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SEARCHING FOR PRIMITIVE ROOTS 
IN FINITE FIELDS 

VICTOR SHOUP 

ABSTRACT. Let GF(pn) be the finite field with pn elements, where p is prime. 
We consider the problem of how to deterministically generate in polynomial 
time a subset of GF(pn) that contains a primitive root, i.e., an element that 
generates the multiplicative group of nonzero elements in GF(pn) . We present 
three results. First, we present a solution to this problem for the case where p 
is small, i.e., p = n-d) . Second, we present a solution to this problem under 
the assumption of the Extended Riemann Hypothesis (ERH) for the case where 
p is large and n = 2. Third, we give a quantitative improvement of a theorem 
of Wang on the least primitive root for GF(p), assuming the ERH. 

1. INTRODUCTION 

Consider the problem of finding a primitive root in a finite field. For a finite 
field GF(pn) (with p prime and n > 1), a nonzero element g E GF(pn) is 
called a primitive root if it generates the multiplicative group of units, GF(pn)* . 
Although there are no known polynomial-time algorithms for constructing a 
primitive root, or even for testing whether a given element is a primitive root 
(at least when the factorization of pn - 1 is unknown), we can still raise the 
question of how to efficiently search for a primitive root. By a search procedure 
for primitive roots in GF(pn), we mean an algorithm that generates a subset 
of GF(pn) that contains (with high probability, in the case of a probabilistic 
algorithm) at least one primitive root. 

It is well known that the density of primitive roots in GF(pn) is great enough 
so that the simple method of choosing a small number of elements in GF(pn) 
at random is in fact a probabilistic polynomial-time search procedure (here, 
polynomial-time means (n logp)0(')). However, the existence of a deterministic 
polynomial-time search procedure for primitive roots in an arbitrary finite field 
is an open question-and it is this question that we address here. 

An important result in this area is due to Wang [32], who shows that, assum- 
ing the Extended Riemann Hypothesis (ERH), there exists a positive integer 
x = (logp)0(') such that xmodp is a primitive root for GF(p). More pre- 
cisely, Wang shows that x = O(r6(logp)2), where r = w(p - 1), the number 
of distinct prime divisors of p - 1. Note that for any integer m, wc(m) = 
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O(logm/loglogm) (see, e.g., [13, P. 355]). Thus, if the ERH is true, the deter- 
ministic search procedure that simply enumerates the integers 1, 2, 3, etc., will 
generate a primitive root in polynomial time. 

We prove three results. Our first result applies to the problem searching for 
primitive roots in GF(2n), and more generally, in GF(pn) with p small. We 
show (unconditionally) that given any irreducible polynomial f of degree n 
in GF(2)[X], there exists a polynomial 0 E GF(2)[X] (itself irreducible) such 
that deg 6 = O(log n) and (6 modf) is a primitive root for GF(2)[X]/(f) = 
GF(2n). More precisely, we prove the following: 

Theorem 1.1. Let f be an irreducible polynomial of degree n over GF(p), and 
let r = w(pn - 1). Let / be chosen such that pl > cr4(logr + 1)4n2, where 
c is a certain absolute positive constant. Then there exists a monic irreducible 
polynomial 0 E GF(p)[X] of degree 1 such that (6 modf) is a primitive root 
for GF(p)[X]/(f). 

This result implies that the deterministic search procedure that enumerates 
all linear polynomials, and then all quadratic polynomials, etc., will generate a 
primitive root in GF(pn) in time (np) (1) . Furthermore, combining this result 
with the algorithm in [28] for deterministically constructing irreducible polyno- 
mials, we conclude that the problem of constructing a primitive polynomial (an 
irreducible polynomial f for which (X mod f) is a primitive root) over GF(p) 
of degree n can be reduced in deterministic time (np)0(1) to the problem of 
testing primitivity. Previously-known reductions of this type were probabilistic. 

We note that Shparlinsky [30, Theorem 2.4] also gives a deterministic search 
procedure with running time (np)0(1); however, the method described in that 
paper does not in general construct a set of polynomials of small degree. 

Our second result applies to the problem of searching for primitive roots in 
GF(p2). We prove the following: 

Theorem 1.2. Assume the ERH; then there is a deterministic polynomial-time 
search procedure for primitive roots in GF(p2). 

The statement of the theorem does not specify in which specific model of 
GF(p2) a primitive root is sought, but this is not an issue, since isomorphisms 
between different models of GF(p2) can be computed deterministically in poly- 
nomial time, and some model of GF(p2) can be deterministically constructed in 
polynomial time assuming the ERH (see, e.g., [20]). In proving this theorem, we 
actually show the following: assuming the ERH, we can deterministically con- 
struct in polynomial time a certain model GF(p)(a) of GF(p2), and within 
this model there exists a primitive root of the form a + ba, where a and b are 
integers of absolute value (logp) (1) . Unfortunately, our proof of this theorem 
does not generalize to arbitrary finite fields GF(pn), even for fixed n > 2. 

Under the assumption of the ERH, this theorem implies that one can de- 
terministically construct a qth nonresidue in GF(p2) for a given prime q 
dividing p2 - 1 in time (logp)0(1)-independent of q. Previous such methods 
(e.g., [15, 3]) required time at least q . One application of this is the following. 
For integer m, let S(m) denote the largest prime dividing m. It is shown in 
[27], by refining the algorithm in [31], that under the assumption of the ERH, 
polynomials of degree d over GF(p) can be factored deterministically in time 
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S(p - 1)1/2(dlogp)0(1). By combining Theorem 2 with the techniques in [27, 
3], one can prove an analogous result with S(p + 1) replacing S(p - 1). 

Our third result is a quantitative improvement of Wang's theorem. By using 
a better combinatorial sieve and a better character sum estimate than that used 
by Wang, we are able to prove the following. 

Theorem 1.3. Assume the ERH; then the least primitive root modp is 
O(r4(log r + 1)4(logp)2), where r = wo(p - 1). 

Related work. Besides the results of Wang and Shparlinsky referred to above, 
we mention the following work on primitive roots in finite fields. 

Let GF(pn) = GF(p)(a). Davenport [9] proves that for given n and suf- 
ficiently large p (depending on n), there exists a primitive root of the form 
a + a, with a E GF(p) . Note that our Theorem 1.1 contains a more explicit 
version of this result as a special case. Carlitz [6] proves that for given n, 1, 
and sufficiently large p (depending on n, 1), there exists a primitive root of 
the form 0(a), where 0 is a monic polynomial of degree 1. Carlitz also shows 
that for given e > 0, for all sufficiently large pn (depending on e), and for 
1 > (1/2 + e)n, there exists a primitive root of the form 0(a), where 0 is a 
monic polynomial of degree 1. 

Karacuba [18], extending the work of Burgess [5], Wang [32], and Davenport 
and Lewis [10], proves the existence of a primitive root in GF(pn) of the form 
an1 a1n-I + * * * + al a + ao, where the ai 's are bounded by p1/4+8 (for all e > 0 
and all sufficiently large p). See also the work of Friedlander [12] and Hinz 
[14]. 

The results in this paper bear on the basic issue in Computer Science of the 
power of probabilistic versus deterministic models of computation-and more 
specifically, the problem of eliminating the need for randomness in algorithms. 
Recently, there has been much work on this problem in the area of number- 
theoretic and algebraic algorithms. In this regard, we mention the deterministic 
algorithms for constructing irreducible polynomials of degree n over GF(p) in 
the papers [1, 11, 8, 26, 28]. The running times of the algorithms in [1, 11] are 
(n logp) (1), assuming the ERH, whereas the running times of the algorithms 
in [8, 26, 28] are unconditionally (np)0(1). We also mention the result of 
Lenstra [20] that isomorphisms between two different models of a GF(pn) can 
be computed in deterministic time (n logp)0(1) (unconditionally). Also relevant 
is recent work on factoring polynomials over finite fields [3, 15, 24, 23, 25, 
29, 31]. 

2. PRELIMINARIES 

As does Wang, we shall make use of a combinatorial sieve. However, we will 
use a sieve due to Iwaniec [17] that is easier to apply and gives sharper upper 
bounds. Iwaniec specifically considers a problem known as Jacobsthal's prob- 
lem, which is to estimate for a given r the maximum length C(r) of a sequence 
of consecutive integers, each divisible by one of r arbitrarily chosen primes. 
Iwaniec proves that C(r) = O(r2(logr)2). However, Iwaniec's arguments can 
easily by generalized to obtain the following: 
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Proposition 2.1 (Iwaniec's Shifted Sieve). Let F be afinite set, and let U: F -* Z 
and W: F -+ R>o. Let q1, ... , q, be distinct primes with Q = q, qua. Define 

T= E W(y) 
yEr 

gcd(U(y), Q)=1 

andfor d I Q 
Sd W(y). 

yEF 
U(y)=O (modd) 

Suppose there exist A and B such that ISd - A/dl < B for all d I Q. Then 

T > cA/(log r + 1)2 - c2r2B, 

where cl c C2 are absolute positive constants. 
Proof. We sketch here the modifications of Iwaniec's proof required to obtain 
the proposition. We can assume that r > 1; otherwise, the proposition is 
immediate. 

Assume that ql < *.. < qr . Let PI <* < Pr be the first r primes, and let 
P = PI ... Pr. Let {An: n I P} be a set of real numbers, and let Crn = EmIn Am 
for n I P. Assume that an < Emn Au(m) for all n I P, where , is the Mobius 
function. 

Lemma 1 in [17] can be easily generalized to obtain 

r=1 (2.1) T>AH I l-- GI - G2, 

where 
GI = U I( -1' G2 = E 1-n 

nIP Rpl~ln(Pi- ) G I#nIP 
Let z = Pr, and let y satisfy z2 < y < Z4. By choosing the numbers An 

appropriately (see the definition on p. 229 of [17]), the following estimates are 
derived in [16]: 

(2.2) GI = 2ek. log(s- 1) + 

and 

(2.3) G2= )' 

where s = logy/ log z and k is Euler's constant. 
By setting y = Cz2 for a sufficiently large absolute constant C (which de- 

pends on the big-'O' constant in (2.2)), from these estimates and the prime 
number theorem, one can easily show that G2 = O(r2) and GI = 92(l / log r). 
Combining this with (2.1) yields the proposition. 5 

We will make extensive use of characters on finite abelian groups. We sum- 
marize the basic facts here (see, e.g., [4, pp. 415 ff]). Let G be a finite abelian 
group. A character X on G is a homomorphism from G into the complex 
unit circle. The characters on G form a group under the multiplication law 
(X1X2)(a) = X1(a)X2(a). The character that is 1 on G is called the principal 
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character, and is denoted by Xo . It is known that the character group of G is 
isomorphic to G. Furthermore, suppose that H is a subgroup of G, and that 
H' is the subgroup of the character group of G that is 1 on H. Then it is easy 
to show that the order of H' is [G: H], and that 

E %(a) { [G:H] if a EH, 

XEH' otherwise. 

3. PROOF OF THEOREM 1.1 

Let F = GF(p). We use the following notation: 
For 1 > 0, Ml is the set of monic polynomials in F[X] of degree 1; 
For 1 > 1, I, is the set of monic irreducible polynomials in F[X] of de- 

gree 1; 
M = U1>0 Ml; 
I = U1> Ii; 
A is the Von Mangoldt function for F[X]: A(0) is equal to degP if 0 is 

a power of the irreducible polynomial P, and is otherwise equal to 0. 
We begin with the following character sum estimate. 

Proposition 3.1. Let f E Mn, and let x be a nontrivial character on (F[X] 
extended by zero to all polynomials. Then for all l > 1, we have 

Z X(E)A(6) < (n - 1)p'/2. 
OEMI 

Proof. To prove this, we use the L-function 

L(X, T) = () T 
OEM 

As written, this is a formal power series in T; however, it is easy to see that 
since x is nontrivial, it is actually a polynomial in T of degree less than n. 
Therefore, we have the factorization 

n-1 

(3.1) L(X, T) = JJ(1 -ajT), 
1=1 

where the ai 's are complex numbers. 
It is a consequence of Weil's theorem on the Riemann hypothesis for function 

fields that each ai is bounded by p1/2 in absolute value. We briefly sketch why 
this is so. 

Let g be the conductor of X (so g is a divisor of f, different from 1), and 
let x' be the corresponding primitive character modulo g. Then by Euler's 
product formula, we have 

L(% ST) =L(%l ST) ]I(1- X'(0) Tdeg 
0 

Olf 
Ojg 

where the product ranges over all monic irreducible 0 that divide f but 
not g. 



374 VICTOR SHOUP 

It follows from the discussion in Appendix V of Weil's book [33] that 

deg g- 1 

L(%', T)= J (1-/8iT) 
i=1 

if X' is nontrivial on F, and otherwise 

deg g-2 

L(X%' T) = (I1-T) (I 1- fi T), 
i=1 

where, in either case, all of the fi/ 's have absolute value equal top 1/2. This fact 
can be seen by using X' to define a character a) on the idele group for F[X] 
in the manner described in ?6 of Appendix V, with w = 1 . The conductor of 
w will contain oc to the power 1 if X' is nontrivial on F (in which case o 
is ramified at oc); otherwise, oo does not divide the conductor of c (and w 
is unramified at oc). 

We conclude that all of the as's appearing in (3.1) are either 0, roots of 
unity, or of absolute value p'!2. Now consider the formal power series 

TL'(X, 7T) =AT' 
L(X, T) 1>1 

From (3.1), it follows that 

(3.2) Al = _aI - at2 - t1 for all I > 1. 

But if we compute TL'(X, T)/L(X, T) using the Euler product formula for 
L(X, T) (see, e.g., [21, p. 196]), we obtain 

(3.3) l= Z X ()A(6). 
OEMI 

Combining (3.2) and (3.3) with the fact the a1 's are bounded by p1/2 in abso- 
lute value, proves the proposition. 5 

We are now ready to prove Theorem 1.1. Let f be the given monic irre- 
ducible polynomial of degree n . For a multiplicative character X on the finite 
field F[X]/(f), let 

J(X, 1) = ZI*x(o). 
OEII 

From Proposition 3.1 it follows that J(X, 1) = O(np1/2) if X is nontrivial, and 
J(X, 1) = pl + O(np 1/2) otherwise. 

For 0 E F[X] prime to f, let ind(6) be the discrete logarithm of (6 mod f) 
with respect to some arbitrary but fixed primitive root for F[X]/(f) . To apply 
Iwaniec's Shifted Sieve, we let pn - 1 = q'l ... 4q be the prime factorization 
of pn - 1, and set Q = qi .qr. We put r = Ij\{f}. Now for 0 E r, 
put U(6) = ind(O) and W(6) = 1, and let Sd (for d I Q) and T be the 
corresponding sums. 
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To estimate Sd, let X be a multiplicative character of order d on F[X]/(f). 
Then we have 

d-1 

Sd= j l= Z ,xi(O)l 
0EF Oe1, i=O 

ind(0)=O (mod d) 

I I 
~~~d- 1 

(%? +, + - Ej0(px 1) = O(np'/2). 
dd d 

It then follows from Iwaniec's Shifted Sieve that 

T = E l > clpl/(logr +?1)2 - c2r2pl/2n. 
OEF 

gcd(ind(0), Q)=1 

We can force T to be positive by choosing 1 so that pi > cr4(logr + 1)4n2, 
where c is a certain absolute constant. For such values of 1, the set F will 
contain a primitive root. This proves Theorem 1.1. 

4. DIRICHLET CHARACTERS IN ALGEBRAIC NUMBER FIELDS 

In this section, we establish some notation and state some results concerning 
Dirichlet characters that will be used in subsequent sections. 

A Dirichlet character modulo a positive integer m is a character on the group 
(Z/mZ)*, extended by zero to all integers. Let x > 0. For a positive integer 
k, let 

Ao(k,x)= { (log k) (l - k/x) if k is prime, 
0 otherwise. 

For a Dirichlet character X mod m, let 

J(X, x) = ZAo(k, x)%(k). 
k<x 

Montgomery [22, Chapter 13] establishes the following character sum estimate: 

Proposition 4.1. Assume the ERH. For a Dirichlet character X mod m, and for 
x > 0, we have J(X, x) = x/2 + O(xl/2 log m) for X = X0, and J(X, x) = 

O(x1/2 log m) otherwise. 

From these estimates, one can easily derive an upper bound of O((logp)2) on 
the least prime that is a quadratic nonresidue (or residue) modulo a prime p. 
This was first proved by Ankeny [2]. The following simple variant of Ankeny's 
theorem will be useful. 

Proposition 4.2. Assume the ERH. Let p be an odd prime. Then there exists a 
prime q = O((logp)2) with q 1- (mod 4) such that q is a quadratic nonresidue 
(or residue) modp. 

Proof. Consider the group (Z/4pZ)*, along with the subgroup G of index 2 
consisting of all k =1 (mod 4), and the subgroup H = G2 of index 4. Then 
we have 

S Ao(k, x) = 255x(k)Ao(k, x), 
k<x k<x X 
kEG 
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where the sum on x is over the two Dirichlet characters mod 4p that are 1 on 
G. By considering the principal character separately, and applying Proposition 
4.1, we see that 

(4.1) E Ao(k, x) = x/4 + O(X1/2 logp). 
k<x 
kEG 

A similar argument shows that 

(4.2) E Ao(k, x) = x/8 + O(x1/2 logp). 
k<x 
kEH 

It is easy to see that (4.1) and (4.2) together imply the proposition. 0 

Dirichlet characters are also defined in algebraic number fields. We first 
summarize the basic definitions (see Heilbronn [7, pp. 204 ff.] for more back- 
ground). K will denote a number field with ring of integers 0. By A we will 
denote the absolute value of the discriminant of K and by h the class number. 
For an integral ideal A, N(A) denotes its norm, and for a E K, N(a) denotes 
its norm. 

We let >J denote the group of nonzero (fractional) ideals and SD the sub- 
group of principal ideals. Let M be a given integral ideal. We let Jm denote 
the subgroup of ideals prime to M, and 9AM denote the subgroup of principal 
ideals prime to M. An element a E K is called totally positive if it is positive 
in all real embeddings of K in C. (In our application, K will be a complex 
quadratic field, and so all nonzero elements of K are vacuously totally posi- 
tive.) We let 9 m denote the subgroup of 9AM consisting of all principal ideals 
that are generated by an element a/b such that (i) a, b E 0, (ii) a, b prime 
to M, (iii) a b (mod M), and (iv) a/b is totally positive. 

One can show that [>M: 9@M] = h and that [9'M: 9m'] is finite, so that in 
particular, 4M/9@m is a finite abelian group. Let H(M) denote the character 
group of J/~9m. A function x E H(M) is known as a Dirichlet character 
modulo M. As for ordinary Dirichlet characters, we extend x by zero to all 
ideals. 

We now define character sums as in [19]. Let A be the Von Mangoldt 
function for ideals, i.e., A(A) = log N(P) if A is the power of a prime ideal 
P, and A(A) = 0 otherwise. Now for y > x > 1 and u > 0, define k(u; x, y) 
as follows: 

So if u >2 

UI log(y2/U) if xy < u < y2 
k(u; x, y) U_ I log(U/x2) if x2 <U <xy, 

0 if u < x2. 
For convenience, we define 

Al(A, x, y) = A(A)k(N(A); x, y). 

Finally, for a Dirichlet character x and y > x > 1, we define the character 
sum 

I(x, x, y) = Al(A, x, y)X(A), 
A 
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where A ranges over all nonzero integral ideals. Note that this is actually a 
finite sum, as it counts only prime-power ideals of norm less than y2. 

The following character sum estimates can be easily extracted from the proof 
of Theorem 1.2 in [19]. 

Proposition 4.3. Assume the ERH. For a Dirichlet character x mod M and for 
y > x> 1, we have 

(4.3) '(x x, y) = (log(y/x))2 + O(x-1 log(AN(M))) 
+ O(x-2 log(y/x) log(AN(M))) 

for x = X0, and 

(4.4) I(x, x, y) = O(x -log(AN(M))) 
for x $ Xo. 

5. PROOF OF THEOREM 1.2 

The prime p may, of course, be assumed to be odd. Let p2 - 1 = q 
e ... qher 

and Q = q .qr . 
First, we must find the least rational prime a- 1 (mod 4) such that -d 

is a quadratic nonresidue modulo p. Assuming the ERH, we know that the 
least such ( is O((logp)2) by Proposition 4.2 ((3 is a quadratic nonresidue if 
p 1 (mod 4), and a quadratic residue otherwise). 

Let CO = v/=F E C, and let K = Q(w). Then K is a number field with 
integers O = Z[cw], and A-= 4a. As ( > 3, the only units in 0 are +1. As 
a consequence of Minkowski's theorem, the class number h is O(A1/2 log A), 
which is 0((logp)(loglogp)). 

We shall represent GF(p2) as GF(p)(ci) , where -i) is a root of X2 + ( in 
GF(p2) . The map p: 0 -* GF(p2) that sends a + bw to a + byi is a surjective 
ring homomorphism with kernel (p). 

We will show below that under the assumption of the ERH, there exists a E 0 
with N(a) = 0(r4(logr + 1)4h2(logp)2) such that p(a) is a primitive root in 
GF(p2). It will then follow that there exist integers a, b such that a + bN is a 
primitive root for GF(p 2 ) ,where IaI 0(r2(log r + 1) 2 (log p) 2 (log log p)) and 
IbI = 0(r2(log r + 1)2 (logp) (log logp)). 

Consider the subgroup (?1) of GF(p2)*, and let ? be the canonical ho- 
momorphism from GF(p2)* onto G = GF(p2)*/(?l). Observe that G is a 
cyclic group of order (p2 - 1)/2, and that since 4 | p2 - 1, g E GF(p2)* is a 
generator if and only if 7(g) E G is a generator. For a given element u of G, 
let ind(u) denote the discrete logarithm of u with respect to some arbitrary 
but fixed generator in G. 

Now, we define T: -*p 
- G as follows. For A E Up, choose a, b in 0 

prime to p such that A = (a/b), and define T(A) = i1(p(a)/p(b)). It is easy 
to show that this definition is independent of the choice of a and b, and that 
T is a surjective group homomorphism with kernel YP7. 

It will suffice to show the existence of an integral ideal A E 9p of small 
norm such that gcd(ind(T(A)), Q) = 1. Let y > x > 1 be fixed (their values 
will be determined later). Using the notation of Iwaniec's Shifted Sieve, we let 
F = gp7, and for a E Sp7, let U(A) = ind(T(A)) and W(A) = AI(A, x, y). 
Let Sd (for d I Q) and T be the corresponding sums. 
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To estimate Sd, let 9d be the preimage of Gd under T, where Gd is the 
subgroup of dth powers in G. Then I9, is a subgroup of index d in S9p 
containing Sp . Let Hd denote the subgroup of the character group H(P) that 
is 1 on the subgroup 91dlp of Xpl.9p . Then Hd is a group of order hd, 
and for any A e Xp, 

E: (A) 
hd if Ae Ej, 

XEHd 
o 0 otherwise. 

It follows from this, and the bound (4.4), that 

Sd = Z E I(X, X, y) 
XEHd 

I(Xo, x Y) + O(x-1 log(AN(p))). 
hd 

It then follows from Iwaniec's Shifted Sieve that 

T > C(log, x 1)2 -c2r2x-l log(AN(p)). 

We now choose x and y to ensure that T > 0. From the bound (4.3), for 
an appropriately large constant c, x = cr2(log r + 1 )2h log(AN(p)) and y = 2x 
will do the job. Since log(AN(p)) = O(logp), this implies the existence of an 
ideal A of norm less than y2 = O(r4(logr + l)4h2(logp)2) such that A E .9p 
and T(A) is a generator for G. 

6. PROOF OF THEOREM 1.3 

For integer k, let ind(k) denote the discrete logarithm of k modp with 
respect to some fixed primitive root. Let Q denote the product of the distinct 
primes dividing p - 1. For a given x, one applies Iwaniec's Shifted Sieve 
using F = {k: 1 < k < x, p t k}, and for k E 1, U(k) = ind(k) and 
W(k) = AO(k, x). The proof then follows the same general line of reasoning 
as the proofs of Theorems 1.1 and 1.2: one first uses Proposition 4.1 to obtain 
an estimate for the sum Sd, and then applies Iwaniec's Shifted Sieve to get a 
lower bound on T in terms of x. We omit the details. 
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