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COMPUTATIONS OF SIEGEL MODULAR FORMS OF GENUS TWO 

NILS-PETER SKORUPPA 

ABSTRACT. We explain the basic notions and theorems for doing computations 
in the theory of Siegel modular forms of degree two, on the full modular group 
and of even weight. This synopsis concludes with a handy and computationally 
realistic algorithm for tabulating the Fourier coefficients of such forms and the 
Euler factors of their Spinor zeta functions. In the second part of this paper 
we present and discuss some of the results of actual computations which we 
performed following this algorithm. We point out two (theoretically) striking 
phenomena that are implied by the results of these computations. 

INTRODUCTION 

In 1978 Kurokawa computed explicit examples of Siegel modular forms of 
genus 2 [ 10]. These examples led to the Saito-Kurokawa conjecture whose proof 
focussed attention to Jacobi forms, which were then first studied by Eichler and 
Zagier [5]. Meanwhile, Jacobi forms have been extensively studied and, in the 
case of genus 1, they are quite well understood. In contrast to this, there are 
still many gaps in the theory of Siegel modular forms of higher genus, and even 
in the case of genus 2 many questions are still not answered: Is a Hecke eigen- 
form uniquely determined by its eigenvalues? What is the arithmetic nature 
of its Fourier coefficients? What is the relation between Hecke eigenforms and 
Galois representations? Are there Hecke eigenforms of even weight and on the 
full modular group whose first Fourier-Jacobi coefficient vanishes? What is the 
relation between the eigenvalues of a Hecke eigenform and the scalar products 
of its Fourier-Jacobi coefficients (cf. [9])? 

At the time of Kurokawa's paper it took much effort and tricky manipulations 
to produce explicit examples of Siegel modular forms at all. This was mainly 
due to the lack of computationally realistic formulas for Siegel modular forms. 
In the past decade there has been much progress in the theory of Jacobi forms, 
as well as in computer hard- and software development. Exploiting this, one 
can nowadays rather easily go beyond Kurokawa's computations and produce 
explicit examples of degree-two forms. 

The purpose of this paper is, first of all, to point out how such calculations 
can be done. Moreover, we actually did such calculations. It turned out that 
there are two striking, to our knowledge so far unobserved, phenomena, which 

Received September 21, 1990. 
1991 Mathematics Subject Classification. Primary 1 IF46, 1 1F33, 1 1F30, 1 1F80; Secondary 

65D20, 65-04. 

? 1992 American Mathematical Society 
0025-5718/92 $1.00 + $.25 perpage 

381 



382 NILS-PETER SKORUPPA 

might deserve further attention. The second purpose of this paper is to describe 
these phenomena. 

We computed the Siegel cusp Hecke eigenforms of genus 2 and even weight 
on the full Siegel modular group which do not belong to the MaaB-Spezialschar. 
The first of these forms occurs in weight 20, and for weight 20 up to weight 
32, which is the range of our computations, the dimensions of the subspaces 
spanned by such forms is 1, 1, 2, 2, 3, 4, 5, respectively. Quite expectedly, 
these Hecke eigenforms can be distinguished by their Hecke eigenvalues (even 
by the eigenvalue of T(2), the second Hecke operator), and their first Fourier- 
Jacobi coefficient does not vanish. Let T20, T22, T24a, T24b, etc. denote 
these Hecke eigenforms (suitably normalized). Then, in complete analogy to the 
case of elliptic modular forms, it turned out that for weight k = 28, 30, 32 the 
corresponding Hecke eigenforms are conjugate to each other, i.e., Tkb, Tkc, 
etc. are obtained by applying an automorphism of C to the Fourier coefficients 
of Tka. 

The first of the phenomena mentioned above is that this does not hold true for 
the two eigenforms in weight 24 and weight 26, respectively: these eigenforms 
have rational Fourier coefficients. This is striking and contradicts common 
expectation. 

The second, though less striking, phenomenon is the existence of congruences 
modulo various primes (or prime powers) between the Hecke eigenforms T* 
and Hecke eigenforms from the MaaB-Spezialschar. These congruences are triv- 
ial in the sense that they can be rather simply verified. On the other hand, they 
extend to congruences between the corresponding Andrianov (or Spinor) zeta 
functions and might have some less trivial implications in the (so far nonex- 
isting) theory of Galois representations associated with the Hecke eigenforms 
T*. 

In the course of the numerical computations we had to handle quite large 
integers at a reasonable speed (multiplication, factorization) and we needed a 
certain amount of linear algebra (multiplication of matrices, inversion, charac- 
teristic polynomials). All these computations could easily be performed using 
the software package PARI (cf. [3]). I am very grateful to H. Cohen for in- 
troducing me to this system and helping me to take the first steps in using this 
great piece of software. More extensive tables of the examples considered in 
this paper will appear in [4]. 

NOTATION 

Throughout, we shall use the following notation: 
- Z, Q, C = integers, rational, and complex numbers, IH = Poincard 

upper half plane, IF = SL2(Z) = elliptic modular group, F2 = Sp2(Z) = 

Siegel modular group of genus 2 
- Mk(F2) = space of Siegel modular forms of genus 2 and weight k on 

the full Siegel modular group F2 
- Mk(F1) = space of elliptic modular forms of weight k on the full 

modular group F1 
- Jk,m = space of Jacobi forms on SL2(Z) of index m and weight k 
- When the M or J above is replaced by S, we always mean the corre- 

sponding subspace of cusp forms 
-q = e27riT, = e2niz qI =e2XiT' (T, T E1H:, z E C) 
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- Special elliptic modular forms: 
0 4k 00 

q24 7J(1-qn), A=,,24, E2k=l1B (T2k-1(l)q 
n=1 ~~~~~~~2k1= 

(Bk = kth Bernoulli number) 
- Special Jacobi forms: 

0 =-A. -,-6 E (-1)rq(s2+r2)/4Cr 
r,sEZ 

rosmod2 

712 =,A -6 (6 E S2(l)rq(S2+r2)/4Cr-E2 E (_l)rq(s2+r2)/4r) 
r,SEZ r,SEZ 

ros mod 2 ros mod 2 

- Special Siegel modular forms of genus two: 

XIO = V(q10) , X12 = V(q$12), X14 = V(q$oE4), X16a = V(q$oE6)- 

The operator V (mapping Jacobi forms to Siegel modular forms) and the fact 
that q 1o and ? 12 are elements of SI0, 1 and S12, 1 will be explained below (cf. 
the second theorem and the proposition in ? 1). For a basic reference on Siegel 
modular forms, we refer to [6]; for Jacobi forms, cf. [5]. 

1. THEOREMS FOR COMPUTING SIEGEL MODULAR FORMS 

We are interested in Siegel modular forms of even integral weight on the full 
modular group. Any such form F has a Fourier expansion of the form 

F = E aF(n, r, m)qn4rq'm 
r,n,mEZ 

r2-4mn<O 
n, m>O 

in which only those Fourier coefficients aF(n, r, m) are possibly nonzero where 
the binary quadratic form [n, r, m] (i.e., the form nX2 + rXY + my2 ) is pos- 
itive semidefinite. Moreover, the Fourier coefficient aF(n, r, m) depends only 
on the GL2(Z)-equivalence class of the binary quadratic form [n, r, m]. Thus, 
one wants to compute the Fourier coefficients aF(Q) for all positive semidefi- 
nite GL2(Z)-reduced quadratic forms Q. The essential ingredient to tabulate 
these Fourier coefficients is the following theorem of Igusa, which describes 
the structure of the graded ring of all Siegel modular forms of even weight on 
Sp2(Z) . 

Theorem [7]. Let I4, V/6, Xio, X12 be nonzero forms in the one-dimensional 
spaces M4(F2), M6(F2), SI0(F2), SI2(F2), respectively. Then 

M2*(12) := eTM2k(F2) = C[ /4, t V6, XIO X X121 
kEZ 

i.e., the modular forms V/4, YV6, X1o, X12 are algebraically independent and any 
element of M2* (J2) can be written as a polynomial in these functions. 

According to Igusa's theorem we have to look for a good method to compute 
the lV4, .... The most convenient method is provided by the following theorem, 
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which is essentially due to MaaB. Recall that any element b of Jk, 1 has a 
Fourier expansion of the form 

? E 

C,(D)q(r2-D)I44r 
D,rEZ, 

D<O 
D=-r2 mod 4 

(cf. [5, Theorem 2.2]). 

Theorem [11]. For any integer k > 0U the map 

= z Co (D)q(r2-D)/44r F-* > a(n, r, m)qn'rqirn 
D,rEZ,D<O n,r,mEZ 

D-=r2mod 4 r2-4mn<O 

nk m>O 

a(n, r, mn) := A, ak-l, 

a2 
a(O, 

, 
O):= 

- 4k*(O), 
al(na 

r, m) 

defines a Hecke equivariant embedding 

V: As I " Mk F2)* 

It maps cusp forms to cusp forms, and Eisenstein series to Eisenstein series. 

The Siegel modular forms occurring in the image of V are called MaaJ3- 
Spezialformen. To compute such forms, we need to compute Jacobi forms of 
index 1. Via the following proposition, this is reduced to the computation of 
elliptic modular forms on the full modular group. 

Proposition [ 13]. Let 

A = ?1-6 A S2( _)rq(S2+r2)14Cr 
r,SEZ 

rAs mod 2 

= 2 + q(2Q2 - 8C + 12 - 8C-' + 2-2)+ 

B = n-6 E (-i)rq(s2 +r2)/4Cr 
r,SEZ 

ros mod 2 

=2 - C, - C,- + q(2C>2 - 8C, + 12 - 8C-1 + 2C-2)+ * 

Then, for any integer k, the map 

(fg) -kfA - q d f) B+gB 

defines an isomorphism 

I: Mk (Fl) Sk+2(F) AJk, I 

Proof. For the convenience of the reader, we sketch the short proof of this 
theorem. Set 

Z r2/44r ,Oi qr24: (P = O. 1). 
rEZ 

r=p mod 2 

In terms of these fundamental theta functions, any 0 e Jk, 1 can be written as 

=hoOo +hl,61 hp= E CO(D)q-4 (p = , 1). 
D<O, 

D-p mod 2 
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From this equation we obtain 

(ho, hi)W = (O(TI 0)I OZZz(T 0)), W =0 ('?( 0 ) o?0Z o ) ) 

where the subscript zz indicates second partial derivative with respect to z. 
But W is invertible: namely, using det(W) = 2(27ri)2q4 +69(q ), and the well- 
known transformation laws satisfied by the 6p (cf. [5, ?5]), one easily verifies 
that det(W)4 is an element of S12(rl), i.e., equals A up to multiplication by 
a scalar; whence 

det(W) = 2(27ri)216. 

Using this to write down the inverse matrix of W, we find 

1 = ( -B/2(27i)2 

Summing up, we finally have 

q(r' Z) = q0(r, O)A - 2(2 1)2Ozz(r, O)B, 

which can also be written as 

k=2fA- (qqf)B+gB, 

where 
fq 1- O(',0 

1 
OZ' 0). 

k = 0 ' g = 27ik T(T, 0) - 2(27ri)2(I~zzt L? 

From the transformation laws of q under F1 it is easily deduced that f and g 
are elliptic modular forms on the full modular groups of weight k and k + 2, 
respectively, and g is even a cusp form. Vice versa, it can be shown, using 
the transformation laws for the zp9, that the right side of the last equation for 
q always defines an element of Jk, 1 if f E Mk(Fl) and g E Sk+2(Fl). This 
completes the proof of the proposition. L 

Note that q is a cusp form if and only if f is a cusp form. Hence, the 
first Jacobi cusp forms of index 1 occur in weights 10 and 12; these are the two 
special Jacobi forms listed in Notation. In fact, one has 

q10 = I(0, -A), 012 = I(A, 0). 

Note that these Jacobi forms have integral Fourier coefficients and that they are 
normalized in the sense CQ10(-3) = CQ12(-3) = 1 . 

Moreover, the proposition and its supplement concerning cusp forms shows 
that dim Sk, I = dim Sk (Fl) + dim Sk+2 (l) = dim Mk 12 (l) + dim Mk lo(Fl). 
Since q1o and q12 are obviously linearly independent over the ring 

M* T(F) := Mk (l) = C[E4, E6] 
keZ 

(q12/q10 does depend on z), we conclude 

Sk, 1 = Mk-lO(Fl)o10 @ Mk-12(F1)/l12. 
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To sum up, by the proposition, or the last equation, we have explicit formulas 
for Jacobi forms of index 1. Via MaaB's theorem we then also have explicit 
formulas for the generators of the ring M2*(F2), namely, 

V/4= V(I(E4, 0)), V/6 = V(I(E6, 0)), X10 = V(qo10), X12 = V(012); 

hence, we have such explicit formulas for any Siegel modular form. These for- 
mulas are easily implemented on a computer to tabulate the Fourier coefficients 
of a basis of Siegel modular forms of given weight k. The only parts of this 
procedure which are computationally expensive are the multiplications of Siegel 
modular forms. To avoid some of these multiplications, it is reasonable to gen- 
erate at least the MaaB-Spezialschar of a given weight directly, i.e., by applying 
MaaB's theorem and the above proposition directly instead of writing members 
of the Spezialschar as polynomials in 14 to X12 . We followed this procedure 
for our numerical calculations (cf. ?4). 

2. HECKE THEORY 

In this section we recall the theorems concerning the Hecke theory of genus 
2 forms, which are necessary to handle and to compute Hecke eigenforms. 

Theorem [1, p. 228, Example 4.2.10]. Let k, / be integers, and 1 > 1; let 

F = i, a(Q)qn4'rq m, T(l)F = E a*(Q)qn4Crqfm 
Q=[n, r, m]>O Q=[n, r, m]?O 

where F is an element of Mk(F2) and T(l) denotes the lth Hecke operator on 
this space. Then 

k-2 k-i (ln' lr'lm] a* (Q) = x ti t2 a t2 tl ' t2 ) 
t21t1 11 VEF-O(t 1/t2)\r'12 

Q((X, Y)V)=[n', r', ml] 
t in' t2 r Ml 

where the inner sum is over a complete set of representatives V for F0( -')\Fl 
satisfying the stated conditions, and where F0(N) := (z NaZ) nr . 

We mention some special cases of the above theorem, which are important 
for our numerical computations: 

To begin with, assume that we have computed sufficiently many coefficients of 
a basis of a Hecke invariant subspace of Siegel modular forms on F2, and that 
we want to compute the Hecke eigenforms. The obvious method is to compute 
the matrix of T(p) for some small prime number p and to diagonalize it. 
Thus, one needs in particular the formula for the action of T(p) on the Fourier 
coefficients a(Q) of a given form F. By the above theorem it is easily verified 
that such an explicit formula can be given as follows: 

aT(p)F(n, r, m) = a(p[n, r, m]) + p2k3a (f[jn, r, m]) +pk2a (m, r, pn) 

k 2 1 ~~n + rv + mvy2 + p Zk-2 a ( , r+ 2mv, pm) 
v modp / 

Here, p is any prime number, and we set a(Q) = 0 if Q is not integral. 
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Secondly, assume that we have computed sufficiently many Fourier coeffi- 
cients a(Q) of a Hecke eigenform F, and that we want to compute the pth 
Euler factor of the Andrianov zeta function of F. As explained in the next 
theorem, we thus need to compute the eigenvalues Ap and ip2 of T(p) and 
T(p2), respectively. From the above theorem we find the formulas 

Apa(1 , 1 , 1) = a(p, p, p) + pk-2 (1 + (p)) a(1, 1, 1), 

ipa(p, pp)= a(p2 p2 p2)+ p2k-3a(l 1, 1)+pk-2a(l,pp2) 

+pk-2 E a(1+v+v2,p(1+2v),p2), 
v modp 

AP 2a(l, 1, 1) = a(p2, p2' p2 )+ pk-2 E a(l +v + v2, p(l + 2v), p2) 
v mod p 

1 +v+v2 = O mod p 

+P p -- ( + (P)a(1, 1, 1). 

The eigenvalue Ap can be computed from the first of these equations (if 
a( 1, 1, 1) 54 0). However, it is computationally expensive to compute AP2 di- 
rectly from the third equation, since one would need to compute a(p2, p2, p2), 
i.e., one would need to compute a Fourier coefficient a(Q) where the discrimi- 
nant of Q is of order p4. To avoid this, one should eliminate the a(p2, p2, p2) 
in the third formula, using the second one. One can go even one step further 
and eliminate then the a(p, p, p), using the first formula, so as to obtain a 
formula expressing ip2 in terms of a(1, 1, 1) and a(Q) with Q primitive 
and of discriminant -3p2. The precise formula that one obtains in this way is 

AP2a(l, 1, 1) 

= [2 _ Appk-2 1 + (p)_ p2k-3 + p2k-4 (p3 + (P3) a(l , 1 , 1) 

pk-2a(l, p p2)_ pk-2 a(1 + v + v2,p(1 + 2v), p2). 
v mod p 

1+v+v2 0 mod p 

The arithmetically interesting object associated with a Hecke eigenform is 
the Andrianov, or Spinor, zeta function: 

Theorem [1, p. 165, Proposition 3.3.35; 2, Theorem 1.3.4, Theorem 2.2.1, and 
Corollary]. The space Mk (2) has a basis consisting of simultaneous eigenforms 
for all Hecke operators T(l) (1 E N) . If F is a simultaneous eigenform with 
eigenvalues Al, then the Andrianov zeta function 

ZF(s) := 4(2s - 2k + 4) 

has an Euler product of the form ZF(s) = rJp Qp(p-S)l, where Qp(X) is a 
polynomial of degree 4: 

Qp(X) = 1 - ApX + (A2 - ip2 _p2k-4)x2 - ;pp2k-3X3+ p4k-6X4. 

Note that we can write the Euler factor Qp (X) in a more symmetric way as 

QP (X) 1 ( AP + d) X +p2k-3x2)(1 - (- d) X +p2kX), 
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where 
dp =-4p +A i~2 +p 2k-4 + 2p2k-3 

This Euler factor is said to fulfill the Ramanujan-Petersson conjecture if all its 
roots have absolute value p 3-k, i.e., if 

(AP p <d4p2k-3 

For the sake of completeness we mention the 

Theorem [2, Theorem 2.4.1 and Theorem 3.1.1; 1, Theorem 4.3.16]. The Dirich- 
let series ZF (s) is absolutely convergent for R(s) > 0. It can be meromorphically 
continued to the complex plane and satisfies 

Z (s) := (2r) 2sr(s)F(s - k + 2)ZF(s) - (-1)kZ*(2k -2- s). 

If D < 0 is a fundamental discriminant, and X a character of the group K(D) 
of positive quadratic forms modulo SL2(Z) with discriminant D, then 

ZX(Q)Z 5Q) = AL(s-k+ 2, X) 1ZF(s), 
Q 1= 

where 

L(s, X) = X(Q) Zr ), Ax = X(Q)aF(Q) 
Q 1=1 Q 

(rQ(l) = number of representations of 1 by Q). Here, the Q-sums are always 
over a complete set of representatives Q for K(D). 

3. HECKE INVARIANT SPLITTINGS 

If we write an element f of Mk(F2) in the form 
00 

F =- mqm, 
m=O 

then the (Om are known to be elements of Jk, m; the above expansion is the 
so-called Fourier-Jacobi expansion of F. The space of cusp forms Sk(F2) is 
the space of all such F with 00 = 0. This subspace is invariant under all Hecke 
operators. It contains the Hecke invariant subspace VSk . This subspace, in 
turn, is Hecke equivariantly isomorphic to S2k-2(F1) [5, ?5]. 

By a result of Oda and Evdokimov, the subspace VSk, I can be characterized 
as the subspace of Sk(F2) which is spanned by all those Hecke eigenforms whose 
ZF (s) has a pole (cf. [12]). From this it is clear that there exists one and only 
one Hecke invariant complement of VSkl in Sk(F2), namely the subspace 
spanned by all Hecke eigenforms F with holomorphic ZF (s) . We denote this 
space by Sk(F2) . 

Finally, for any elliptic cusp form f in Sk (F,) , one can form the Klingen- 
Eisenstein series 

Kf = S flk (f(,zz') :=f(), F=2,1 asin[8]). 
gE\rF2 
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and finally, by the results quoted in the preceding section, 

E0 d x2k = (-x20(l + X + X4 -X12 - X14) 

Table 1 in ?6 lists the dimensions of the first few Hecke invariant subspaces. 
The first candidate for an interesting Hecke eigenform, i.e., a non-MaaB- 

Spezialschar cusp eigenform, is found in weight 20. Since S0(F2) is one- 
dimensional, this first non-Spezialschar cusp eigenform is uniquely determined 
(up to multiplication by scalars)-we call it T20. In [10] its first few Hecke 
eigenvalues have been computed (our T20 equals - 2 times Kurokawa's X%3)). 
To write down a formula for it, we note first of all that the cusp form X 0 is 
not a MaaB-Spezialscharform: in fact, its Fourier-Jacobi expansion starts with 

IOq'2 + , i.e., its first Fourier-Jacobi coefficient vanishes, whereas the first 
Fourier-Jacobi coefficient of a MaaB-Spezialform Vq is q itself. 

Thus, X20 equals T20 plus a MaaB-Spezialscharform, i.e., T20 can be ob- 
tained by adding a suitable cusp MaaB-Spezialscharform to X20 . The subspace 
VS20,1 of Spezialscharformen in S20(F2) is two-dimensional; it is spanned by 
V(qO$E4E6) and V(q12E42). Hence, up to normalization, 

T20 z 2 Xo + aV(qO$E4E6) + bV(q12E42) 

for suitable constants a and b. To find a and b, we computed sufficiently 
many coefficients of X20, V(qO$E4E6), and V(Q12E42). Then we applied 
T(2) to these forms, using the formula for T(p) in ?2. This enabled us to 
find the matrix M, which is uniquely determined by T(2)B = MB, where 
B = (X2y0, V(qO$E4E6), V(Q12E42))t. By well-known algebra we have X(M)B = 

v * T20 with a suitable complex column vector v, where X(X) is the charac- 
teristic polynomial of the restriction of T(2) to VS20, 1 . From the formula for 
the Andrianov zeta function of a MaaB-Spezialform quoted in ?3 one verifies 
for the latter polynomial the identity X(X) = j(X + 2k-2 + 2k- 1), where j(X) 
denotes the characteristic polynomial of the Hecke operator T(2) on the space 
S38T(F) of elliptic cusp forms of weight 38. The latter can be computed by 
well-known procedures. 

The other first few Hecke eigenforms T22, T24a, T24b, T26a, T26b, ... 

of weights 22 to 32 can be found similarly. The particular results are given in 
Table 2. In Table 3 we list the first few Fourier coefficients of these forms. 

Note that Table 2 shows in particular that all the forms T22 up to T26b have 
rational Fourier coefficients. For the Hecke eigenforms in SO8(F2), SO0(F2), 
Sh2(F2), this is not true; their Fourier coefficients generate (after suitable nor- 
malization) a cubic, quartic, quintic number field, respectively. This is easily 
deduced from the fact that the characteristic polynomials H k(X) of T(2) on 
Sk(F2) ( k = 28, 30, 32 ) are irreducible over Q . These characteristic polyno- 
mials are listed in Table 5. This table also gives the prime decomposition of 
the discriminants fdk of the fields Q[X]/(Hk(X)). Note, that these discrim- 
inants contain only a small number of primes as compared to their impressive 
size. It may be worthwhile to investigate whether this is part of a more general 
phenomenon. 
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Finally, using the formulas for AP and AP2 from ?2, one can compute the 
first few Euler factors Qp(X) of the Andrianov zeta function of T22 up to 
T26b. The resulting values of Ap and dp are given in Table 4. 

We checked within the range of Table 4 that the roots of x2 - + i )X + 
p2k-3 are complex conjugate. Thus all roots of Qp(X) have absolute value 
p 2 oki.e., within the range of our computations, the eigenforms T20 to T26b 
satisfy the generalized Ramanujan-Petersson conjecture. 

5. CONGRUENCES FOR THE INTERESTING HECKE EIGENFORMS 

A Siegel modular form is said to be defined over R (a subring of C) if all 
its Fourier coefficients are contained in R, i.e., if its Fourier expansion can be 
viewed as an element of R[q, C, q']. Two Siegel modular forms which are 
defined over Z are said to be congruent modulo N (E Z) if they have the 
same image under the projection map 

Z~q, C,, q'J -D Z~q, C, q']/NZq, I, q']]. 

A similar obvious terminology will be applied to Jacobi forms, elliptic modular 
forms, and Dirichlet series. 

Using this terminology, we note the following 

Proposition. All the Siegel modular forms T20-T26b listed in Table 2 are de- 
fined over Z. One has 

aT*(l, 1, 1) = if* 20, 22, 24a, 26a, 
t3if*= =24b, 26b. 

For each of these forms the g.c.d. of its Fourier coefficients is 1. 
Proof. These assertions are easily read off from Tables 2 and 3. For the first 
assertion one uses the following obvious facts: The Jacobi forms q1o and q12 
and the elliptic modular forms occurring in Table 2 are defined over Z. The 
V-operator maps forms defined over Z to forms defined over Z. Therefore, 
all MaaB-Spezialscharformen occurring in Table 2 are defined over Z. Thus 
the T* are 6Z-linear combinations of forms defined over Z, i.e., they have 
rational Fourier coefficients with denominators at most equal to 6. That the 
denominator 6 does not really occur has to be checked case by case, using the 
fact that E4 and E6 are congruent to 1 modulo 24, and q1o and 012 are 
congruent modulo 12. The latter is immediately clear from the formulas in 
Notation. al 

This proposition, together with Table 2, immediately implies that T20 is con- 
gruent modulo 29 .32.5.7. 11 to the Spezialscharform V(012E42 + I /oE4E6), 
that T22 is congruent to a Spezialscharform modulo 25 * 3 * 5 * 7. 1423, etc. 
Even more, it is clear from the explicit formulas in Table 2 that the number 
29*32.5*7. 11 is divisible by any N such that T20 is congruent modulo N to 
a Spezialscharform, and similar statements also hold for the other eigenforms 
in Table 2. 

It is not hard to prove that congruences such as the ones just considered 
imply congruences for the Andrianov zeta functions. More precisely, one has 
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Proposition. Let N be a positive integer, and let F E VJk, 1 be defined over Z 
and such that the g.c.d. of its Fourier coefficients is prime to N. Assume that F 
is a Hecke eigenform modulo N, i.e., that T(l)F )=IF mod N for all / and 
with suitable integers Al. Then there exists an f E S2k-2(Fl), which is defined 
over Z and is a Hecke eigenform modulo N, such that 

00 

C(2s-2k+4)Z Lf(s)LE2(s-k+2) modN. 

Proof. If F is a Hecke eigenform, one has for any Q 

00 

C(2s - 2k + 4) E aT(l)F(Q)l = aF(Q)ZF(S), 

1=1 

whence 

00 

C(2s - 2k + 4) ZaT(l)F(Q)l S = aF(Q)Lf(s)LE2(s - k + 2) 
1=1 

with a suitable elliptic modular form f from M2k2(F1) . Since VJk, l has a 
basis of Hecke eigenforms, and by linearity, the latter identity is true for any 
element in VJk, I . In particular, it holds true for the F as in the proposition, 
and since aT(I)F(Q) - iaF(Q) mod N, we conclude 

4(2s - 2k + 4)aF(Q) A)1 -s aF(Q)Lf(s)LE2(s - k + 2) mod N. 
1=1 

Note that by assumption on F, and the foregoing identity, f is defined over 
Z. Since by assumption the g.c.d. of the aF(Q) and N are relatively prime, we 
deduce from the last identity the asserted one. This identity shows in particular 
that Lf (s) mod N has an Euler product, and by well-known arguments this 
implies that f is a Hecke eigenform modulo N. D 

As we saw above, the T* are congruent to Spezialscharformen modulo cer- 
tain N. These Spezialscharformen are then Hecke eigenforms modulo N, and 
their Fourier coefficients are even relatively prime (cf. Table 3), i.e., they fulfill 
exactly the assumptions of the proposition. Thus, the proposition shows that to 
each T* and its associated N, there corresponds an elliptic modular form f, 
which is a Hecke eigenform modulo N, such that 

ZT*(s) =Lf(s)LE2(s - k + 2) mod N. 

Note that this identity implies af (p) - Ap k pkl mod N where p de 
notes any prime and Ap the eigenvalue of Tk* with respect to T(p). Thus, 
given N and the first few eigenvalues Ap of Tk*, we can immediately iden- 
tify the modular form f mod N with respect to any Z-basis of the lattice of 
elements of S2k-2(Fl1) which are defined over Z. The particular f (and N) 
corresponding to the T* are listed in Table 6. 
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Note that these congruences, together with the theory of congruences for 
elliptic modular forms, imply further congruences. For example, from the first 
row of Table 6 we can deduce the congruences 

ZT20(S) LE2(S - 18)LE2(S -4) mod 5, 

ZT20(S) LE2(s'- 18)LE2(S - 3) mod 7, 
ZT20(S) -LE2(s- 18)LE4(s -2) mod I 1. 

To prove these congruences, recall first of all that for any prime p one has 
E2 - Ep+1 mod p, and that 0 =q d maps Mk(F-1) to Sk+p+1(T 1), preserv- 
ing Hecke eigenforms. Here, Mk(IF) and Sk+p+1(Fl) denote the reduction 
modulo p of the Z-modules of modular forms in Mk(IF) and Sk+p+ (]F1), 
respectively, which have Fourier coefficients in Z. From this it is immedi- 
ately clear that 02E2 mod 5, 04E2 mod 5, or 03E2 mod 7, 02E4 mod 7, or 
02E4 mod 1 1, 6E6 mod 11 are Hecke eigenforms in S38 (F) for p = 5, 7, 1 1, 
respectively. Since the latter spaces are two-dimensional (over Z/pZ ), these are 
all Hecke eigenforms in these spaces, and hence the f in Table 6 has to be con- 
gruent modulo 5, 7, 11 to one of these eigenforms (up to multiplication by 
a scalar), respectively. The particular congruences, which one finds in each of 
these cases, are just the ones listed above. 

We leave it to the reader to verify similar congruences for the other T* . 
Finally, we mention another kind of congruence which can immediately be 

read off from Table 2. Namely, if we look at the 2 x 5 matrix which has as 
rows the rows of Table 2 corresponding to T24a and T24b, then we recognize 
that the g.c.d. of its 2 x 2 minors is 4. 31. This indicates that there should 
be a congruence between T24a and T24b modulo 4 . 31, and that 4 . 31 is 
the largest integer for which such a congruence holds true. In fact, consulting 
Table 2, one easily verifies the congruence 

3*T24a=_T24b mod4*31; 

indeed, the coefficients 3 * (-25 * 32 * 5 * 7 * 11 * 157) and -27 * 3 * 7 * 132 . 83 in 
the formulas for 3 * T24a and T24b in front of X1oX14 are congruent modulo 
31, and the same is true for the corresponding coefficients in front of X 2, 
b12E2, etc. The claimed congruence modulo 4 can be verified similarly by 

using additionally that q12E62 is congruent modulo 4 to qloE42E6 . In the same 
way, it is deduced that 

3 . T26a _= T26b mod 4*37 

and that 4 * 37 is the largest integer for which such a congruence holds true. It 
is easily checked (e.g., by using the formula expressing the Spinor zeta function 
in terms of Fourier coefficients, as quoted in the last theorem in ?2 ) that these 
congruences imply corresponding congruences for the Spinor zeta functions. 
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6. TABLES 

TABLE 1 
Dimensions of Mk(F2) and subspaces for 0 < k < 50 

k Mk (F2) KSk (Fl ) VSk, I Sk (OF2) 

0 1 - - - 

2 - _ _ _ 

4 1 - - - 

6 1 - - - 

8 1 - - - 

10 2 - 1 - 

12 3 1 1 - 

14 2 0 1 - 

16 4 1 2 - 

18 4 1 2 - 

20 5 1 2 1 

22 6 1 3 1 

24 8 2 3 2 

26 7 1 3 2 

28 10 2 4 3 

30 11 2 4 4 

32 12 2 4 5 

34 14 2 5 6 

36 17 3 5 8 

38 16 2 5 8 

40 21 3 6 11 

42 22 3 6 12 

44 24 3 6 14 

46 27 3 7 16 

48 31 4 7 19 

50 31 3 7 20 
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TABLE 2 
Explicit formulas for the interesting Hecke eigenforms T20-T26b 

T20 = -29 . 32.5.7*.X11 *0+ V(02E42 + '010E4E6), 

T22 = -25.3 .5 .1423 * xIox12 

+V (---b-2E4E6 + 2j.qo0E62 + 24 . 3 . 61 * ?105A) 

T24a = -25.32*5*7* 5 1 *157 X x10(I4+ 25*3.52* 11 * 157. X2 

+V (-2-Z-12E62 2 4 .3 .67 X q12A + I 10E2E6) 

T24b =-27*3.7.132*83xIoxI14-26*3.7.132*83.X*2 

+V (24 * q12E6 + 26 . 3 . 5 . 7 - -12A-23 q10oE42E6) 

T26a = _26 * 33 * 52 * 11 * 29 X 1XOX16a - 26 * 34 * 52 * 11 * 29 X X12XI4 

+V (-'012E42E6 + 30IOE44 -25 * 32 * 31 * ?oAE4), 

T26b =-26 * 33 * 53 * 7 - 132 * XIOX16a + 25 * 33 * 52 * 72 _ 132 X12X14 

+V (523 * 012E42E6 -_2.3010E44 + 24 * 3 * 5 * 251* ? 10AE4) 

TABLE 3 
The first few Fourier coefficients of T20- T26b 

T* 1, 1,1 1, 0, 1 1, 1, 2 1, 0, 2 1, 1, 3 

T20 1 22 23 . 7 23 * 3 * 109 -3 * 11 * 1669 

T22 1 -22 - 3 26 . 3 . 7 23 33 34 * 5059 

T24a 1 -24 -23 * 11 * 23 -25*3*11*19 -3 * 11 * 23 - 563 

T24b 3 22-19 -23*7*11 -23.3.112 3*11*131*491 

T26a 1 -23 -25 * 233 24 * 3 * 317 -3 * 11 * 83 * 431 

T26b 3 22 . 31 24 * 7 * 461 -23 * 3 * 17 * 269 3 ' 2433059 
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TABLE 4 
The first few Euler factors oftheAndrianov zeta functions of T20-T26b 

ZT*(s) A=P(1 -( + d) P-s + p2k-3-2s) 
p 

* (1-)( 2P - Ps + p2k-3-2s) 

T* P | dp = -43 + Ap2 + p2k-4 + 2p2k-3 

T20 2 -28 . 32 * 5 * 73 214 . 32 . 7 . 13 . 19 . 241 

3 23 * 35 * 5 * 7 - 5099 26 . 310 . 19 * 47 * 150628997 

5 -22 * 32 * 53 * 7 . 166103087 28 32 56 . 19 * 47 * 1396135808326877 

7 24 . 52 . 73 * 673 - 28346749 28 . 36 76 29 . 1097 * 41713094306662453 

T22 2 -28 3 5 577 214 . 34 . 132 . 31 439 

3 -23 * 35 * 5 * 19 * 97 * 167 28 . 310 . 11 * 61 * 8364437759 

5 22 * 3 . 53 * 60700091989 210 * 34 . 56 * 7193 - 9888524030928593 

T24a 2 -21 * 3 . 5 * 181 220 . 32 . 7 . 17 . 61559 

3 -23 * 36 * 5 * 7 * 232 * 491 26 . 312 . 73 . 413057028823 

5 -22 * 3 . 53 * 7 * 29 . 109438961 28 . 32 . 56 . 72 . 13 * 192 . 157 - 659 

*7429333197781 1 

T24b 2 -29 . 32 . 23 . 61 216 . 32 . 5 . 112 . 97 373 

3 -23 * 36 * 2328401 26 . 312 . 5 . 112 . 132 . 1163672669 

5 22 . 32 * 53 * 1562781531383 28 32 56 . 112 . 132 * 50368985463609956441 

T26a 2 -213 * 32.5.72 224 . 32 . 859 * 5779 

3 -23 * 35 * 5 * 307 * 61091 210 . 310 . 107 * 1093 * 16123577711 

5 -22 * 32 * 55 * 13 . 37 . 293 212 . 32 . 510 . 17 - 373 - 165515489 

*1847 * 3067 *74684067301 

T26b 2 -29 * 32 * 5 * 229 216 . 32 . 7 . 67 . 163 . 33703 

3 -23 * 37 * 5 * 7 * 1061 * 1579 210 . 314 * 41 * 1153 * 594719897 

5 22 * 32 * 53 * 7 * 37 * 757 212 . 32 . 56 . 11 . 206009 

*2713 * 51713 *13183364794216242331 
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TABLE 5 
Characteristic polynomials Hk of T(2) on S? (IF2) and discrim- 
inants fdk of Q[X]/(Hk(X)) for k = 28, 30, 32 

H28 = X3 + 137681664X2 + 4794374687293440X 

+4100431555335920025600, 

fd28 = 5 *13. 73693 .1418741, 

H30 = X4 + 374036736X3 - 38240213642772480X2 

-1675860454758443227545600X 

+3326494782878021681883906048000, 

fd3O = 3 769896956241058733183, 

H32 = X5 + 2026982400X4 - 1037849863848984576X3 

-1460765778655696250606714880X2 

+ 197850685506224024897745617682432000X 

+186323642358004277344714415914598409437184000, 

fd32 = 22 .3 . 7. 170912892945636421076635084794644759. 

TABLE 6 
Congruences for the Andrianov zeta functions ZT* (s) 
LE2(s - k + 2)Lf(s) mod N 

T* f N 

T20 E45 * E6 * A + 146016E42 * E6 * A2 29 . 32 . 5 . 7 .11 

T22 E46 * E6 * A + 420024OE43 * E6 *A2 + 420024OE6 *A3 25 * 3 * 5 * 7 * 1423 

T24a E47 * E6 * A + 92736E44 * E6 * A2 + 3312OE4 * E6 *A3 25 * 3 * 5 * 11 * 157 

T24b E47 * E6 * A + 18655488E44 * E6 * A2 + 12111936E4 * E6 *A3 26 * 3 * 7 * 132 . 83 

T26a E48 * E6 * A + 507600E45 * E6 * A2 + 136944OOE42 * E6 * A3 26 * 33 * 52 . 11 . 29 

T26b E48 * E6 * A + 466020OOE45 * E6 * A2 + 2242080E42 * E6 A3 26 * 33 . 52 . 7 . 132 
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