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LEVELS OF POSITIVE DEFINITE TERNARY QUADRATIC FORMS

J. LARRY LEHMAN

ABSTRACT. The level N and squarefree character ¢ of a positive definite
ternary quadratic form are defined so that its associated modular form has
level N and character yx, . We define a collection of correspondences between
classes of quadratic forms having the same level and different discriminants.
This makes practical a method for finding representatives of all classes of ternary
forms having a given level. We also give a formula for the number of genera of
ternary forms with a given level and character.

INTRODUCTION

In this article, we consider some questions concerning the classification of
positive definite ternary quadratic forms. Our motivation is the connection be-
tween quadratic forms and modular forms which is given in the theorem below.
We first recall some notation and terminology concerning modular forms.

Define a symbol (a/b) for a, b € Z by the following conditions:

(1) (a/b) is the Legendre symbol if b is an odd prime.

(2) (a/2) = (=1)@-D8 if g is odd.

(3) (a/-1)=1ifa>0, (a/-1)=-11if a<0.

(4) (a/b) =0 if ged(a,b)>1, (1/0)=1, (a/0)=0 if a#1.

(5) (a/bc)=(a/b)-(ajc) forall b,ceZ.
If ¢ is a nonzero integer, define a function x; on the integers as follows: Let
t = qr?* with g squarefree. If ¢ = 1 (mod4),let D =q. If g = 2,3
(mod 4), let D =4q. Then x,(n) = (D/n) for all n € Z. The function g, is
a quadratic Dirichlet character with conductor |D| [11].

Let k be an integer, N a positive integer (divisible by 4 if k is odd), and

x a character modulo N. Let I'3(N) be the subgroup of SL,(Z) consisting
of all [28] with ¢ =0 (mod N). A modular form 6 is said to have weight
k/2,level N ,and character x if forall y=[25] € Ty(N) and all z € C with
Im(z) >0,

(az + b) B { x(d)-(cz+d)*/?.6(z) ifk iseven,
cz+d) | x(d)-j(y, 2)*- 6(2) if k is odd.
Here, j(y,z) = €;'xc(d)(cz + d)"/?, where ¢; = 1 or i as d =1 or 3
(mod 4). Denote the vector space of all such modular forms as M; (N, x),
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400 J. L. LEHMAN
and its subspace of cusp forms as Si/2(N, x). (See [12] or [7] for more back-
ground on modular forms, particularly those of half-integral weight.)

Theorem (Shimura [12]). Let f(xi, ..., Xn) be a positive definite quadratic
Jorm having integer coefficients. Let A be the n x n matrix

A=[ o' ]

0x;0x;

Define N to be the smallest positive integer so that NA~! is an even matrix, that
is, has integral entries, and even integers on the main diagonal. Let 0(f) = 6/(z)

be defined by
ef(z) — qu(ml,...,m,,) ,

where q = e*™Z, and the sum is taken over all n-tuples (my, ..., m,) in Z".
Then 0(f) € My,/2(N, xq), where d = det(A4) if n=0 (mod 4), d = —det(4)
if n=2 (mod 4), and d = det(A4)/2 if n is odd.

Remarks. This theorem is a special case of Proposition 2.1 in [12]. Shimura’s
proposition generalizes results of Hecke and Schoeneberg in the case when 7 is
even, and of Pfetzer when n is odd (see [12] for references). It is not hard to
see that det(4) is even if n is odd, so the discriminant d of f is an integer
in each case. In saying that x; is the character of 6(f), we mean that 6(f)
has character y such that y(a) = x4(a) if gcd(a, N) = 1. (By definition,
x(a) =0 if ged(a, N) > 1.) Suppose that g = cf, with ¢ a positive integer.
Then 6(g) has weight n/2 and level ¢N. Its character is y,; if n is even,
Xea if n is odd. As a power series in g, 6(g) is the same as 6(f) with all
exponents multiplied by ¢. So we can restrict our attention to the case where
f is primitive, that is, where the greatest common divisor of the coefficients of
f is 1. Finally, we have that if f; and f; are in the same genus of forms (see
§3), then 6(f1) — 6(/f2) € Sn2(N, xa) [10].

Attempts have been made to use quadratic forms to describe a space of mod-
ular or cusp forms of a given weight, level, and character. In formal terms, this
can be considered as a special case of the “basis problem,” which was success-
fully dealt with in [5] in the case in which the weight is an integer k > 2. Serre
and Stark [11] found bases for all spaces of forms of weight 1/2, using theta
series, which may be defined in terms of quadratic forms. In [8], the author
employed quadratic forms to construct a basis for S3/3(196, x7), in order to
fully compute the effects of the Hecke operators on this space, and the Shimura
correspondence on associated eigenforms. Obviously, it would be helpful in
this application to be able to find all primitive quadratic forms which lead to a
particular value of the level N . If n = 1, then this is trivial, as there is only one
primitive form in that case. In the case of binary forms (n = 2), this problem
is the same as that of finding all primitive forms of a given discriminant. For
if f(x1, X2) = anx}? + anpx1x, + apx} is primitive, then

2a;, an -1 1 [2022 —012}
= A = ———
4 [ ai  2ap and det(4) [—ai2 2an |’
leading to the conclusion that N = det(4) in every case.
When we look at ternary forms (n = 3), however, this is no longer the case.
For example, let
f(x1, x2, x3) = X} + 2x3 + 8x]
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and
g(x1, Xz, x3) = 3x% 4+ 11x3 4+ 11x2 — 10x3x3 — 2x1X3 — 2X1 X>.

Then 6(f) and 6(g) are both weight 3/2 forms of level 32 and trivial character.
But f has discriminant 64 while that of g is 1024.

This example illustrates another point. Extensive tables of positive definite
ternary quadratic forms, grouped by discriminant, have been compiled. In par-
ticular, the tables of Brandt and Intrau [1] list (in over 200 pages) all reduced
ternary forms with d < 1000. But, as we see above, a modular form of rela-
tively small level may arise from a quadratic form with a large discriminant.

In this article, we will consider the following question: Is it possible to find all
primitive, positive definite, ternary quadratic forms whose associated modular
forms possess a particular level? We will show that this is possible in general,
and illustrate a practical method for doing so for a large number of values of
the level.

1. TERNARY QUADRATIC FORMS

The literature on quadratic forms is extensive and highly developed. We
will take an elementary approach to the subject, focusing narrowly on positive
definite ternary quadratic forms which are defined over the integers. However,
our approach is unique in that it stresses the level throughout as the invariant
of importance for a quadratic form.

Let f be a ternary quadratic form with integer coefficients, given by the
equation

(1) fx,y,z)=ax?+by*+cz® +ryz + sxz + txy.

Unless otherwise stated, we assume that f is positive definite (that is, that
f(x,y,z) >0 for real numbers x,y, z unless x =y = z = 0) and prim-
itive (ged(a, b, c,r,s,t) = 1). (Note that we do not follow the “classically
integral” definition, which requires that r, s, and ¢ be even integers. Some
results quoted below, particularly those of Dickson [4], have been restated to
account for this difference in definitions.) We will also denote f by the array
f= (a b c) )
rst

Define the matrix of f to be
2a 't s
A=A = t 2b r .
s r 2

We will say that a 3 x 3 matrix is primitive if it is the matrix of a primitive
ternary form. Define the discriminant of f to be

det(A)
2
Let A;; be the i, j-cofactor of 4. That is,

d=d,= = 4abc + rst — ar® — bs* — ct?.

Ay = 4dbc - 12, Ay3 = st=2ar = A3,
Ay = 4ac — S2, Az = rt—2bs = Az,
A3 =4ab— 12, A =rs—2ct=Ay.
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Define the divisor of f to be the positive integer
m=my=gcd(A4i1, An, A33, 2423, 2413, 2413).

Let a = Ay /m, B = Apn/m, y= As3s/m, p=24y»/m, 0 =24;3/m, and
T =2A5/m . Define the reciprocal of f to be the ternary form

2) d(x,y,z)=ax?+ By?+yz*+ pyz + oxz + XY

It is clear that ¢ is a primitive positive definite form.
The matrix of ¢ is

20 T O A A A
2 11 21 31 2det(A4)
Ay = [ T 28 P] =— [AIZ A AszJ = m( )Afl

a p 2y Az Ay Ass

by the usual cofactor results. So A4, = %A;‘ . Notice that m divides 4d
because
4d = 2det(A) = 4a(Ayy) + t(241,) + $(2413).

Define the level of f to be the positive integer N = Ny =4d;/m,. Note that,
as in the introduction, N is the smallest positive integer such that NA;1 is
even. We can also describe the level of f as the unique positive integer N so
that NA;' is a primitive matrix.

Now consider the definitions above applied to the primitive form ¢. Since
Ay = NyA7', the discriminant of ¢ is

_det(dy) N} ooy
d¢———2——7det(Af )—Zd—f

Let my be the divisor of ¢, and let N, = 4d;/m, be its level. Let F be the
reciprocal of ¢. Then

_ 1 _ N,
Ap = NyA3' = Ny(N;A7') l=7\,§Af.

But F is a primitive form by the definition of the reciprocal. So Ar is a
primitive matrix, as is 4. Clearly, the only way in which a positive scalar
multiple of a primitive matrix can be primitive is if the scalar is 1. Therefore,
S is the reciprocal of ¢. Furthermore, we have the following important fact.

Theorem 1. Let f be a primitive, positive definite, ternary quadratic form, and
let ¢ be its reciprocal. Then f and ¢ have the same level.

Fix the following notation now. Considered as constants depending on f,
denote dy by d, my by m, d, by 6, my by u, and the common value of
Ny and Ny by N. Each of these quantities is a positive integer.

Ternary forms f and g are said to be equivalent, f ~ g, if there is a
unimodular matrix U = [u;;] so that 4, = UA,U’. (Thatis, U has integer
entries and det(U) = +£1; U' is its transpose.) In this case, the coefficients of
g can be expressed explicitly in terms of f as follows. For i =1, 2, 3, let
w; = (4;1, Uiz, U;3). Suppose that g(x;, x;, X3) = Zisj aijxixj. Then

Sw;) if i = j,
(3) a;j = AT

S +w)) = f(w) — f(w) if i # j.
Equivalent forms are said to belong to the same class. Clearly, if f ~ g, then
df = dg .
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Proposition 1. The level of a form is a class invariant. That is, if f ~ g, then
Ny=N,.

Proof. If some prime divides each coefficient of f, then by equation (3) it
divides each coefficient of g . It follows that f is primitive if and only if g is
primitive. Now NyA;! = VA4V', where V = (U’)~! is unimodular. Since ¢
is a primitive form, N ngl must be a primitive matrix. But N, is the unique
positive integer so that Ny4;! is primitive. Therefore Ny = N,. O

Corollary 1. If f and g are equivalent, then their reciprocals are equivalent as
well.

From the equations § = N3/4d, m = 4d/N, and u = 46/N = N?/d, we
see that m, u, and J are also class invariants. Notice also that mu = 4N,
m2u = 16d , and mu? = 166 . From these latter two equations we can see that
if m is odd, then 16 | 1, and if u is odd, then 16 | m. But m is odd if and
only if one of A4;;, Ay, As; is odd. This is the case if and only if one of r,
s, t is odd. If not, then it is easy to see that 4 | m. Similarly, either u is odd
or 4| u. In any case, we see that 16 | mu and thus that 4 | V.

Now suppose that f is a ternary form having a given level N . What can be
concluded about the discriminant d of such a form? First note that if p | d,
then p | ud,so p| N?> and p | N. So d cannot be divisible by any prime
which does not divide N. Let p be an odd prime and suppose that pé | N
(that is, N is divisible by p#, but not by p&+!). Suppose that p” || d. From
the fact that m = 4d/N and u = N?/d are integers, we see that g < h < 2g.
Suppose that 28 | N (so that g > 2) and that 2" || 4. We can now conclude
that n+2 > g and 2g > h, thatis, g —2 < h < 2g. But as noted in the
previous paragraph, m is either odd or divisible by 4, and likewise for . So
we seethat ## g—1 and & # 2g—1 in this case. (If f is a quadratic form in
an even number of variables, then it is known that N and 4 are divisible by
the same prime factors [9]. Note that for ternary forms, we may have d odd
although N is even.)

There is an additional restriction on discriminant values. First note the fol-
lowing result which we will use on several occasions.

Proposition 2 [4,.pp. 12-17]. Let f be a ternary form. Let m be its divisor
and u be the divisor of its reciprocal. Then f is equivalent to a form (‘: ls’ j) ,

having reciprocal (Z f Z) , S0 that a and y are relatively prime to each other
and to mu.

Lemma 1. There is no primitive ternary form f with divisor m, whose reciprocal
has divisor 1, so that m and u are both squares and either m or u is odd.

Proof. Suppose that f is such a form. We may assume that f and its recip-
rocal are as given in Proposition 2. In particular then, ¢ and y are odd and
positive, and so we may consider the Jacobi symbols (my/a) and (ua/y). By
the definition of the reciprocal, we have that my = 4ab—t*> and ua = 4fy—p>.
Since m and u are squares, it follows that

B (- (229 ()



O-6)-(#52)-6)
-6

and by Quadratic Reciprocity,
(=1)@=De-/4 = (_1)(a—1)/2(_1)(7—1)/2.

and

So

But if m is odd (and a square), then y = my = 4ab — > = —1 (mod 4). Then
it follows that

(_ 1 )(a— /2 _ _(_ 1)(a—1)/2 ,
which is impossible. There is a similar contradiction if x is odd. So f cannot
exist under these conditions. O

The divisors m and u are both squares if and only if N = mu/4 and
d = mN/4 are both squares. We summarize the above results as:

Theorem 2. Let f be a primitive, positive definite, ternary quadratic form with
level N and discriminant d . Suppose that

4) N =2"pl ... pg
is the prime factorization of N. Then no > 2 and d is of the form
(5) d =2%pft .. p

with the following restrictions on exponents:.

(1) do=no—2, do=2ng, or no <do<2n9—2, and

(2) for 1<i<k, n;<di<2n;.
Furthermore, if n; is even for 0 < i < k, then either ny < do < 2no—2, or d;
is odd for some 1 <i<k. '

In particular, we see that given a value N, there is only a finite number of
values d so that a ternary form could have level N and discriminant & . These
values are explicitly calculable in terms of N . (In the following sections, when
we write that N and d are given by equations (4) and (5), we will assume
that they satisfy the conditions on exponents which are given in Theorem 2.
In §3, we will see that there is in fact a ternary form for every level N and
discriminant d which are allowed by this theorem.)

2. CONSTRUCTION OF ALL FORMS OF A GIVEN LEVEL

Given a value d, it is possible (in theory) to find a representative of each
class of primitive, positive definite, ternary quadratic forms having discriminant
d . We sketch the method here.

Proposition 3 [4, pp. 155-179]. Let f be a ternary form given by equation (1).
Say that f is reduced if the following are true:

(1) a<b<c;

(2) r, s, and t are all positive or all nonpositive,

(3) a>|t|; a>|s|; b>|rl;
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4) a+b+r+s+t>0;

(5) a=t=>s<2r; a=s=>t<2r; b=r=1t<2s;

6) a=-t=>s5s=0; a=-s=2t=0; b=-r=1t=0;

(7) a+b+r+s+t=0=>2a+25+t<0;

8) a=b=|r|<|s]; b=c=|s|<|¢.
Then every primitive, positive definite, ternary form is equivalent to one and
only one reduced form. Also, if f is reduced and has discriminant d, then
d/4<abc<d/2.

Remark. The above criteria for a reduced form were first provided by Eisen-
stein. Other definitions are possible. " In particular, a form which is reduced
by this definition is not necessarily “Minkowski reduced,” a definition which
requires in part that r +s+¢ < a+ b in all cases [3, p. 396].

This means that there is only a finite number of possibilities for the coefhi-
cients of a reduced form having a given discriminant. In particular, if f is a
reduced form, with discriminant d , given by equation (1), then

1<a<y/d/2, a<b<y/d/2a, max(b,d/4ab)<c<d/2ab,

and either
_bSrS(), _aSSSOs _aStSOs

or
1<r<b, 1<s<a, 1<t<a.

Starting with a given value of N, we could use Theorem 2 to find the finite
collection of potential discriminants for forms of level N . For each such dis-
criminant d , the finite collection of possible coefficients could be tested. Thus,
it is theoretically possible to find all reduced forms of a given level. Of course,
the larger d is, the more potential coefficients have to be tested. Since for a
given N, a corresponding d might be as large as N2, this direct method could
become unworkable for a relatively small value of the level. However, we will
note several results which allow us to restrict this search process, thus making
it much more practical.

First note that, in some cases, we can place additional restrictions on the
potential coefficients of forms, owing to the fact that we want only forms of a
specific level. Suppose that f, given by equation (1), is a reduced form of level
N and discriminant d , having reciprocal ¢ as in equation (2). Let m = 4d /N
and u = N?/d be the respective divisors of f and ¢. Then:

(1) If m is even, then r, s, and ¢ must also be even. This is because m
is the greatest common divisor of a collection of integers including 4bc — 2,
4ac — 5%, and 4ab — 2.

(2) If u is odd, then there are restrictions on the coefficients a, b, and c.
We know that ua = 48y — p2. If a is even, then p is even, and so 4 | ua and
4| a. If a is odd, then p is odd, and ua = —p? = —1 (mod 4). So either
a=0 or a=—u (mod 4). The same is true with » or ¢ in place of a.

(3) Since m < my = 4ab — 1> < 4ab, we have that b > m/4a. (It is worth
noting that then we have ¢ < d/2ab < 2d/m = N/2. Thus N/2 is an upper
limit for the absolute values of the coefficients of a reduced form of level N,
independent of its discriminant.)
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More importantly though, we may use a collection of functions between
classes of forms having a given level to cut down on the number of discriminants
for which this coefficient-testing process must be carried out. Let C(N, d) de-
note the set of all classes of positive definite ternary forms having level N and
discriminant d. If f is a ternary form, let f denote the class to which f
belongs. Our next theorem restates some earlier results (Theorem 1 and Corol-

lary 1).

Theorem 3. There is a one-to-one correspondence between the sets C(N, d) and
C(N _,_6 ), where 6 = N3/4d . This correspondence is provided by the mapping
f— ¢, where ¢ is the reciprocal of f .

Since d and J are inversely related, we can immediately eliminate the dis-
criminants associated with N for which d > %\/ N3 . The following result
allows us to restrict our attention further.

Theorem 4. Let N and d be given by equations (4) and (5). Suppose that
p8 | N and p" || d for some odd prime p. Write d as p"d’'. Then there is a
one-to-one correspondence between C(N , p*d’) and C(N, p3¢~*td').

Before we describe this correspondence, we need the following lemma.

Lemma 2. Let f be a positive definite, primitive ternary form with level N and
divisor m . Suppose that p' || N and p’ | m for some odd prime p and positive

integer i. Then f is equivalent to a form (‘:i’j) with p' || a, p'|s and t,
p/|band r,and ptc. If 0< j < i, then we can assume that p’ || b.

Proof. By Proposition 2, we may assume at the start that f has reciprocal
(;‘,‘ A7) with y not divisible by p. Let g =ged(a, p, 27),sothat ptg. We
can form a unimodular matrix U whose first row is [o/g p/g 2y/g]. Let
A be the matrix of f. Then the first row of U4 is [0 0 N/g]. (This can
be seen from the fact that the third row of A~! is [¢/N p/N 2y/N].) So
then, if U = [u;;], the first row of UAU' is [2yN/g? uy3N/g us3N/gl.
But UAU! is the matrix of a form (‘: ls’ j) which is equivalent to f. We can

see that a = yN/g?, s = u33N/g, and ¢t = up;N/g. Since p' | N, pt g, and
pty, it follows that p’ | a and that p’|s,¢.

Since f is primitive, one of the remaining coefficients must be relatively
prime to p. It is easy to see that

achachab+c+rc

r s t r t s 2c+r s s+t)’
so we may assume that either b or ¢ is not divisible by p without affecting
the previous results concerning a, s, and ¢. If j =0, assume that p{c. The
proof is complete in that case.

If j >0, assume that p{b. Let g = ged(—r, 2b), so that p{ g. We can
form a unimodular matrix

1 0 0
U=[O —-r/g 2b/g]

0 u v
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for some integers # and v. If A is the matrix of (” b c) ,then UAU! is the

rst
matrix of (‘r’,' ’s’,' j') with @' =a, s’ =sv+tu,and ¢ =s(2b/g)+t(-r/g) (so
that our previous results hold for a’, §', and ¢'), and with
b’ =b(4bc —r?)/g* and 1 =wv(dbc —r?)/g.

The divisor m is the greatest common divisor of a collection of integers which
includes 4bc—r?, and it is easy to see that each of the other integers is divisible
by p’. So we see that p/ | b, ¢, and if j < i, then p/ || '. Since f is
primitive, p cannot divide ¢’. So the proof of Lemma 2 is complete. O

Proof of Theorem 4. Let f € C(N, p*d’). Since m = 4d/N, we may, by

Lemma 2, assume that
f= péa p"&b ¢
“\p"er  pEs pét

with a, b, ¢, r, s, and ¢ integers, p{ac. Let

(2 p2~hp  psc

P \pér  pss  p¥ht)”
Notice that f, is a primitive _forrn.__ We will show that y: C(N, p"d') —
C(N, p%-td') defined by w(f) = f, is a one-to-one correspondence. (We

may also denote ¥ by w, or y".)
If Ay and A, are the matrices of f and f,, respectively, then

p8/2 0 0
Ay, = PAgsP, where P = 0 pBe=2m/2 o |,
0 0 p8/?

So

d; = d;det(P)? = p"d'p*~ = p*~hq'.
To show that N, = Ny, note that NfAf‘p1 = P~'4,P~', where ¢ is the
reciprocal of f. With f as given, it is not hard to see that

o= ( @ p*®hg  psy
“\pfp  pfo p¥7it)”

with a, B, 7, p, 0, and 7 integers, p{afy. Then P~14,P~! isthe matrix
of

péa  phEp y

p'=¢p pta  pét)’
which must be primitive. So N fAf‘pl is primitive, and Ny = Ny by definition.
Thus f, is an element of C(N, p3¢~"d').

Next we show that  is a well-defined function. Suppose that f and F are
representatives of the same class in C(N, p"d’), and that
_( pta p"eb ¢ _( p8A p*tB C
f= (ph_gr pss pst) 4 E=\psr “pss per )

with p { acAC, and p { bB if g < h < 2g. So Ar = UA,;U" for some
unimodular matrix U. We want to show that f, ~ F,. We know that Af, =
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PApP and Ay = PAsP, so Afr, = (PUP“)Afp(PUP‘l)’ (since P = P!).
Clearly, det(PUP~!) = det(U) = £1. If we can show that the entries of
PUP~! are integers, then it is unimodular, and f, and F, are equivalent.

If U =[u;j], then one can see that

1 u121 , upp" 28 ulsp_gh
PUP™" = |uyp*8~ uzi ux3ps~
u31p®  upp" 8 U3

so we would like to show that p26=" | 5, p& | u;3, and p”~# | up;. This can
be seen by looking closely at the implications of the equation Ar = UA,U*, as
given in (3) above. For example, we have that C = f(u3;, U3z, 433), so that
C = cu?; (mod p"~8). If h > g, it follows that p { u33. Then one can show
that

p""8R =2cussuy; and psS =2cussuy; (mod ph2).

So p"~# | uy3 and p"~8 | u;3. If h =2g, then this is all that we need to show.

Suppose that 2g > h > 3¢g. We then have that

p" 8B = p"8bud, + cud; + p"Sruyus; = p"Ebu}, (mod p?),
since 2(h — g) > g. Since in this case p { bB, it follows that p { uy, . Now
pET =2p"8buypui, (mod pé),
so we see that p26~" | u;, . Finally,
péS = 2cuszu;3  (mod pé¥),
so pé|u3. So PUP~! is unimodular if 26>h>3g.

Now if & < % g, consider the reciprocals of f and F, say ¢ and ®. If
Ap = UA;U', then Ap = VA,V! with V = (U~!)!. We can show, by methods
similar to those above, that P~!V P is unimodular. But then

(P~lvp)~! = p~ly-lp=pP-U'P = (PUP7')
is unimodular, so PUP~! is unimodular.
So w" is a well-defined function from C(N, p*d’) to C(N, p4~"*d’). But

then it is clear that yw38—* provides an inverse for y”. So each such function
is a one-to-one correspondence and the proof of Theorem 4 is complete. O

There is a similar result for p =2.

Theorem 5. Let N and d be given by equations (4) and (5). Suppose that
28 || N and 2" || d. Write d as 2"d’. Then there is a one-to-one correspondence
w between C(N,2"d") and C(N, 238="=2d"). This correspondence is defined
by w(f) = fo, where we may assume that f is as given below and then define
f> accordingly:

If h=g -2, then

f= 262 b ¢ h=(2 28b 28c
“\ r 287l 281t ) 2= \2¢r 285 28t)°
If g<h<2g-2, then

282 2h-8p ¢ a 2%t 282
F=\ar-sriy 2815 26711 )0 L= \oey Toemg 22y )
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If h=2g, then

f= <23a 28b ¢ ) f= ( a b 28"2c>
T\ 28r 285 28t)° 2= \2gty 267yt )

The proof of Theorem 5 is similar to that of Theorem 4 (and Lemma 2),
with the extra care which the prime 2 usually requires. For the computational
purposes which are our focus, however, we can see that the effect of these cor-
respondences may be more easily obtained by the use of the reciprocal corre-

spondence of Theorem 3. So we will omit the proof of this theorem.
We combine and summarize the results of this section as:

Corollary 2. Let N and d be given by equations (4) and (5), and let e =
2%pft ... p,‘(”‘ . Then there is a one-to-one correspondence between C(N, d) and
C(N,e) ifforall 1 <i<k, e =d; or e, =3n;—d;, and if eg = dy or
ey = 3ng — do — 2. Thus, representatives of all classes of ternary forms of level
N can be obtained by applying a sequence of the functions y, to the classes in
C(N,d) with dy < 3ng—1, and d; < 3n; for 1 <i<k.

For example, consider N = 60 = 2%.3.5. By Theorem 2, there are twelve
potential discriminants for ternary forms of level 60. But we need only find the
reduced forms for two of them: d = 15 and d = 60. Applying the map y;
to the set C(60, 15) gives us the entire set C(60, 45). Applying s to these
two sets yields all of C(60, 75) and C(60, 225). Taking the reciprocals of all
of these forms gives us all of the elements in C(60, d) for d = 3600, 1200,
720, and 240. (We could obtain the same sets by applying the map y, at this
point.) Applying w3 to C(60, 60) gives us all of C(60, 180). We may take
reciprocals of those forms to obtain all forms in C(60, 900) and C(60, 300).
Thus, we have representatives (but not in general the reduced forms) of all
classes of ternary forms with level 60. Note that if N/4 is squarefree, then
only two discriminant values, d = N/4 and d = N, need to be considered.

The process outlined here can be effectively computed for many values of
N . Using this method, along with an algorithm for finding the reduced form
in the class of a given positive definite ternary form, the author has found all
reduced forms with level N < 1500, and all with N < 4000 for which N/4 is
squarefree (349,186 forms in all). In Table 1 in the supplement to this issue, we
present a small part of these results—the reduced forms with level N < 100.
Note that in that table, the forms are ordered so as to preserve the effect of the
w-maps defined above. That is, suppose that p¢ || N and that d = p*d’ with
ged(p, d’) = 1. If the forms listed to the right of d in Table 1 are in order
fi, ..., fn, then the forms listed to the right of d; = p3¢~"d’ (p3¢—"-24d', if
p =2) are in order ¥,(f1), ..., ¥p(fa).

3. LEVELS AND GENERA

In this section, we return to the application mentioned in the introduction,
that is, the relation between (ternary) quadratic forms and (weight 3/2) modular
and cusp forms. We first consider another classification of quadratic forms.
Two integral quadratic forms are said to be semi-equivalent if they are equivalent
over the p-adic integers for all primes p, and are equivalent over the real
numbers (see [3] or [6] for more details). Semi-equivalent forms are said to be
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in the same genus (pl. genera) of forms. Equivalent forms are semi-equivalent,
so we may speak of a class of forms as belonging to a genus.

For ternary forms, semi-equivalence can be tested as follows. Let f be a
ternary form and ¢ its reciprocal, as given in equations (1) and (2) above. Let
m and u be the divisors of these forms. We can assume, by Proposition 2,
that a and y are relatively prime to mu. If p is an odd prime and p | m,
define a symbol (f/p) to be the Legendre symbol (a/p). Similarly, if p | u,
define (¢/p) to be (y/p). If 16 | m,let (f/4) = (=1)@D/2_ If 32| m, let
(f/8) = (=1)@=D/8  Define (¢/4) and (¢/8) analogously if u is divisible by
16 or 32. We will refer to these symbols (whichever ones are defined) as the
collection of genus symbols for f.

Proposition 4 [3, pp. 378-384; 4, pp. 51, 52). Let f and g be primitive, positive
definite ternary forms. Then f and g are in the same genus if and only if they
have the same discriminant and level (and thus the same values of m and u)
and the same collection of genus symbols.

Remarks. The definition of genus symbols given here is adapted from the def-
inition of characters in [4]. That genus symbols are well defined can be shown
directly; the proof is omitted. Proposition 4 can be established by showing
that two ternary forms have the same genus symbols if and only if they have
the same p-adic symbols as defined in [3]. It can also be shown directly that
semi-equivalent forms have the same discriminant and level. Note that by
Proposition 4, it is obvious that the reciprocals of semi-equivalent forms are
semi-equivalent. Similarly, one can show that the maps of Theorems 4 and 5
are genus-preserving, that is, if two classes of forms are in the same genus, then
so are ¥, applied to those classes, as defined.

We note also a result on the existence of forms having a particular collection
of genus symbols.

Proposition 5 [6, Theorem 46]. Let m = 2"p{™" ... p/™ and p = 2"p{"* ... p/*
be two integers subject to the conditions that mg # 1 ,uo # 1, and mo+ g > 4
(Each p; is a distinct odd prime;, we do not assume that m; and u; are both
positive.) Let h (respectively n) equal +1 as m/2™ (respectively wu/2%0) is

congruentto +1 (mod 4). For i=1, ..., k, let the symbols (f/pi) and (¢/p;)
be chosen independently as +1; similarly choose (f/4), (f/8), (¢/4), and
(¢/8).

Then there is a primitive, positive definite ternary form f with reciprocal ¢
so that f has discriminant d = m?>u/16, ievel N = mu/4, and genus symbols

(1%) ifm; >0, ({;—) if mo > 4, (%) ifmo25,
(g) ifu; >0, (%) if o > 4, (%) ifio 25,

if and only if the following conditions hold:

0 (66 16 6

= (=1)7D+m(@/9+R)[4(_ 1)+ D(n+1D)/4
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and
(7) (§>=—h if mo =0, (fz"):_ if 1o = 0.

Remarks. The notation is again adapted from that of Dickson [4, pp. 51-54]. It
can be shown directly, by methods similar to those of Lemma 1, that conditions
(6) and (7) hold for any ternary form f. (Lemma 1 is in fact a special case
of Proposition 5.) The existence of ternary forms subject to these conditions
follows from Theorem 46 in [6].

If f is a positive definite ternary quadratic form of level N and discriminant
d, then 6(f), as defined in the introduction, is in M3,(N, x4). Recall that
X4 » a Dirichlet character modulo N, depends only on the squarefree part of d .
In keeping up the connection between modular forms and quadratic forms, we
will say that a ternary form f has character q if d = qr? and q is squarefree.
If f haslevel N, its character is a squarefree divisor of N/4.

If fi and f, are equivalent forms, then 6(f;) = 6(f;). Let ¢ = ¢;(N) be the
number of classes of ternary forms having level N and character g. We thus
have ¢ formsin M;3,3(N, x,). These forms might not be linearly independent,
but ¢ provides an upper limit on the number of independent modular forms
which arise directly from quadratic forms.

If f; and f, are semi-equivalent ternary forms of level N and character ¢,
then 6(f;)—0(f2) isin S35(N, x4). Let g = g,(N) be the number of genera
of ternary forms with level N and character ¢g. Of course, g < ¢ in all cases.
Suppose that a genus of forms contains »n classes, say with fi, f5,..., f, as
class representatives. Then 0(f;) — 0(f2), ..., 0(f1) — 6(f,) are cusp forms
which might be independent. Any other difference, though, is easily seen to be
a linear combination of these # — 1 forms. Thus there is a maximum of #n — 1
linearly independent cusp forms arising directly from this genus.

Now suppose that the ¢ classes of level N and character g are partitioned
into the corresponding g genera so that the first genus contains ¢; classes, the
second genus contains ¢, classes, and so on. Then the maximum number of
linearly independent cusp forms which can be constructed from these classes is

14 14
(=Dt (@=D++(g-)=) a-) l=c-g
i=1 i=1

Let 54(N) = c4(N) — g4(N).
We can calculate g,(N) for all values of N and ¢ . Firstlet g(N, d) denocte
the number of genera of forms of level N and discriminant d .

Lemma 3. Let N and d be given by equations (4) and (5). For 1 <i<k, let
r._{l ifd,~=n,-ord,~=2n,~,
T 2 ifni<d,~<2n,~.
Let r=ri+---+ry. Then g(N,d)=c-2", where c is defined as follows:
(I) If N and d are both squares, then
1 if2ny—4<dy<ng+2,
C={4 ifng+4 <dy<2ny—6,
2 otherwise.
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(I) If N and d are not both squares, then
1/2 ifng=2,dy=0o0r4,
1 ifn0=2,d0=2;no=3,do=30r4;n0=4,d0=5,
3/2 ifng=4,dy=4o0r6,
2 ifn0=5,d0=60r7;n0=6,d0=8.
If ng and dy are not among these exceptional cases, then
1 ifdy=ng—2 or2ny,
ifd0=n00r2n0—2,
ifdo=no+1, ng+2, 2ng— 4, or 2ng — 3,
ifng+3<dy<2ny-5.

o~ W

Proof. We want to count the number of different collections of genus symbols
which are allowed by conditions (6) and (7) of Proposition 5. Notice that in
that statement, some symbols are defined, and may play a part in equation
(6), which are not part of the collection of genus symbols. We will say that
a symbol is “relevant” if it is in fact a genus symbol. For example, (f/p;) is
relevant if n; < d;, and (¢/p;) is relevant if d; < 2n;. So r is the number of
relevant symbols involving the odd primes. Call these the “odd” symbols. For
the others, (f/4) (resp. (f/8)) is relevant if dy > no+2 (resp. no+3); (¢/4)
(resp. (¢/8)) is relevant if dy < 2no—4 (resp. 2ng—5).

Case 1. If N and d are squares, then so are m and u, so we have that
h=1=n. Each m; and y; is even, so equation (6) becomes
[ = —(=1)(U/9+D(@/ /4,
By Lemma 1, neither m nor u can be odd, so condition (7) does not apply
in this case. Equation (6) reduces to requiring only that (f/4) = 1 = (¢/4).
Otherwise, we see that the r odd symbols can be chosen independently, as can
(f/8) and (¢/8). So the number of possibilities for these choices is:
2" if neither (f/8) nor (¢/8) is relevant,
2.2" if only one of (f/8) and (¢/8) is relevant,
4.2" if both (f/8) and (¢/8) are relevant.

With the facts noted in the previous paragraph, and the fact that here ny and
dy are both even, we get the result of the theorem.

Case II. Suppose that N and d are not both squares. We can rewrite equation
(6) as

o ORGRIGNG)

=(- 1)((//4)+'l)((¢/4)+h)/4( 1(h+1)('7+1)/4

Note that if ny and dp are both even, then in this case we must have that n;
or d; is odd for some 1 <i < k. So then r > 0, and it makes sense to speak
of choosing r — 1 odd symbols in a particular way. (In all other cases, we do
not assume that k£ >0.)
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(1) Let dyp = np — 2. Here, (¢/4) is relevant, as is (¢/8) if ng > 3.
Neither (f/4) nor (f/8) is relevant. In this case, m is odd, so we know that
(¢/4) = —h . Equation (6) becomes

( )nol 1({)4 ”1(;55) 1)(h+D(n+1)/4,

If np is odd, then we may choose the r odd symbols as we like; the value of
(¢/8) is then determined by this equation. If ng is even, then the value of
(¢/8) plays no part in equation (6). We can choose (¢/8) and r — 1 of the
odd symbols independently. The last odd symbol is then determined. So if
ny > 3, we have r independent choices for the relevant symbols, for a total
of 2 possibilities. If ny = 2, then there are 2"~! = % - 2" possibilities for the
collection of genus symbols.

The case in which dy = 2n is the same (with f and ¢ interchanged).

(2) Let dp = ny. Here, (¢/4) is relevant if ny > 4, (¢/8) if ny > 5.
Neither (f/4) nor (f/8) is relevant. Equation (6) becomes

¢ ng k f d,-—ni ¢ d,
(62) (§) H(;) (17) = (1) (TSR gy )14
i=1 V! !

Suppose first that ny > 4. If (¢/4) = —h, then the right-hand side of equation
(6a) is (—1)*+D+1/4 "which determines the left-hand side. As in subcase (1)
above, we have r independent choices for (¢/8) and the odd symbols. (Again,
which ones we can choose depends on the parity of ny.) On the other hand,
if (¢/4) = h, then the right-hand side is +(—1)*+D#+1)/4 depending on the
value of (f/4). We have r+1 free choices for the odd symbols and for (¢/8).
((f/4) is then determined but is not relevant.) So if ny > 5, then there is a
total of 2"+ 2"+! = 3.2’ possibilities for the relevant symbols. If ny = 4, then
(¢/8) is not relevant, so the total number of possibilities is 2"~! + 2" = % .27,

Now if ng < 4, then neither (f/4) nor (¢/4) is relevant. By choosing their
values as we like, we have r free choices for the odd symbols. So there are 2’
possibilities if nyg=3 or ng=2.

The case in which dy = 2ny — 2 is the same.

(3) Let dy = np+ 1. Here, (¢/4) is relevant if no > 5, (¢/8) if ng > 6.
Neither (f/4) nor (f/8) is relevant. Equation (6) becomes

1 k 1N
O () ~cmrmmmomsapmons
i=1

By choosing (f/8) as we like, we have free choices for each of the relevant
symbols. So the total number of possibilities is 22 = 4 .27 if ny > 6,
2141 =2.27 if ng=5,and 2" if ny < 4.

The case in which dy = 2ng — 3 is the same.

(4) Let dy = ngp +2. Now (f/4) is relevant, but (f/8) is not; (¢/4) is
relevant if ny > 6, (¢/8) if ng > 7. Equation (6) becomes (6a) again. If
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nyg > 6, then choose (f/4) and (¢/4) independently. The left-hand side of
equation (6a) is then determined. There are r free choices for (¢/8) and the
odd symbols. So if ng > 7, then there is a total of 2"+2 = 4.2’ possibilities for
the relevant symbols. If ny = 6, there are 2.2" total possibilities. The cases
in which ny < 5 are already accounted for.

The case in which dy = 2ny — 4 is the same.

(5) Finally, let no+3 < do < 2no—5. Here, (f/4), (f/8), (¢/4),and (¢/8)
are all relevant. Choosing (f/4) and (¢/4) determines the left-hand side of
equation (6). We can choose r + 1 of the remaining symbols freely. The total
number of possible collections is 2/+3 = §.2".

So the proof of Lemma 3 is complete. O

Notice that the number of genera of ternary forms of level N and discrim-
inant d is positive in all cases listed. So the number of such classes must be
positive as well. This proves the remark which concludes §1.

With N given by equation (4), let g = 2%p{! -~-p,‘§" with each ¢; equal to 0
or l,and go =0 if np=2. So ¢ is a possible character for a ternary form of
level N. We can now calculate g,(N) as

&GN)=) gN,d)=> c-2,
d d

where ¢ and r are as given in Lemma 3, and the sum is taken over all d, given
by equation (5), for which sf(d) = ¢. A sum over all such d can be viewed as
a sum over (k + 1)-tuples (dy, d;, ..., d;) for which d; = ¢; (mod 2).

Let r; be given as in the statement of Lemma 3. Then we have

gq(N)=ZC-2r= Z ce2M ... M,
d

(do s ... di)

But ¢ depends only on dj (once it is determined whether Case I or Case II
applies), while 2" depends only on d;. So we can see that

g(N) =YY 2y 2%,
do d, dy

Theorem 6. Let N be given by equation (4) and let q be a squarefree divisor
of N/4. Let g,(N) be the number of genera of positive definite ternary forms
having level N and character q. Then

k
g(N) = c]@n),
i=1

where C is a constant defined as follows:
(I) If N is a square and q = 1, then

1 ifng=2,
2 ) =4,
C= fmo

2(no—4) ifmo =8
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(I) If N is not a square or q # 1, then

(2 ifng=2or3,
1 if ng = 4 and q is even,
C= 5 if ng =4 and q is odd,
6 ifng =5,
10 if ng =6 and q is odd,
L 4(ng—4) ifno =6 and q is even, or if nop > 7.

Proof. In light of the remarks above, we need only show that
ZZ"=2n,~ for i=1,...,k, and Zc=C.
d, dy

For i=1, ..., k, we will consider three cases:

(i) If n; is even and ¢; = 0, then the possibilities for d; are n;, n; +
2,...,2n;—2,and 2n;. Then r; =1 for d; =n; and d; =2n;,and r, =2
in all other cases. Notice that »n; +2 < d,; < 2n; — 2 for (n; —2)/2 even values
of d;. Thus

o =2l g ”"2—‘2(22) +2' =44 2(n; —2) =2n,
d

(ii) If n; isevenand g; =1, then di=n;+1, n;+3, ..., 2n;— 1. There
are n;/2 such values of d;, and r; = 2 in each case, so

> 2 =722Y) = 2n.

d,
(iii) Suppose that »n; is odd. If ¢;=0,then d;=n;+1,...,2n;, -2, 2n;.
If gg=1,then d;=n;, n;+2,...,2n; — 1. In either case, there is one value

of d; for which r;, =1 and (n; — 1)/2 values for which r; =2. So

doan=2"+ ""2—'1(22) =242(n;—1)=2n,.
d;
Now let ¢ be defined as in Lemma 3.

Case 1. Suppose that N is a square and that ¢ = 1 (so that d is also a square).
In particular, ny and d, are both even. If ny > 8, then there are the following
possibilities for do: ng, no+2, 2ng—4, 2ny— 2, and for (ny — 8)/2 values,
no+4 < dy < 2ng— 6. By Lemma 3, for the first four values, ¢ = 2, and for
the others, ¢ = 4. So we have that

Ro — 8

C=2+42+4242+5

(4) = 2(no — 4).
For the other values of ng, we have
np=6=dy=6,80orl0=>C=2+1+2=35,

np=4=dp=4oré6 =>C=1+1=2,
n0=2=>d0=2 =C=1.

Case II. Suppose that N is not a square or that g # 1 (thatis, N and d are
not both squares). We consider three subcases here.
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(i) Suppose that ny and d, are even, so that g is odd. If ny > 8, then
dy=n9o—2, ng, ng+2, 2ng—4, 2no—2, 2ngy, and for (ny — 8)/2 values,
ng+4 <dy<2ny—6. Then by Lemma 3,

n0—8
2

C=1+3+4+4+3+1+ (8) = 4(no — 4).
Otherwise, we have

n=6=dy=4,6,810,0or12=C=1+3+2+3+1=10,

no=4=dy=2,4 6, o0r8 :C=1+%+%+l=i
no=2=dy=0,2, or 4 ¢C=%+1+%=L

(ii) Suppose that n is even, and dj is odd, so that g is even. For ng > 6, we
have that dy = ng+1, 2n9—3, and for (no—6)/2 values, no+3 < dy < 2np-5.

Then
no

—2(8) = 4(n0 — 4).

If ng =4, then dy =5 is the only possibility, so C =1.

(ii1) Suppose that ny is odd. We will assume that dj is even; the case in
which dj is odd is similar. If ng > 7, then dy = ng+1, 2n9—4, 2n9—2,
2ng, and for (ng — 7)/2 values, no+ 3 < dy < 2ny9— 6. So then,

C=4+4+

n0—7

C=d+4+43+1+ 2

(8) = 4(no — 4).
Otherwise,

np=5=dyp=6,8,0orl10=C=2+3+1=6,
n=3=dy=4oré6 =>C=1+1=2.

This completes the proof of Theorem 6. 0O

General results concerning the values of ¢;(N) and s,(N) are not apparent.
However, combining the results of Theorems 4, 5, and 6, we can easily establish
the following:

Theorem 7. Let N be divisible by 4, and let Q = sf(N/4). Suppose that r is a
squarefree divisor of N/4 and that gcd(r, Q) = 1. Then

¢(N)=cg(N) and s.(N)=s4(N)
if q is any divisor of Q.

In particular, if each prime in the unique factorization of N/4 appears with
odd exponent, then the values ¢,(N) and s,(N) are independent of ¢q.

Using the ternary forms listed in Table 1 (see Supplements section), the au-
thor has found bases for all spaces of cusp forms of weight 3/2, level N < 100,
and quadratic character. However, for larger values of N, the quadratic form
method will not suffice in this direct way for construction of such bases. Sup-
pose that N = 4p for some prime p. (We restrict our attention to this case
because then S3,,(N, x) does not contain any nontrivial subspaces of the form
S3/2(M, x) with M < N.) It can be shown that
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(p—195)/4 ifp=1 (mod 4),

dimS3/2(N, xX) = { (p—-3)/4 if p=3 (mod 4)

if N =4p with p an odd prime, and x = x; or x = x, [2, Theorem 2; 11,
Theorem A].

In Table 2 in the supplement to this issue, we compare dimS3;(N, x4)
with our calculation of s,(N) for each N < 4000 with N/4 prime. It is
apparent that, for these values, s,(/N) does not increase as quickly as does
dim S3,5(N, x4) . Thus, the question of how useful the quadratic form method
is in constructing a basis for a space of modular or cusp forms remains unre-
solved.

1

10.

11.
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