large relative to s. If the singular point were known, one could ap- 
proximate the desired integral by approximating f*zf f(x) dx and fzf f(x) dx 
separately, with small error using relatively few function evaluations, by tak- 
ing advantage of high regularity of the integrand in the two subintervals. The 
same would be possible if one were able to locate Zf with high accuracy. How- 
ever, without locating Zf, one would need many more evaluations to guarantee 
small error because of the overall low regularity of the integrand. Therefore, 
not surprisingly, many integration codes contain adaptive schemes for locating 
singular points. These schemes differ from one another, but most of them are 
based on the following intuitive approach: evaluate f at a number of points 
in [0, 1] (a partition of [O, 1]), and find out where the computed values of 
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f (or divided differences) change most drastically; if such a change in some 
interval is noticed, then restrict attention to this interval, partition it, and carry 
out the same procedure there; otherwise, take another partition of [0, 1] by 
introducing extra points. This is repeated until a sufficiently small interval is 
determined to include possibly the singularity. The idea behind this approach 
is that the singularity at Zf is likely to cause f to behave more drastically near 
Zf . 

It is well known that unless more properties of f are known and exploited, 
for any code there are always functions that will fool it. This implies that in 
the worst case, adaption does not help for the integration problem. In fact, in 
the worst case one cannot approximate singular points with error less than 2 2 
of the length of the interval (see ?2). 

Adaptive integration rules are common in practice. Although they do not 
always work, they do work satisfactorily "most of the time," at least empirically. 

This paper presents a mathematical model for studying this problem. By 
assuming the existence of a reasonable probability distribution on functions 
with a singularity in their sth derivatives, we give an algorithm based on the 
above intuitive approach, which locates z to high accuracy in a small number 
of steps, provided one permits a very small probability of failure. For a more 
rigorous statement and the result, see ?5. Next, we apply our result to the 
integration problem. The conclusion is that adaptive integration rules are much 
superior to nonadaptive rules for all functions except a set of small measure. 

Of course, the power of adaption depends very much on the underlying prob- 
ability measure. If one, for instance, endows the class of functions with a Gaus- 
sian measure, then adaption essentially does not help (see, e.g., [8]). (Roughly 
speaking, this is because Gaussian measures are concentrated on functions with 
no singularities.) On the other hand, one could endow the class with a measure 
that conveys much information about a position of singular points. But this 
would make the problem trivial and not interesting from a practical point of 
view. Therefore, in this paper, we propose a new probability measure, which we 
call Wiener-like measure (see ?3). It has all the important properties of k-fold 
Wiener measures, and yet, unlike Wiener measures, it is concentrated on func- 
tions with singularities. Some probability measures concentrated on singular 
functions have been studied in the statistical literature, see, e.g., [7], however 
they are more restrictive than our measure. We are not aware of any previous 
use of the Wiener-like measure in the literature. 

The implication of our study is twofold. First, it gives a quantitative formu- 
lation of what the numerical analyst observes and believes in, namely a good 
code works well most of the time. Second, it represents a new methodology for 
tackling this problem: by using a probabilistic assumption that characterizes 
the practical situation, the design and analysis of an algorithm can now be done 
with mathematical rigor. 

2. WORST-CASE ANALYSIS 

Recall that we consider the following class of functions f: [0, 1] -* R. For 
a given positive integer k, a function f has continuous kth derivative every- 
where except at the singular point zf, i.e., fI[O,zf) E Ck and f I(Zf,] E Ck; 

at Zf, f(s) does not exist but f(s1-) is absolutely continuous and jIIf(s) jI is 
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bounded. Here, s = Sf is an integer, 0 < s < k; 11 * jlo is the LOO-norm. 
As stated in the Introduction, we would like to locate Zf using function 

evaluations. To motivate our probabilistic analysis, we begin with a simple 
observation concerning the worst case. 

Proposition 1. For every n, any algorithm that uses n function evaluations has 
worst-case absolute error not smaller than 2 

Sketch of Proof. Consider any algorithm that uses n function evaluations at 
some points xl, . . ., Xn . (There is no assumption on the position of the points; 
they can be chosen in any adaptive way.) Consider now two functions fi and 
f2 from our class that have the following properties: 

(i) they attain the same values at the points xi, fi (xi) = f2(xi) for i = 
1 , . .. , n , 

(ii) zf 0O and Zf2 . 1 - 

They are easy to construct. Because of (i), the algorithm cannot distinguish 
between fi and f2, and thus produces the same approximation for both of 
them. Hence, (ii) completes the proof. n 

This result states that no matter what algorithm we use, there are always func- 
tions that cause the algorithm to fail. However, endowing the class of functions 
with a probability measure, we will demonstrate that for some algorithms the 
probability of failure is very small. 

3. WIENER-LIKE DISTRIBUTION 

From now on, we shall endow the class of functions with a probability mea- 
sure and analyze the performance of algorithms from a probabilistic perspective. 
Of course, the conclusions of a probabilistic analysis depend on the underlying 
probability distribution. Care must be exercised to choose an assumption that 
is relevant to practice. As a very first step, we would like to use a more conven- 
tional probability measure. To make it more practical, one can further tailor 
the probabilistic assumption to suit specific practical situations. 

Among the most frequently used measures on function spaces are the Wiener 
and k-fold Wiener measures. However, these measures are concentrated on 
functions with no singularities, and hence do not allow analysis over a class of 
functions with singular points. We propose new measures that have all impor- 
tant properties of k-fold Wiener measures and yet are concentrated on the class 
of singular functions. 

Recall that the k-fold Wiener measure Wk is the Gaussian measure on 
Ck[0, 1] with zero mean and correlation given by 

I (x - t)ki(y - 
~ 

Ewk(f(x)f(y)) = k!! + dt, where (x-t)k = max{(xt)k, 0}. 

Equivalently, f distributed according to Wk can be viewed as the Gaussian 
stochastic process with zero mean and correlation given above. 

To define our Wiener-like measures, we first define the conditional probability 
with zf = z and s fixed. To define this conditional probability, denoted by 
Probz , it is equivalent to specify its corresponding random functions (stochastic 
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processes) f. They are given as follows. For fixed z and s (s < k), 

1 

f(X) f(S) (t) d (-(x - t)s Is!) 

with 
fS g1(1 -x) if x< z 

{ g2(x) if x > z, 
where g1, g2 are independent and identically distributed according to Wk-s 

Equivalently, 

f(x) = (z - t)?g1(I - t) + (t - z)?+g2(t))d(-(x - t)s/s!). 

Obviously, f(s-1) is absolutely continuous, f(s)(z) does not exist, and fifo, z) 
and fI(z, I] are from Ck almost surely. 

After defining conditional probability Probz , one could put some Borel prob- 
ability measure p on z to get a corresponding Wiener-like probability measure 
Itp, 

p(A) = JProbz(A)p(dz), 

on the class of functions with singularities. (Of course, one could also model 
functions with more than one singular point; see Remark 7.) 

The results we are going to present are robust with respect to distributions on 
z. Therefore, instead of choosing a specific p, we shall study the worst case 
with respect to these distributions (or equivalently, the worst case with respect 
to z) . Similarly, our algorithm does not assume knowledge of s, and the value 
of s will be left as a parameter in the probability estimates. For simplicity (see 
Remarks 1 and 4), we shall assume that 

z E [a, b] c [0, 1] with sufficiently large a and 1 - b. 

We end this section by providing some simple facts (without proofs) con- 
cerning the random functions f. 

Given Zf = z, let 

fi (x) = j g1 (1 - t) d(-(x - t)s/s!) 

and 

f2(x) = jg2(t) d(-(x - t)s/s!). 

Obviously, f(x) = f1(x)+f2(x), and fi and f2 are independent. The function 
fi is a Gaussian stochastic process with zero mean and correlation given by 

E fi(xj) fi (xP)) = Il + d 
(1) Jo L1 o (s- l)!(k- s)! ] 

Z [z ( v)l (I vu)-S d] du. 
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In particular, for x > z, fi is a polynomial of degree s - 1, 

fi(x) = (-1)s(g(l - z) - g(l)) 

(2) +E(-i)S++(gj)(l-z)(x-Z)j -g(i)(l)x) 
j=1 

!7 

with g distributed according to Wk. The function f2 vanishes on [0, z], and 
for x > z it is a Gaussian stochastic process with zero mean and correlation 
given by 

[fXi x )S-lI(t - U)kis 
E (f (x) f2(xp! +dt 

E(f2(x1f(x3) = (s- l)!(k - s)! ] 

(3) Ef~~~~~P (~X IV s(V - u)k-s 1 
X [] (s - l)!(k - s)! d 

4. ALGORITHM 

To present the algorithm, we need some notation. Given h, and n + 1 
equally spaced points x0, ... , x, E [0, 11 (h = xi+I - xi), by Xl = X,(f; h) 
we mean the (k + l)st backward difference of f at the point xl, i.e., 

k+1k I 
Xi = (k+ )(-l)'f(xl-j) for I= k+ 1,..., . 

j=O 

We say that the points {x1}7n0 form a semipartition of an interval [a, b] if 
xk = a and xnk = b. 

Consider now a function T such that T(h) converges to zero slower than 
hk+1/2, i.e., 

lim T(h) = +00 
h-*+O hk+1/2= 

Recall that we are interested in locating Zf in a given interval [ao, bo] = 
[a, b] that is a proper subset of [0, 1]. For given no, no > 4k + 2, the al- 
gorithm will perform a number of steps, in each producing a new subinterval 
[ai+I, bi+1 J that with large probability contains Zf and has a diameter signifi- 
cantly smaller than the diameter of the previously constructed interval [ai, bi]. 
Hence, with large probability, after the rth step, Zf will be located in a small 
interval [ar+I, br+I , and (ar+i +br+i )/2 will be a very accurate approximation 
to Zf . More precisely, the algorithm consists of the following steps: 

Step 0. Set [ao, bo] = [a, b]. Choose no+ 1 equally spaced points x0, .. ., 

with Xk = ao and Xn"ok = bo . Obviously, ho = xi+I -xi = (bo - ao)/(no - 2k) . 
Compute the backward differences Xj for j = k + 1, ..., no, and find an 

index 1 with [XII > T(ho). If such an 1 exists, then 

[al, bi] := [Xl-k-I, xl] n [ao, bo]. 

Otherwise, [a,, bl] := [ao, bo]. 

Step i (i > 1). If [ai, bi] = [air, bi-,], then form a new semipartition of 
[ai, bi] with hi = h11 /2 and the corresponding ni = 2ni-I - 2k. This can 
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be done by deleting xi (with i < Fk/21 and i > ni - Fk/21) from the old 
partition, and adding extra ni- - 2k + 2Fk/21 points between the old points. 

Else, take ni = no and a new semipartition for [as, bi] . In this case, bi-a1 < 
hi-,(k+ 1) = (bi-, -a-11)(k+ 1)/(n11I -2k) and hi < hi-1(k+ 1)/(no-2k). 

Next, we compute the corresponding backward differences, construct [ai+I, 
bi+,] (in the same way as in Step 0), and go to the next (i + 1)st step. 

Remark 1. For simplicity, we assume that the a priori bounds a and b on Zf 
are not too close to 0 and 1, respectively, so that a semipartition xo, ..., Xno 
can be constructed. Formally, this means that a > kho and 1 - b > kho. If 
this assumption does not hold, then in each step of the algorithm we consider 
only those points xj that are in [0, 1]. 

This modification does not alter the algorithm performance if Zf = Q(ho) 
and 1 - Zf = Q(ho) . In general, if Zf is not known to be far away from 0 and 
1, we need another modification which is discussed in Remark 4. 

5. PROPERTIES OF THE ALGORITHM 

We present a probabilistic analysis of the algorithm of ?4, assuming that 
the underlying probability measure is an arbitrary Wiener-like measure 4U,, as 
defined in ?3, with Zf E [a, b] for any f. 

Sections 5.1 and 5.2 deal with the algorithm's performance in one step. Note 
that if an uncertainty interval [as, bi] is reduced at the ith step, then 

bi+, -ai+l < hi(k+ 1) < ,(i -ai)(k + 1) 
no -2k 

Hence, the new uncertainty interval is at least (no - 2k)/(k + 1) times smaller. 
Although [ai+I, bi+ I] need not contain the singular point z (we refer to this as 
a wrong decision), this can happen only with small probability, as will be proven 
in ? 5.1. We would also like to know whether the reduction of the uncertainty 
interval occurs frequently. This is indeed the case, as will be proven in ?5.2. 

Using these results, we will prove in ?5.3 that with a relatively large proba- 
bility, the singular point Zf can be located very accurately in a relatively small 
number of steps. 

5.1. Probability of wrong decision. Consider one step of the algorithm with 
spacing h = hi and the number of points n + 1 = ni + 1. Then we have the 
following lemma. 

Lemma 1. The probability that jXII > T(h) for some 1, but z does not belong 
to [Xl-k-1, x1] is bounded from above by 

h hk+/2 (n - 2k) (-(T(h))2 
ir T(h) ep 2h2k+l , 

Proof. Since u (A) = faO Probz(A)p(dz) < supao0<z<bProbo(A) for an arbi- 
trary measurable set A, it is enough to show that the expression given in the 
lemma is an upper bound on Probz(IXuI > T(h)) for every z E [ao, bo]. 

Consider xl < z. Then Xl is the backward difference of Ai. Since Xl 
is a linear combination of f (xlj) 's, the fact that the fi (xlj) 's are Gaus- 
sian implies that Xl has a normal distribution with zero mean. Letting a, = 
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E((X1(fi; h))2) be the covariance of Xl, we have 

Prob,(IXIl > T(h)) I j e x2/(2a1) dx 
xj>T(h) 

2 ~/~i(-( T(h))2) 
< v()exp ( () 

- rT(h)exK 2a1 

We need to estimate a1 . It is easy to see that for xj, xp < z, each inner integral 
in (1) as a function of x; (or xp) is a sum of a polynomial of degree k and 
the term (1 - u - xj)k/k!. Therefore, 

51= i( J )(-_ )j ( _, )+] du. 

Hence, a, does not depend on 1, a, = a. Furthermore, it is well known (see, 
e.g., [4]) that 

- a < h2k+l 

Consider now z < Xlk- I. Then Xl = X1(ff; h) + X1(f2; h) = X1(f2; h) 
because of (2). Also for this case we have a1 = a < h2k+1 . Indeed, each inner 
integral in (3) as a function of xj (or xp) is a polynomial of degree k if u < z . 
Hence, for such u, the backward difference is zero. For u > z, these integrals 
reduce to (x - u)+/k! and that is why a1 = a < h2k+1 . 

Therefore, for any 1 with z ? [Xl-k-1, xj], we have 

2 hk+ 1/2(- (T(h) )2\ 
Probz(IXul > T(h)) < -h Th) exp (hh2k+ I 

Since there are n - 2k such indices 1, the proof is complete. o 

5.2. Probability of not reducing the uncertainty interval. Consider now one step 
with spacing h = hi and zf E [ai, bi]. 

Lemma 2. The probability P(h) = 4up([ai, bi] = [ai+l, bi+1]) that the uncer- 
tainty interval will not be reduced is bounded by 

(4) P(h)? flks(T(h)h-(k+s)/2)k-s+l 

with 
2(k-s+l)(k+s+2)/2(Hk i!)(Hrk s+l(k - s + i)!)1/2 

flks = ,(k-s+1)/2((2(k - s) - 1)!!)s(Hiks i!)3!2 

Proof. As in the proof of Lemma 1, we consider the conditional probability 

Probz . 

Given z, let x, be the partition point such that x11 < z < x1. Then for 

every p, the probability P(h) is bounded from above by 

P(h) < sup Probz({lXi(f; h)l < T(h): Vj=l, = , k + 1}). 
xI-1<z<xI 

Since 

Xj(f; h) =Xj(fi; h)+Xj(f2; h) foreveryl<j < k+l 

and 

[X2(fi; h), , Xk+l(1i; h)]T (i= 1, 2) 
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are independent Gaussian random vectors, each with zero mean, Anderson's 
inequality (see [1]) implies that 

() Prob, (IiXj(f; h)l < T(h): Vj = I,.., k + I}) 
< Probz({jXj(fj; h)l < T(h): Vj 1, ..., J+1}) Vi =1, 2. 

Assume first that 

(6) z>2 and xi-z>h/2. 

The right-hand side of (5) can be estimated by considering i = 2 and / < j < 
k-s+l insteadof I < j < k+l, i.e., 

Probz (I IX (f2 ; h)j < T(h): Vj = 1, . ,k + 1}) 
< Probz(IlXj(f2 ; h)l < T(h): Vj =1, ... ., k - s + 1} :Pz. 

We need to estimate Pz . With Yj = Xi(f2; h), the random vector 

IYi, - - Yk-s+lI] 

has a normal distribution with zero mean and (k - s + 1) x (k - s + 1) covariance 
matrix C = (ci,j)k-s+l with 

cij = E(Xi(f2; h), Xj(f2; h)). 

Thus, 
(27l 
)(-s+1P exp(-(Cj y, 0 /2) d9 

< (T(h))k-s+l 2(k-s+1)12 

-r(k-s+1)/2 det(C) 

Hence, we need to estimate from below the determinant of the matrix C. 
Note that 

Cij= gi(u)gj(u) du 

with 
k k + 

\ 
Xi-P (xi1P 

- 
t)s+-I(t 

- u)k-S dt 

(k+ lI XiP (xi1p - t)s-I(t - U)k-s 

Thus, 

c,, = gi(u)gj(u) du = c + j 

where 

i= j gi(u)gj(u) du and c'j= j g,(u)gj(u) du. 

Since C = (ci, j) and C = (c', j) are symmetric and nonnegative definite, 
det(C) > det(C). 
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We now estimate the determinant of C. For u < z, 

[xi (xi - t)s-1 (t -U)k-s k (XiZ)q(ZU)k-q 

J (s- 1)!(k-s)! t q!(k-q)! 

Therefore, 
k 

ei~j E bqjxq2Ci, q, Cjq2 
q, ,q2=s 

where 
z2k-ql -q2+1 

bql,q2 = 
(2k-qi -q2+ 1)ql!q2!(k-ql)!(k-q2)! 

and 
4'i~q =Ej (k + 1 )P( - 

p=O 

Denoting B = (bp,q)pkq= and 4' = ... , Sik]T ,we can write C - ZTBZ 

with the matrix Z given by Z = [K,..., Ck-s+l] Obviously, 

det(C) = det(B)(det(Z))2. 

Furthermore, the determinant of Z equals the determinant of the matrix 

-(X Z)s (Xk-s+l -Z)s 

(XIZ)k * (Xk-s+l-Z)k 

However, V = VD, where D is a diagonal matrix, D = diag((xi - z)s)jk-s+l 

and V is the following Vandermonde matrix: 

1 1 

(x 1-Z) (Xk-s+l-Z) 

(Xl Z)ks ... 
(Xk-s+l-Z)k-s) 

The determinant of D is obviously equal to 

k-s+l 
det(D) = fJ (Xi - Z)s. 

i=l 

It is known that 
k-s+l-1 k-s+l 

det(V)= fJ fJ(xi-xj). 
i=l j=i+1 

Hence, 

k-s+l 2 (k-s+l-1 k-s+I ) 2 

(8) det(C) > det(C~) =det(B) ( t (xi - Z)s) ri tI (xi - xj)) 
i=l i=l j=i+ 1 



294 G. W. WASILKOWSKI AND F. GAO 

In view of (6), we have 

k-s+l (2(k - s) - !! S 
fJ (xi - z)s > hs(k-s+l) ( 2k-s+1 
i=l 

and 
k-s+l-1 k-s+l k-s+l-1 

I I 17xi - xAj= = hk-s+l-i(k-s+l- i)! 
i=l j=i+ 1 i=l 

k-s 
= h(k-s)(k-s+1)/2 17 i!. 

i=l1 

Thus, 
/et(C) > (k+s)(k-s+1)/2?k 

where 

tk, s ( 2k-s+l )l fi=II k- 

Hence, by (7), 
Pz < (T(h)h-(k+s)/2)k-s+lfAs(Z) 

with 
2(k-s+1)(2s+1)/2 

3~k 
'5(z) 7r(k-s+l)/2((2(k - s) - 1)!!)S det(B) Hrk-5 i'! 

To estimate the determinant of B, note that 

k \-2 

det(B) = z(k-s+1)2 (P 
p!(k - p)!) det(Hks+l), 

p=s 

where Hk-s+l is the (k - s + 1) x (k - s + 1) Hilbert matrix. It is known that 

det(Hk- ) = [i= 1(z 
det(Hk5+lr-jH-s1l (k - s + i)!' 

Hence, 

2(k-s+l)(2s+1)/2(rHjk i!)(rHkls+l (k - s + i)!) 1/2 

1k5~z) 7r(k-s+l)/2z(k-S+l)212((2(k - s) -1)!!)s(Hkis jI)3/2 

Since 13k, 5(Z) is decreasing, 3k, s(Z) < k, s(a) . This completes the proof under 
the assumption (6). 

Suppose that (6) does not hold. If z > I (i.e., z-x1 < h/2), then instead of 
x .. , ks+l consider Xk+l, ... , X5+, in estimating P(h) by supz P,. As 
before, the problem reduces to estimating the determinant of a corresponding 
matrix C. However, for i =s+, .. ., k + , it is easy to see that 

g (u) _k,1(k + 1) _1)P (xi-p t)- (t u)+kdt gi(U)k= 1 Jzx1- p - - dt. 
g1(u) = p~i-l+ (s - 1)!(k -s) 
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Hence, the matrix C has the same structure as before, with the only difference 
that instead of xi, ... , xk-,+, we have x11l, ... ., XI-k+,l with Iz - xi-, I > 
h/2. Hence the determinant of C is bounded exactly as in the case when 
xi - z > h/2. 

If z < 2 then we use (5) with i = 1 . Depending on the sign of xl -z > 2, we 
consider XI, ..., X + or Xk+l, ..., Xi+, in estimating P(h) by supzPZ. 
In order to estimate the determinant of the corresponding matrix C, we use 
the following observation: If x; < z, then 

Z _ -t)s-I(1 _ t U)k+-5s Z (Xj _ t I(1 t _U)k + 

(s- l)!(k-s)! (s - 1)!(k-s)! 

_ Xj txy-t 
I 
(I 1t _U)k-s 

f( t l(x -(s - 1)!(k - s)! 

Therefore, the corresponding function gj(u) equals 

k+1k I x_ ty_0 t Uks gj(u) = - E (k+l)(_ OP )J xp-t) (l-t-u+ - A 

Hence, the matrix C has the same structure as before with the only difference 
being that the entries bq, ,q2 of the matrix B have (1- z)2k-ql -q2+1 instead of 
Z2k-q -q2+1 Since z < 2 implies 1 - z > 2, this completes the proof. 1 

Remark 2. As we shall see, Lemma 2 plays a crucial role in our analysis. Al- 
though (4) is not sharp for relatively large h, we believe that it provides a sharp 
estimate of P(h) for sufficiently small h. Furthermore, even for moderate val- 
ues of h, it gives a nontrivial bound on P(h). 

To see this, consider T(h) = hk. The estimate (4) is a product of the 
constant 8k 5 and the spacing h raised to the power a = (k - s + 1 )(k - s)/2. 
The constant Ikk s might be very large. However, when multiplied by h , the 
whole expression attains a small value for even a moderate value of h. For 
instance, consider k = 4 and s = 0. Then f4,0 P 2.3 x 1013 and a = 10, and 
therefore the estimate (4) implies P(h) < 2300(10h)10. 

For moderate values of h, one could consider a similar algorithm with the 
only change being that the backward differences of order (k + 1) are replaced 
by the backward differences of order (k + 1) with s < k < k. Then the corre- 
sponding estimate would take the same form as in Lemma 2 with a replaced 
by a^ = (k - s)(k - s + 1)/2, which is smaller than a, but with the constant 

fks smaller than Ak, s 
For simplicity, we shall assume from now on that h is small enough; modi- 

fications of the algorithm will be reported elsewhere (see Remark 6). 

5.3. Main theorem. Consider T(h) = V2hk+Y with y E [0, 2) and no > 4k+2. 
Let 

a (k-s+2y)(k-s+ 1) and v =v(no, k) k k + 1 
2 nondvv~ 

~) n- 2k' 

Then the function P(h) from Lemma 2 is bounded by P(h) < fSk,Sha with 

flk,s = 2(k-s+l)12flks. 
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For r > 1 let [ar, brJ denote the uncertainty interval obtained after r steps. 
Let Nr = Nr(f) denote the total number of function evaluations performed in 
the steps 0, ... , r -1 . As explained earlier, [ar, br] need not contain zf . Of 
course, we would like this to happen only with a small probability; this proba- 
bility is bounded from above in part (i) of the following theorem. Otherwise, 
if Zf e [ar, br], we would like the diameter br - ar and the number Nr of 
function evaluations to be small with large probability. Part (ii) of the following 
theorem estimates this probability from below. Furthermore, it provides upper 
bounds on the expected values of br - ar and Nr, respectively. 

Theorem 1. (i) The uncertainty interval [ar, br] does not contain Zf with prob- 
ability 

,up(zf 0 [ar , br]) 

(bo - ao)I/2y (no - 2k) I/2+y i( (2i(no -2k) ) 

VIR ~ i=0 x bo - a0o 

(bo - ao)1/2-Y(no - 2k)1/2+Y f {no - 2k 1-2y 

= (1 + o()) - exp - yb - 2) 

(ii) Let zf E [ar, br]. Then for every p = 0,.. , r- 1, 

pp((br -ar < Cp) A (Nr(f) < dp)) 
-1 bo - a a~ 1 2-a(r-p) 

(9) >lI/k s Y2P(n - 2k) 1-2-a 

where cp = (bo - ao)vr-P/2P, and 

p _{ r(no+l) ifp=0,1, 
= (2P- 1)(no-2k)+p2fk/21 +(r-p)(no+ 1) otherwise. 

The expected value of br - ar is bounded from above by 

(bo - ao) Vr + n ( o 2ka(I-r)) 

with 

, r-Ir- I if 2a+IV = 1, 
2 

K1 jr 1 -(2a+lv)l-r 
IC = 2 - (2av)-r otherwise 

r2 max{vr-I, 2(a+1)(1-r)}, 

and the expected value of Nr(f) is bounded from above by 

r(no + 1) + ks (2(n - 2k) K2 
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with 

K2= =2(no -2k) 1 - 2(a-1)(2-r) 1 
-2a(2-r)) 

1 - 2(1-a) 1 - 2-a ) 

+ (2[k/21 - 2k - 1) 1 - 2-(2 

- (no +1l - 2[k/21 ) (1 - 2a(1 -r) _ (r - 1)2a(2-r) 

(1- 2-a)2 1 -2a 

no -2k +(o [/l(r -1)2a(2-r) 
< (1 - 2-a)(2a-I - 1) + (n + 1 - 2Fk/21) 1 -)2- 

Proof. The first part follows from Lemma 1 and the fact that hi < h02-i in the 
ith step. 

We now prove the second part. Let Ri be the set of functions for which the 
uncertainty is reduced in the ith step, i.e., [ai+l, bi+] $ [ai, bi]. Let Fi be 
the complement of Ri. Consider the following families of sets: 

r-2 r-2 

Go= nRj, Gp = Fp n )Rj forp= ..., r-2, Gr-I =Fr-2 
j=O j=p 

and 
Hp =Gp n Rri forp =0, , r-1, Hr =Fr-. 

Obviously, Hp C Gp (p < r). Furthermore, {Gp}i4o and IHpp=o form 
partitions of our class of functions. Note that 

( 0) Probz(Hp) < Probz(Gp) < Probz(Fp-E ) < Ik,,hpa1 < fk,s(hO2p) 

for 1 < p < r - 1, and Probz(Hr) < flk,S(ho2l-r)a. 
We prove that the numbers cp and dp defined in the theorem satisfy 

(11) cp > max(br - ar), dp > maxNr(f) > maxNr(f) Vp < r- l. 
f EHp fEGp f EHp 

Indeed, for f E Hp the algorithm reduces the uncertainty interval in all steps 
from the pth through (r - 1)st. Hence, br - ar < hp(k + 1)Vr-P < cp , since 
hp < 2-Pho. To show the bound on maxfEEGP Nr(f), let m1(f) denote the 
number of function evaluations performed in the jth step. Obviously, if j = 0 
or f E R1-I, then mj(f) < nO + 1 . Otherwise, if f E Fj, then m+= 
nj - 2k + 2[k/21 . Since nj < 2(nj-1 - k), we have nj - 2k < 21(no - 2k). 

Therefore, Nr(f) = no + 1 + Er- m1 (f) < dp for any f E Gp, as claimed in 
(1 1). 

Note that (9) follows from (10), since ((br - ar > cp) V (Nr(f) > dp)) implies 
that f E Ui+ H 

To estimate the expected value of br - ar, observe that 

J(br- ar) Probz(df) = E J (br- ar)Prob,(df), 

since the family {Hp}p=o is a partition. Hence, br - ar < bo - ao, and (11) 
imply 

r-1 

J(br - ar) Prob,(df) < Z cp Probz(Hp) + (bo - ao) Prob,(Hr). 
p=O 
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With the help of this and ( 10), it is easy to establish the bound on the expectation 
of br - ar. 

To estimate the expected value of Nr, we consider the partition {Gp,}i4. 
Then 

J Nr(f) Probz(df) = |Nr(f) ProbzJ(d) 

r-1 

< do Probz(Go U GI) + E dp Probz(Gp). 
p=2 

Since dP > do for p > 2, from (10) we get 

r-1 

]Nr(f)Probz(df) < do + Z(dp - do)k, s(ho21 p)a 
p=2 

( bo -ao < r(no +1)+ k,s ( 2k) K. 

This completes the proof. fi 

Remark 3. The proof of Theorem 1 (ii) relies heavily on the use of the estimate 
of P(h) from Lemma 2. Even though this estimate seems to be sharp (we as- 
sume, of course, that h is small), we believe that the bound (9) is not sharp. 
A better estimate than (9) would be of interest. Nevertheless, even with this 
estimate, the superiority of adaptive function evaluations for the singularity ap- 
proximation problem is apparent. The same is valid for the integration problem 
discussed in the next section. 

Remark 4. We show how to modify the algorithm in the case of a z 0 or 
b 1. This includes a = 0 and b = 0 where no a priori bound on Zf 
is known and/or Zf can be very close to either 0 or 1. As we shall see, the 
modified algorithm performs almost as well as the original algorithm with given 
a and b that are not too close to 0 and 1. 

This algorithm depends on parameters v and qj (i = 0, ..., v) whose 
choice we shall discuss later. 

For simplicity, we first outline the modified algorithm, assuming that a = 0 
and b < (no - k)/no. Initially, i = 0 and b(?) = b. 

Al: Apply qj steps of the algorithm of ?4 for the interval [0, b(M)] (in the 
first such step we use h(') = b(0)/(no - k) and (i) = jh'), 0 < j < no, 
as a partition). If a new uncertainty interval is constructed, then we 
apply r - qj additional steps and terminate. Otherwise, go to A2. 

A2: If i = v - 1, then we terminate. Otherwise, i := i + 1, bMO: 
h(i-l)k21-q,_i , and Al is repeated. 

For a > k/no and b = 1, the algorithm is defined in a similar way with the 
only change being that instead of the interval [0, b(M)] we use [a(i), 1], where 
a(i) = 1 - h(i-0k21-q,_j 

Consider now a = 0 and b = 0. Perform Al and/or A2 for i = 0 (a(?) - 

0b b(-) = 1, and h(0) = 1/no). The algorithm will construct a new uncertainty 
interval or, after q0 unsuccessful steps, will set i := 1, bM) := h(0)k21-q o, and 
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a(') := I -h(')k2l-qo. Next, for i > 1, Al and A2 are performed in parallel 
for two subintervals [0, b(0)] and [a(i), 1]. 

We now discuss the performance of the modified algorithm. Let PW stand 
for the probability of wrong decision. Obviously, the probability that the algo- 
rithm will choose a wrong subinterval during Al (0 < i < v - 1) is bounded 
as in Theorem 1 (i) with a = 0 and b = 1 . By Lemma 2, the probability that 
in the (i + l)st step the algorithm will search for Zf in [0, b(0+')) U (a(i+'), 1] 
whereas b(+ 1) < Zf < a(i+') is bounded by flks(2l-qih( )) . Hence, 

PW < (1 + 0(1))(fl -2) exp(-(no - 2k) 

v-2 

+ fks (2l ih(i))a. 
i=O 

Obviously, 

(i) < bi) < h(i-1)21-qi-lk 
< h(0)2ci 

k 
- no-k - non-k -no-k 

with Ci = i - EZ-4 qj. 
Consider now 

(12) qj=l, i=I,2. 

Then the probability of wrong decision is bounded by 

PW?< (1 +o0(1)) ((nO-2k)l/2+Y exp(-(no - 2k)'2y) 

+ fk,s (2qo-1 (no - k) 

Furthermore, for v > max{a/(k - s), r - p} and q0 = p, one can show that 
(9) of Theorem 1 holds with cp defined as before and dp equal to the old dp 
plus (2P + 2(v - 1))no. (This follows from already established results and the 
simple fact that E(XXl) > e(IX, - Z12s) for Ixi - zl < (k + l)h.) This shows 
that the modified algorithm (even for a = 0 and b = 0) works almost as well 
as the algorithm of ?4 (for a and b not too close to 0 and 1, respectively). 

6. INTEGRATION PROBLEM 

We now apply the results to the integration problem where one is interested 
in approximating fA f(x) dx to within a given accuracy e by performing as 
few function evaluations as possible. 

More specifically, suppose that we want to construct an approximation A(f) 
to fg0 f(x) dx with the error 

jf(x) dx - A(f) <?e max{ltf(s)lljo, jjf(k)jj0j} 

for functions f from the class considered in this paper. Here, for simplicity, 
we assume that s is fixed and given (see Remark 7). 
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It can be easily shown that in order to produce such approximations, any 
algorithm would require at least Q( l/el/(s+l)) function evaluations in the worst 
case. This lower bound is achieved by algorithms that use nonadaptive function 
evaluations. Hence, from the worst-case point of view, adaption does not help. 

Now relax the worst-case requirement by allowing the algorithm to fail with a 
small probability, say with probability not exceeding a given small number 3. If 
nonadaptive evaluations are performed, then it can be shown that Q( 1/lI(s+1)) 
of them are still needed. However, one can do much better by using adaptive 
function evaluations. 

Consider the following scheme. Choose no > 4k + 2 and start locating the 
singular point until reaching [ar, br] with 

(13) (br -ar s+1 
(13) ~ ~ n-2) (no -2k) < . 

Once such an interval is found, performing extra no - 2k function evaluations 
at equally spaced points in the interval [ar, brl, one will be able to approxi- 
mate ar f(x) dx with the error not exceeding eIIf(s) II/o2. The integral over 
[0, ar] U [br, 1] can be approximated to within gjjf(k) jjl/2 by using function 
values already computed plus at most h = e-l/k additional evaluations at points 
outside the interval [ar, br]. 

Obviously, once we are able to construct the interval [ar, br] containing 
Zf, this algorithm will approximate the integral of f with the error < 
e max{IIf(s) IIo, IIf(k) II}. The total number of function evaluations performed 
does not exceed 

(14) n+(no-2k)+Nr, 

where Nr is the number of evaluations needed to construct [ar, br]. 
Now, given e and 3, we can apply Theorem 1 to choose no so that the total 

number of function evaluations is small. To this end, recall that 

(k-s+2y)(k-s+ 1) _ I k+ I 1 
2 - V 22 no-2k-2 

Note that Nr+(no-2k) < dp +(no- 2k) = 2P(no-2k)+2p rk/21 +(r-p)(no+ 1), 
where no, r, and p < r are to satisfy 

(15) jto(z ? [ar brl)+fks b-ao - 1 < 
\(no -2k)2P} l- 2-a 

(the condition that with probability < 3, a wrong decision has been made, or 
br - ar > cp , or Nr > dp) and 

(16) bar, < _ b-a0bo - ap -2(nj-2k))<1/(s+1) 
no -2k no0-2k 2P(no -2k) 2n k 

(to guarantee that (13) holds). 
In what follows, we assume for simplicity that J is sufficiently small. Then 

for no - 2k z ln(3-1 n3-1) and 2P(no - 2k) ? (bo - ao)(2IBks/3)1/a the 
inequality (15) holds. Using this, we get that (16) holds for 

r - p (ln(2(no - 2k)/e)1/(s+l) - ln(2k, S/3)1/a)/ ln(l/v). 
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For such values of no, r, and p, we have 

2{ 1/a In - In -1 , 1 
Nr?<(bo -ao) 2Is + in- n-131+ 1(1+ o(l)). 

3S + 1 l lnln3-1 

Therefore, the total number of function evaluations is bounded by 

h + (no - k) + Nr < e-1/k + (bo - ao) ( 1/; a 

(17) lnc-' (ln3 lno5 +-1) (1+o(l)) 

< g l/k(l + o(l)) + (bo - a) ( a 

for small c and 3. Thus, for small c and 3, the adaptive integration rule is 
much superior to any nonadaptive rule, especially when s < k. 

For fixed 3, and c tending to zero, this adaptive integration can be improved 
as follows. Suppose that in the adaptive scheme presented above, the integrals 
over [0, ar] and [br, 1] are approximated by the integrals of natural splines 
of degree 2k + 1 that interpolate f at equally spaced points. Since fl[o,ar ] 

is distributed according to Wk, the results from [6, p. 366] for probabilistic 
integration with normalized error criterion state that using 

VI -By5~ (1+o(l))1(k+l) 

hi= hi (c, 3) = ( )+ evaluations, 

the error of approximating f0 f(x) dx does not exceed cIlf(k) Io/4 with prob- 
ability at least 1 - 3/4. The same can be proven for the integral over [br, 1]. 
Hence, using 

h = h(, = ( 3) evaluations, 

the error of approximating the integral over [0, arl U [br, 1] does not exceed 
cIIf(k)I Io/2 with probability at least 1 - 3/2. Replacing the right-hand side 3 
of (15) by 3/2, we get that with probability at least 1 - 3, the error of ap- 
proximating the integral fgl f(x) dx does not exceed c max{ I I f(s) I I oo I f(k) I I oo } 
when using 

(18) h+(fl k)+Nr? ( en31) )(1+o(1))/(k+1) 

(18) 
~ ~~~~~~~~4i~ ~k 1/a 

+ (bo ao) ( evaluations. 

We do not know if this adaptive rule is optimal with respect to J. However, 
if one considers fixed (even very small) 3, and c tending to zero, then the rule 
is (modulo constants) optimal. Indeed, for small c the number of evaluations 
is proportional to h(c, 3). Even if the singular points were given explicitly for 
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every function f, one would still need h(e, 3) function evaluations, which has 
been proven in [6, p. 366]. 

For 3 small relative to e, the bound on the number of function evaluations 
depends on 5 essentially through (2&,6/o5) 101. We believe that the actual 
number of function evaluations is smaller than the bound presented above. In 
order to get such a smaller bound, one would need to improve the estimate (9) 
(see Remarks 3 and 6). 

We end this section with the following remark. 

Remark 5. Our adaptive information scheme is based on computing backward 
differences and comparing them to hk. Although in some adaptive quadrature 
rules there is no explicit use of backward differences, the backward differences 
are often used implicitly. To see this, let us very briefly consider the adaptive 
Simpson's rule (see, e.g., [2, 3]), where the decision about partition is made 
based on whether ISi - Si I/15 is small. Here, Si is the (composite) Simp- 
son's rule based on f(xi), f(xi + h), . .. , f(xi + 4h), and Si is the Simpson's 
rule based on f(xi), f(xi + 2h), f(xi + 4h). A simple calculation gives us 
(Si - Si)15 = -h(Al,+4f)/45, where A14+4f is the 4th-order backward differ- 
ence of f at xi+4. This means that new evaluation points are chosen based on 
the size of a corresponding backward difference, which is the approach taken in 
our algorithm. 

7. CONCLUDING REMARKS 

We end the paper with a number of remarks outlining our research plans. 

Remark 6. We would like to improve the estimates obtained in Theorem 1. 
Note that small improvements in (9) can be easily obtained. For instance, we 
could take T(h) that is closer to hk+1/2 than T(h) = x/2hk+Y (y < 1), say 
T(h) hk+1/2/ ln h-I, or we could take (in initial steps) backward differences 
of order smaller than k + 1 (see Remark 2). However, significant improve- 
ments might require much more elaborate analysis and/or modification of our 
algorithm. 

One might improve the algorithm by introducing a backtracking technique. 
For instance, if the uncertainty interval is not reduced after several steps, the 
algorithm will backtrack to an earlier partition and find a new interval to work 
on. This should reduce the probability of making wrong decisions. 

Remark 7. In this paper we consider functions f with exactly one singular 
point Zf. Hence, each f consists of two pieces of k-regular functions such 
that f(s -1) is absolutely continuous. We plan to extend our analysis for classes 
of functions f that consist of an unknown (bounded) number of regular pieces 
(i.e., f might have a number of singular points), each piece of different regu- 
larity ki and each singular point of different regularity si. The parameters ki 
and si need not be known, and some ki 's might equal infinity. Some singular 
points zi might be poles of f(s,). However, poles are easier to approximate 
than zi 's with bounded Ijf(3,)j, ), as assumed in this paper. 

We plan to analyze the problem of approximating the singular points for such 
a generalized class of functions. Here, by approximating all singular points of f 
we mean constructing a set (a union of intervals) containing the singular points 
and having small Lebesgue measure. 
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If we assume that an upper bound on the number of singular points is given, 
then a relatively simple modification of our algorithm approximates the singular 
points well with high probability. This modification is based on the following 
observation. Let XP = XP(f) be the backward difference of order p of f 
at a point x. Consider x such that fI(z"x] E Ck. Then for every p < s, 
the expected value of (XP)2 is proportional to h2p. For s < p < k it is 
proportional to h2s or to h2P depending on whether x is close to z or not. 
This, together with the analysis, will be reported in the future. We also plan to 
analyze the problem of estimating the regularity parameters ki and si along 
with the points zi. 

Remark 8. In ?6 we used an integration problem only for the purpose of illus- 
tration. Some practically important questions were left untouched. One such 
question concerns getting an a posteriori error estimate. To be more specific, re- 
call that in the integration problem of ?6 we wanted to approximate fg0 f(x) dx 
with an error not exceeding e max{Ijf(s) jjo,, lif(k) jjo} . Adaptive rules try to 
approximate integrals with small errors, but in addition to that, they attempt to 
provide the user with an a posteriori bound on the error. For instance, in the 
adaptive Simpson's rule (see Remark 5), (Si - Si)/ 15 is used as an estimate of 

fxi+4 f(x) dx - Si. 
We want to analyze classical techniques for getting a posteriori bounds, which 

we expect to be reliable in a probabilistic sense (of course, in the worst case, 
getting nontrivial reliable bounds is impossible). In particular, we would like to 
know the probability that 

Isi - Sl fXi+4 
small 5 implies small f(x) dx -Si1 

This is in the spirit of [5], where for functions with no singularities prob- 
abilistic a posteriori estimates have been studied. We plan to investigate this 
problem for functions with a number of singular points (see Remark 7) and we 
want to study adaptive quadrature rules that are efficient (require a relatively 
small number of function evaluations) and provide probabilistically reliable er- 
ror estimates. 
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