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THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS 

JAMES H. BRAMBLE AND JOSEPH E. PASCIAK 

ABSTRACT. The purpose of this paper is to provide a general technique for 
defining and analyzing smoothing operators for use in multigrid algorithms. 
The smoothing operators considered are based on subspace decomposition and 
include point, line, and block versions of Jacobi and Gauss-Seidel iteration as 
well as generalizations. We shall show that these smoothers will be effective 
in multigrid algorithms provided that the subspace decomposition satisfies two 
simple conditions. In many applications, these conditions are trivial to verify. 

1. INTRODUCTION 

In recent years, multigrid methods have been used extensively as tools for 
obtaining approximations to the solutions of partial differential equations (see 
the references in [10, 11, 12]). In conjunction, there has been intensive research 
into the theoretical understanding of these methods (cf. [1, 2, 3, 4, 6, 9, 11, 12, 
13, 14, 18] and others). Many of the above papers present various analyses 
of multigrid methods which are often based on certain assumptions concerning 
the smoothing process. These assumptions are sometimes verified for specific 
examples. It is the purpose of this paper to present a general approach for 
developing smoothing operators and show that they work in multigrid methods 
provided that a few simple hypotheses are satisfied in the construction. For 
other estimates concerning smoothing operators in multigrid procedures, we 
refer the reader to [16] and the extended bibliography included there. 

The smoothers for a given space are defined to be either the additive or multi- 
plicative iterative scheme associated with a decomposition of the space (see (3.2) 
and Algorithm 3.1). Different smoothers result from distinct decompositions. 
Depending on the choice of subspaces in this decomposition, the technique can 
be used to generate many of the popular smoothing schemes used in multigrid 
iteration. For example, it can be used to generate point, line, and block Jacobi 
smoothing as well as point, line, and block Gauss-Seidel smoothing. 

The construction of iterative schemes based on subspace decomposition is not 
a new idea. In fact, this technique has been used extensively for the construc- 
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tion of preconditioners using overlapping domain decomposition (also known 
as Schwarz domain decomposition methods) [8, 20]. The hypotheses on the sub- 
space decomposition required in this paper for multigrid smoothers are easier 
to satisfy than those required for the construction of effective preconditioners. 
Thus, the subspace decomposition used in most smoothing procedures will not 
give rise to a good preconditioner. We illustrate this in the following discussion. 

Let Ark be a finite-dimensional space with inner product ( , *)k and consider 
the problem of computing the solution u E Ak of 

AkU = f, 

for given f E Ak. Here, Ak is a symmetric and positive definite operator on 
Ak. The additive and multiplicative versions of the smoothers are defined in 
terms of a decomposition 

Ak = EZki. 
i=1 

The basic hypothesis which is used to show that the resulting smoother is effec- 
tive in a multigrid iteration is that there exists a constant co such that every 
V E Ak can be decomposed into v = E vi with vi E X4 satisfying 

(1.1) Z(vi, Vi)k < CO(V, V)k. 
i=1 

The corresponding hypothesis which is used to show that the smoother is an 
effective preconditioner for Ak is that there exists a constant C0 such that 
every v E Ak can be decomposed into v = E vi with vi E -k' satisfying 

(1.2) Z(AkVi, Vi)k < Co(AkV, V)k- 
i=1 

In finite element discretization of second-order elliptic partial differential equa- 
tions, for functions in k4, (' *)k is often equivalent to the L2 inner product 
on the domain of consideration. In contrast, (Ak., *)k is usually equivalent to 
the norm on the Sobolev space of order one. Condition (1.1) is often trivial 
to verify for many subspace decompositions. Most subspace decompositions 
which are used as multigrid smoothers (and satisfy (1.1) with bounded co) 
satisfy (1.2) only with a constant Co which grows large as the mesh parame- 
ter becomes small. Thus, the multigrid smoother would not be effective as a 
stand-alone iterative method. 

The outline of the remainder of this paper is as follows. Section 2 describes 
the basic multigrid algorithm in an abstract setting and gives some of the con- 
ditions on the smoothers which are commonly assumed in various multigrid 
analyses. The general smoothing procedures based on subspace decomposition 
are described and analyzed in ?3. In ?4, we give theorems providing estimates 
for multigrid algorithms using these smoothers. Computer implementation of 
the smoothers is discussed in ? 5. In particular, it is shown that the commonly 
used multigrid smoothers can be generated by this technique with appropriate 
selection of the subspace decompositions. Finally, in ?6, we discuss the finite 
element multigrid application. 
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2. THE MULTIGRID ALGORITHMS 

In this section, we describe a symmetric multigrid cycling algorithm. For 
convenience, this algorithm is developed in an abstract Hilbert space setting 
and uses general smoothing operators. We then state two conditions involving 
these smoothing operators which are assumed for various analyses of multigrid. 

We start by describing the general multigrid algorithm in an abstract setting. 
We assume that we are given a sequence of finite-dimensional inner product 
spaces 

The inner product on Ak will be denoted by (' *)k . In addition, we assume 
that symmetric positive definite operators Ak: J4 @-* Ak for k = 1, ... , j and 
"interpolation" operators Ik':Ak- 1 4 Ak are given. The multigrid algorithm 
gives rise to iterative procedures for the solution of the problem on j, i.e., 
given f E j find u E #j satisfying 

(2.1) Aju=f. 

The final ingredient needed to define the general multigrid algorithm is a 
sequence of linear (smoothing) operators Rk: A4 @-* Ak, for k = 2, ... , j. 
We shall always take RI = All. The point of this paper is to present a general 
approach for the definition of these operators as well as a unified analysis for 
showing that these operators are effective in multigrid procedures. We set 

R(-) Rk if 
/ 

is odd, 
k Rt if / is even. k 

Here, and throughout this manuscript, t will denote adjoint with respect to the 
inner product (', .)k - 

We next define a general multigrid process for iteratively computing the so- 
lution of (2.1). This process is defined in the following algorithm in terms of 
a mathematical induction involving the subspace level. On each subspace 4k X 

the multigrid iterative procedure can be viewed as a process which acts on both 
a function Fk E Ok and an "approximation" Wk to the solution of 

(2.2) AkUk = Fk 

and produces an improved approximation in Ak to Uk (denoted by 
Mgk(Wk, Fk))- 

Algorithm 2.1. For k = 1, define MgI(WI, F1) = Al Fi, i.e., solve (2.2) ex- 
actly. For k > 1, Mgk(Wk, Fk) is defined in terms of Mgk-(, *) as follows: 

(1) Set X-=Wk and Q0=OE4k -I 
(2) Define Xi, for i= 1, ..., m(k) by 

(2.3) Xi- + R(i+m(k)) (Fk - AkX-1) 

(3) Set ym(k) = Xm(k) + IkQp, where Qi for i = 1, ..., p is given by 

(2.4) Qi = Mgk- I(Qi 1, Pko1 (Fk -AkX))- 
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Here, PO1 is defined by 

(2.5) (PkLv, k)k-1 = (V, IkO)k for all k E Ak-1. 

(4) For i = m(k) + 1, ..., 2m(k) define Yi by 

yi = yi-1 + R+m(k))(Fk -AkY ). 

(5) Set Mgk(Wk, Fk) = y2m(k). 

The above algorithm is more general than those often described [2, 4, 12], 
in that it allows the use of general symmetric and nonsymmetric smoothers. 
Note that we have placed very few restrictions on the definition of the linear 
operators Ak, Ik, and Rk at this time. 

The above multigrid procedure can be used to solve (2.1) by the following 
iteration, 

(2.6) -l = Mgj(u, 
1 f) , 

for initial iterate uO and I = 1, 2, . Let el = u - Ul. Then it is possible to 
show that 

el =Eye1 
holds for a linear error reduction operator Ej: Ylj "-* A . Accordingly, we can 
define a preconditioner By associated with the multigrid process by 

Bj = (I - Ej)Aj1 or Ej = I - BjAj. 

Consequently, (2.6) is nothing more than the preconditioned linear iterative 
scheme 

(2.7) ul= ul-1 +B(f - Aul1). 

Alternatively, the linear operator Bj can be directly defined by the following 
algorithm. 

Algorithm 2.2. Set B1 = AT1. Assume that Bk-l has been defined and define 
Bkg for g E Ok as follows: 

(1) Set x0 = 0 and qO = 0. 

(2) Define xi for i= 1, ..., m(k) by 

(2.8) xi =xi- I + Rki+m(k)) (g -AkXi- I) 

(3) Define ym(k) = Xm(k) + IkqP, where qi for i = 1, ..., p is defined by 

(2.9) qi = qi- I + Bk- I [Pk?_ I (g -AkXm(k)) -Ak- Iq- ]- 

(4) Define yi for i =m(k) + 1, ..., 2m(k) by 

(2.10) Y i Yi-I + Rki+m(k)) (g -AkYi 1) 

(5) Set Bkg = y2m(k). 

In the above algorithm, we alternate between Rk and RI in Step 2. In Step 
4, we use the adjoints of the Step 2 smoothings applied in the reverse order. This 
results in a symmetric operator Bj. This form of the multigrid algorithm has 
been suggested in [5]. Nonsymmetric multigrid procedures which, for example, 
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do not include the smoothing of Step 4 have also been analyzed [4, 11, 12], 
etc. The hypotheses required on the smoothing operators are exactly the same 
as those used in the symmetric case. 

There are two standard conditions concerning the smoothing operators which 
are often assumed as hypotheses in the analysis of multigrid algorithms. To 
describe these, we first define Kk = I - RkAk and note that Kk, = I - RtAk- 
Here, and throughout this paper, * will denote adjoint with respect to the inner 
product (Ak., *)k - 

(C. 1) There is a constant CR which does not depend on k such that the 
smoothing procedure satisfies 

(2.11) IIUInk < CR(RkU, U)k for all u E Ak. 

Here, Rk is either (I - Kk*Kk)Ajl or (I - KkKk*)Ajl, Ak is the 

largest eigenvalue of Ak, and 11 2Ik denotes the norm corresponding to 
the inner product (., .)k - 

(C.2) Let Tk = RkAk. There is a constant 6 < 2 not depending on k 
satisfying 

(2.12) (Ak Tkv, TkV)k < O(AkTkV, V)k. 

The point of the present paper is to define general smoothing procedures and 
prove estimates of the form of (2.1 1) and (2.12) under simple hypotheses. 

We shall state some convergence estimates from [5, 7], and [9] for Algorithm 
2.2 in a later section. The following remarks show that the above two conditions 
are used in other multigrid theories as well. 

Remark 2.1. Let Rk, , correspond to the Richardson smoothing iteration de- 
fined by Rks = w<- 'I and Kk,( = (I - Rk,,Ak) be the corresponding re- 
ducer. Inequality (2.1 1) in the case of Rk = (I - Kk*Kk)Ak-l can be rewritten 
as 

(2.13) (AkKkU, KkU)k < (AkKkwU, U)k for all u E4k, 
with w = 1 / CR . This means that the smoothing process applied to any u E Ak 
converges as fast as Richardson's method for some co E (0, 1). A hypothesis 
of the form of the above inequality was essentially used in [5, 14] and [ 1 5]. The 
Richardson method is perhaps the most natural smoothing procedure. 

Remark 2.2. The following condition on the smoothing operator is used by 
Bank et al. (see [12, (4.6)]): There is a positive constant c satisfying 

(2.14) IIAkKkUII2 <c(Ak(I - Kk*Kk)u, U)k for all u E Ak. 
Ok 

Note that for the appropriate definition of Rk, (2.1 1) can be rewritten as 

(2.15) kVI1k < CR(Ak(I-KkKk )V, V)k for all v E14k. 

We shall show that (2.15) implies (2.14). Indeed, taking v = Kku in (2.15) 
gives 

ItAkKkutIk < CR(Ak(I-Kk)KkU, U)k 

. 
, 
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where Kk = Kk*Kk . Note that the spectrum of Kk is in [0,1), and hence 

(Ak(I- Kk)KkU, U)k < (Ak(I - Kk)U, U)k = (Ak(I - Kk*Kk)u, U)k. 

Combining the above two estimates proves (2.14). 

3. GENERAL SMOOTHING PROCEDURES IN MULTIGRID ALGORITHMS 

In this section, we shall define smoothing operators in terms of subspace 
decompositions. These procedures are related to overlapping domain decom- 
position and the classical Schwarz method and are generalizations of Jacobi 
and Gauss-Seidel iteration procedures. In this section, we shall show that the 
hypotheses (2.11) and (2.12) will follow from scaling, when appropriate, and 
an easily verified function decomposition inequality. Explicit examples provid- 
ing such decompositions in the case of finite element multigrid applications are 
given in a later section. 

The technique which we shall study for developing smoothers involves the 
use of a variant of overlapping domain decomposition. These methods are also 
referred to as "Schwarz overlapping" methods. We shall develop a smoother for 
the problem on Ak. One starts with a decomposition of the space, 

(3.1) A 'Oki 
i=l 

This sum may or may not be a direct sum. 
Given the decomposition (3.1), there are two types of smoothers which can 

be defined. The first will be called the additive smoother and is defined by 

(3.2) Rk = ZAk- iQk- 
i=l 

Here, Ak, i : 4ki |-*4ki is defined by 

(Ak, iv x)k = (AkV 5x)k forallX Edk 

and Q: k H-eki is the projection onto 4ki with respect to the inner product 
()k . In addition, y is a positive scaling factor which will be chosen later. We 
note that Rk is a symmetric operator with respect to the inner product (, .)k . 
Implementation issues involving the above smoother will be discussed in a later 
section. 

To analyze the additive algorithm, we shall use a limited interaction hypoth- 
esis. To describe this property, we first introduce the projection Pk d4k @ ki 
defined by 

(AkPkv, x)k = (AkV, x)k for all X E Ai. 

We then define 
f0 if Pk pkm = 0 

Kim-i 1 otherwise, 

and set 

no = max Z Kim. 
m=1 
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In our applications, no remains small, even when / becomes large. Note that 
the matrix {ICim} is symmetric. 

We shall use the following two conditions: 
(1) The subspaces satisfy a limited interaction property, i.e., 

(3.3) no < cl, 
with cl independent of k. 

(2) There exists a positive constant co not depending on k such that for 
each u E Ak, there is a decomposition u = _ us with uj E AK' 
satisfying 

(3.4) ZEIIuiII2 ? Co IIUII< k 
i=l 

In applications, the above conditions are often trivial to verify. Moreover, 
under these hypotheses, we can prove the following theorem. 

Theorem 3.1. Let Rk be defined by (3.2) and assume that (3.3) and (3.4) are 
satisfied. Let 0 E (0, 2) and set y = 0/ci . Then (2.12) holds, and (2.1 1) holds 
with CR = cocll[0(2 - 0)]. 

Before proving the theorem, we prove the following lemma [8]. 

Lemma 3.1. Let no be defined as above and uj, Vi E Ok4 for i = 1,... ,1. 
Then 

2 
1~~ ~ ~~~ 1n2 (A 1~ 

mk (3.5) E (AkUi, Vm)kI | <l no(Akui, Ui)k (Aksm, Vm)k. 
i, m=l / ilm=l 

Proof. We note that 

_ I (Akui, Vm)kI) = ( IE KmI(AkUi a Vm)kI) 

2 l 

?<V Kim(AkUiUi)k E Kim(AkVmVm)k 

im=1 im=1 

1 1 

? n 2(Akui, Ui)k E(AkVm X Vm)k. 
i=1 m=1 

This completes the proof of the lemma. 

Proof of Theorem 3.1. We first show that 

(3.6) IIUIk < coy- (Rku, U)k for all u E 4k. 
Ok 

Let u = ui be the decomposition of (3.4). Then 
1/2 1/2 

IIUII2 = Z~uz,2Q, II ?i U(12 
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Hence, 

(3.7) ||uIIk ? CO Z COQYuIIk. 
i=1 

Now, it is immediate from the definitions that the largest eigenvalue of the 
operator Ak, i is bounded by )k . Consequently, 

1 1 

(3.8) Z IIQkuIk< ?k 1k(Ak iQkui U)k = )ky (Rku, U)k. 

Combining (3.7) and (3.8) proves (3.6). 
We will show that the spectral radius of Tk = RkAk is less than or equal to 

0 provided that we take y = 0/cl . Let us temporarily assume this. Note, that 
Rk is a symmetric operator in the (' *)k inner product. By (3.6), it is also 
positive definite, and hence its square root is well defined. We then have for 
U E X'k, 

(RkU. U)k = ((2Rk -RkAkRk)u U)k 

(3.9) ((2I - R 1/2A l/2 )RV12 R 12 

> (2 - 0)(Rku, U)k- 

The theorem follows combining (3.6) and (3.9), once we provide the desired 
estimate for the spectral radius of RkAk. 

Let vi = Pk'u. By the definition of Rk and the identity QkAk = Ak iPk, 

(AkRkAkU U U)k = Y Z(AkVi, Vi)k = Y k E i k 

(3.10) 1k / 1/2 

< Ak E Vi E Vi)) ((AkU, U)k) I 

Applying Lemma 3.1 proves the desired bound, i.e., 

(3.11) (AkRkAkU , U)k < O(AkU, U)k- 

This completes the proof of the theorem. 

Remark 3.1. The overlapping domain decomposition techniques (e.g. (3.2)) can 
be used directly to develop preconditioners for the operator Ak (see [8]). How- 
ever, in this case the subspaces must be chosen in a much more restricted way. 
To prove that the additive preconditioner (3.2) provides a good preconditioner, 
one replaces (3.4) by the existence of a decomposition satisfying 

(3.12) Z(AkUi, Ui)k < CO(AkU, U)k- 
i= 1 

As we shall see from later examples, it is much easier to construct subspaces 
satisfying (3.4). In general, the subspaces used for developing smoothers will 
not satisfy (3.12). 
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Remark 3.2. An obvious alternative to hypothesis (3.3) in the case of Theorem 
3.1 is the assumption that 

(3.13) Z(AkPku, Pku)k < cl(Aku, U)k for all u E Ak. 
i=1 

With such an assumption, (3.1 1) follows immediately from the first equality of 
(3.10) and provides a simpler proof. However, the limited interaction condition 
was introduced because it is also used for the analysis of the mulitplicative 
algorithms to be subsequently described. 

Remark 3.3. When developing preconditioners (instead of smoothers), it is of- 
ten important to include a "coarse" subspace lk? which interacts with all of 
the other subspaces, i.e., KOk : 0 for all k. This is not necessary in the case of 
smoothers. However, it would still be possible to analyze the resulting algorithm 
using the above arguments and those presented in [8]. 

We define the multiplicative smoother based on the above subspace decom- 
position of Jk in the following algorithm. 

Algorithm 3.1. Let f E .k . We define Rkf E Ak as follows: 

(1) Set vo = 0. 
(2) Define vi for i= 1, ...,l by 

(3.14) vi=vi_1+A-1 Qk(f-Akvil) 

(3) Set Rkf= v1. 

It immediately follows from the identity Ak, iPk = QiAk that 

(3.15) Kk = (I Pk (I PO 
That is, the error propagator associated with the smoother defined by Algo- 
rithm 3.1 is a product of orthogonal projections onto the complements of the 
subspaces. The next theorem provides an estimate for (2.11) and (2.12) with 
this definition of Rk . 

Theorem 3.2. Let Rk be defined by Algorithm 3.1 and assume that (3.3) and 
(3.4) hold. Then (2.1 1) holds with 

(3.16) CR = (2co(1 + c2)) 

In addition, (2.12) holds with 0 = 2cI/(c, + 1). 
Proof. The proof of this theorem uses techniques of [8]. First, we define the 
operator 

(3.17) Ei = (I -Pki)(I -Pki-1) (I -POl 
for i = 1, , 1. For convenience, we let Eo= I and note that El = Kk. 

We will prove inequality (2. 1 1) for Rk = (I - Kk*Kk)Aj- l by proving the 
equivalent inequality (2.13). Note that E; is obtained by reversing the order 
of the factors in (3.17). With this observation, it is possible to use the same 
proof for the case of Rk = (I - KkKk*)Aj-1. 

We shall first derive some identities involving the above operators. We clearly 
have for i = 1, ...,l, 

(3.18) Ei- -Ei = PkEi1, 
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from which it follows that 

(3.19) I-E1 = PkmEm-1. 
m=1 

It is obvious from (3.18) that for v E A4, 
(3.20) (AkEi 1v, Eilv)k - (AkEiv , = (AkP Ejlv, P'Ei-1V)k- 

Summing (3.20) gives that 

(3.21) (AkV, V)k -(AkElV, EV)k= (AkPkEi-1v, E1v)k 
i=l 

We note that (2.13) can be rewritten as 

(3.22) (oA-1 IIAkvI11 < (AkV, V)k - (AkElv, Elv)k- 

But, by (3.7), 

IIAkv ilk < Co I1QkAkv 11 
i=l1 

1 k 

= c Z(Ak, iPkV, Ak, iPkV)k < COck Z(AkPkv, PkV)k- 
i=1 i=1 

Hence, (3.22) will follow if we can show that 
1 1 

(3.23) Z(AkPkv, PkV)k < 2(1 + c2) Z(AkPkEi-1v, Eilv)k. 
i=l i=l 

It is shown in [8] that (3.23) holds under assumption (3.3) (cf. inequality (2.23) 
of [8]). 

We include the proof of (3.23) for completeness. By (3.19), 
i-i 

(3.24) (AkPkv, V)k = (AkPkv, Ei-1v)k + (AkPkiv, PkmEm-1V)k. 
m=1 

Summing gives 
I I I i-l 

Z(AkPkV, PkV)k = Z(AkPkV, P5Ei V)k + Z 
Z(AkPkv, PkmEm-1V)k. 

i=l i=1 i=1 m=1 

Thus, by the arithmetic-geometric mean inequality and Lemma 3.1, 
1 2 1 1 

(Z(AkPkiV , PkV)k) < 2 {Z(AkPkiV , PkVX)k Z (AkPkEij-1v E-IV)k 
i=l i= i=1 

+ [_E I(AkPkiV, PkmEm-lV)kl]} 

1 1 

<2(1 + nO) (AkPkv, Pkv)k (AkPkiEi-V, EIV qV)k. 
i=1 i=1 

This completes the proof of (3.23). 
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Finally, we provide the estimate for 0. Note that for u E Ak, by Lemma 
3.1, 

(AkTku, Tku)k = (Ak (I -El)U, (I-El)u)k = Z (AkPkEi-1lU, PkEm-1U)k 
i,m=1 

< noZ(AkPkEi-lu, Ei-lu)k. 
i=l1 

Applying (3.21) gives 

(3.25) (AkTku, TkU)k < no[(AkU, U)k - (AkElu, Elu)kI 
= no[2(AkTkU, U)k - (Ak TkU, TkU)kI- 

This shows that (2.12) holds for 0 < 2no/(no + 1) and hence completes the 
proof of the theorem. 

Remark 3.4. We note that Theorem 3.1 provides the estimate CR = coac for 
(2.1 1) when 0 = 1 and the smoother is defined by (3.2). In contrast, Theorem 
3.2 provides the estimate CR = 2co(l + c2) when Algorithm 3.1 is used. This 
suggests that the additive version may work better in practice. As far as we 
know, this is not the case. In all of the examples which we have considered, nu- 
merical evidence suggests that the multiplicative smoother always works slightly 
better than the additive smoother using the same subspaces. 

4. CONVERGENCE ESTIMATES FOR MULTIGRID ALGORITHMS 

In this section, we apply the results of the theorems of the previous section 
to get convergence for multigrid Algorithm 2.2. We make no attempt to survey 
all possible applications but, instead, provide the theorems to illustrate the type 
of convergence results available utilizing the estimates on the smoothing oper- 
ators provided by Theorems 3.1 and 3.2. Modifying a proof given in [9], we 
also provide a "no-regularity" convergence estimate in the case of the product 
smoothing operator defined by Algorithm 3.1. 

As observed earlier, the multigrid process gives rise to the iterative reduction 
matrix I - BjAj, where By is given by Algorithm 2.2. Thus, bounds for the 
iterative convergence rate of either (2.6) or (2.7) follow from norm estimates 
for the operator I - BjAj . Alternatively, one can use the operator By directly 
in a preconditioned iteration for the solution of (2.1). Since Bj is symmetric in 
the inner product (., .)j (cf. [5]), bounds for preconditioned iterative schemes 
follow from estimates for the condition number K(BjAj), which is defined to 
be the ratio of the largest eigenvalue of BjAj to the smallest. 

We start by illustrating the convergence and preconditioning results for Algo- 
rithm 2.2 under the following regularity and approximation hypothesis: There 
exists a fixed number a E (0, 1] and a positive constant Cc, which does not 
depend on Ak such that for k = 2, ..., j 

(4.1) I(Ak(I-IkPk1)U, U)k ? CR (- a k) (AkU, U)kl a for all u E 4k. 
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Here Pk-l: k 
4 

F- Ak- is defined by Pkjv = w, where w is the unique 
function in 4k-1 satisfying 

(Ak-1W, q)k-1 = (AkV, Ik'k)k for all q E 4k-1. 

The following two theorems are a consequence of Theorems 3.1 and 3.2 and 
the results in [5]. The first gives estimates for the reduction operator I-B1Aj in 
the norm I I I I = ((A1., .)j)1/2. The second gives estimates for the condition 
number K(BjAj). 
Theorem 4.1. Let Rk be defined by either (3.2) or Algorithm 3.1 and assume 
that (4.1), (3.3), and (3.4) hold. Furthermore, assume that 

(AkIkv,Ikv)k < (Ak-1v,V)k-1 for ally vE 4 . 

Let By be defined by Algorithm 2.2 with p = 1 and m(k) = m for all k. Then 

(4.2) 111(I - BjAj)vj j111 ? 31jv1 j for all v E 1j, 

where 
M j(1-a)/at 

Maj(1-a)/a + ma 

If instead, m(k) satisfies 

(4.3) /Jom(k) < m(k - 1) < /lim(k) 

(/Jo and /hl are constants which are greater than one and independent of k), 
then (4.2) holds with 

Mot 
Mo + m(j)> 

The constant M. above is independent of j. 

Theorem 4.2. Let Rk be defined by either (3.2) or Algorithm 3.1 and assume 
that (4.1), (3.3), and (3.4) hold. Let By be defined by Algorithm 2.2 with p = 1 
and {m(k)} satisfying (4.3). Then K(BjAj) < qlq/o, where ro and 'li are 
given by 

and 
-a _ MoMWjC 

i.e., the system BjAj is well conditioned independently of j. 

Multigrid is often applied to sequences of operators approximating the so- 
lution of an elliptic partial differential equation. In this case, the validity of 
(4.1) is inherently related to the regularity properties of solutions of this par- 
tial differential equation. Alternative hypotheses which avoid these regularity 
assumptions have been used to provide multigrid results (see [7, 8, 9]). These 
are as follows: 

(1) The subspaces Xlj, ... , 4j are nested and the operators are inherited, 
i.e., k-IC k and 

(4.4) (Akv, V)k = (Ajv, v)j for all v E 4k. 
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(2) There exists a sequence of linear operators Qk: ) - k for k = 

1, ... , j, with Qj = I satisfying the following properties. There are 
constants Cl and C2 not depending on k for which 

II(Qk -Qk- I)UlI1 < CIA- A(u, u) for k = 2,..,j 
A(Qku, Qku) < C2A(u, u) for k = 1, ... 1-1. 

The inequalities in (4.5) hold for all u E 17). Inequalities of the form 
of (4.5) can be verified without the use of elliptic regularity estimates 
(see [7]). 

The hypotheses required for the smoother in the case of the "regularity-free" 
estimates are less stringent. Loosely, the smoother Rk need only "smooth" on 
a subspace of Ak containing the image of Qk - Qk- I. To this end, let 4k be a 
subspace of Ok which contains the range of the operator Qk - Qk- . Assume 
that we are given a decomposition 

(4.6) ik 'Ok 
iz:1 

satisfying assumptions (3.3) and (3.4) (with Ak replacing k4). Let Rk: A F 

4k be defined by either (3.2) (with y = 1/cl ) or Algorithm 3.1 using these 
spaces. In addition, set Rk = RkPk0: A4 F-* 1k, where Pk, denotes the (-, *)k 

orthogonal projection onto Ak. Note that Theorems 3.1 and 3.2 provide esti- 
mates for a constant CR satisfying 

(4.7) k < CR(RkU, U)k for all u E . 
Ok 

Here, 

(4.8) Rk = Rk + Rk-RkAkRk, 

where Ak: k ;k is defined by 

(AkV, 'k)k =(AkV, k)k forall E Ak. 

The following theorem provides estimates for the rate of convergence of the 
multigrid algorithm with this Rk under the above assumptions. The proof in 
the case of (3.2) follows directly from results in [9] and Theorem 3.1. The proof 
of the theorem in the case of Algorithm 3.1 is a modification to that given in 
[9]. A somewhat more restricted result in the case of nonsymmetric Rk (also 
based on [9]) was given in [19]. 

Theorem 4.3. Assume that (4.4) and (4.5) hold. Let Rk be defined as above and 
assume that (3.3) and (3.4) hold with ik replacing Ak. Let Bj be defined by 
eitherAlgorithm 2.2 or the nonsymmetric smoothing (with corresponding operator 
denoted by Bj) version (see [9]). Then (4.2) holds with c5 = j?, where 

(4.9) 1 - I 
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and C = [(1+C2/2)(2c1) 1/2+(CRC1)1/2]2. The constant CR satisfies (4.7) and is 
provided by either Theorem 3.1 or Theorem 3.2. In the case of the nonsymmetric 
smoothing version, 

(4.10) jj(I - BjnAj)vIII j ? j3jIjvIII j for al/v E 4'j. 
Proof. For the purpose of this proof, we shall let A(., *) = (Aj., .)j. We need 
only prove the result in the case of nonsymmetric Rk . Moreover, we shall prove 
the result for p = 1 . The results for higher p follow from arguments given in 
[9]. 

First of all, it was observed in [9] that under the above assumptions, 

(I - BjAj) = (I - B7Aj)*(I - BjnAj), 

where Bn denotes the multigrid operator which involves smoothing only before 
correction. Set 

{ (K*Kk)m(k)/2 if m(k) is even, 
K(m~k) l (K;Kk)(m(k)1)/2Kk* if m(k) is odd. 

It was also observed in [9] that for Tk = (I - (K(m(k)))* 

(4.11) (I-B7Aj)* = (I-Tj)(I-Tjl) ...(I-T). 

We use a product analysis similar to that used in Theorem 3.2 and also Theorem 
1 of [9]. To this end, we set EO = I and 

Ek = (I-Tk)(I-Tk-l) ... (I-T1 ) = (I-Tk)Ek-l. 

As in the proof of Theorem 3.2 (compare with (3.21)), 

I 
A(u, u) -A(Eju, Eju) = [A(Ek-lu, Ek-lu) -A(Eku, Eku)] 

(4.12) k=1 

- Z A((2I- Tk)Ek- I u, TkEk- I u). 
k=1 

Note that I - BjnAj = Ej*, and hence inequalities (4.2) and (4.10) will follow 
if we can show that 

A(u, u) < C(j - 1)[A(u, u) -A(Eju, Eju)] 

(4.13) iI 
= C(j-1) L A ((2I - Tk)Ek- I U, TkEk- I U). 

k=1 

Proceeding as in [9], we use the fact that Qj = I and write 

I 
U=Z(Qk-Qkl)u+QlU. 

k=2 
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Thus, 
I 

A(u, u) = A(u, (Qk - Qk- )u)+ A(u, Qiu) 
k=2 

i 

(4.14) = A(Ek-1u, (Qk - Qk-l)U)+ A(u, Qlu) 
k=2 

J 

+ Z A((I - Ek-l)u, (Qk - Qk-1)U)- 
k=2 

For the the first sum on the right-hand side of (4.14), we see that 

i i 

Z A(Ek- 1 u, (Qk - Q 1-i)U)= Z A(PkEk-IU, (Qk - Qk-1)U) 
k=2 k=2 

I 
= Z(P0AkPkEk-1u, (Qk - Qk-1)U)k 

k=2 
I 

? j IIP2AkPkEk-1UlIkII(Qk - Qk-1)Ullk- 
k=2 

Applying (4.5) gives 

ZA(Ek-ju, (Qk - Qk-1)u) < (CI) 112A112(U, U) L A- /2 IPAkPkEk_1u11k. 
k=2 k=2 

For Rk defined by (4.8), Theorem 3.2 gives 
I 

ZA(Ek-lu, (Qk - Qk-1)U) 
k=2 

< (CRCi(j - 1))/2 A 12 (u, u) ( I Ike AkPkEk-1U, _PAkPkEk-lU)) 

It is easy to check that for v E A1, 

(4.15) RkV = RkV + RkV - RkAkRkV 
= Rkv + Rtv - RtAkRkV = (I - Kk*Kk)A-lv. 

The last equality in (4.15) defines an extension of Rk to Ak. This extension, 
which we shall still denote by Rk, is symmetric with respect to (', *)k. More- 
over, Rk is defined by cycling through Algorithm 3.1 in reverse order, and hence 

its image is contained in ik. Thus, it follows that RkPk2 = Rk, and hence 

ZA(Ek-IU, (Qk - Qkl)u) < (CRC1(j - 1))1/2AI/2(U, U) 
k=2 

(fA((I/ k*Kk)Pk~klU~Pk~k )) j1/2 

At E((I - Kk*Kk)PkEk- Iu, PkEk- IU)) 
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Let w = PkEkjlu. The spectrum of Kk*Kk is in [0, 1], and hence 

A((I - Kk*Kk)w, w) < A((I _ K(m(k))( (m(k)))*)w) 

=A((2I- Tk)w, Tkw) = A((2I- Tk)Ek-lu, TkEk-lu). 

Thus, 

ZA(Ek-Iu, (Qk - Qk-1)U) < (CRC1(j - 1)) /2A 1/2(u, u) 
k=2 

(4. 16) 
k= 

1/2 

(4.16A) (((2I-Tk)Ek-lu TkEk-lu) / 

k=2 

For the remaining terms in (4.14), we have 

ZA((I - Ek-l)u, (Qk - Qk-1)U) + A(u, Qi u) 

(4.17) k=2 
j-1 

k=2 

But, Ekl- - Ek = TkEkl , and it follows that 

j-i 

I - = Z TkEk-l- 
k=1 

From this and (4.17), 

Il 
Z A((I-Ek- l)u, (Qk-Qk- 1)U) + A(u, Q, u) 

k=2 
j-i 

(4.18) = ZA(TkEk-1u, (I-Qk)U) +A(Tiu, u) 
k=2 

/j-1 \1/2 
< (j- 1)/2(1 + C21/2) (:A(TkEk-lu, TkEklu)) A1/2(U u). 

k=1 

We shall show that 

(4.19) A(Tkw, Tkw) < 2cA((2I - Tk)w, Tkw). 

If m(k) is even, then this is evidently true, since cl > 1 and Tk is symmetric 
in A(., *) with spectrum in [0, 1]. For m(k) odd, set Kk = (KkKk*)(m(k)-1)12. 
Then Kk is symmetric in A(., -) with spectrum in [0, 1] and Tk = 

(I -kkKk)Pk. Clearly, it suffices to prove (4.19) for w E Ak4. Now 

A(Tkw, Tkw) = A((I -kkKk)w, (I -kkKk)w) 

< 2 [A((I - Kk)w, (I - Kk)w) + A((I -Kk)Kkw, (I - Kk)KkW)]. 
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By Theorem 3.2, 
2c1 

A((I - Kk)w, (I - Kk)w) < + 1 A((I- Kk)w, w). 

This can be rewritten (see (3.25)) as 

A((I - Kk)w, (I - Kk)w) < c1 [A(w, w) - A(Kkw, Kkw)]. 

Using the symmetry of Kk and the fact that its spectrum is in [0, 1] gives 

A((I -Kk)KkW, (I -Kk)KkW) < A(Kkw, Kkw) - A(KkKkw, kkKkw). 

Combining the above and noting that cl > 1 gives 

A(Tkw, Tkw) < 2c, [A(w, w) - A(KkKkw,kkKkw)] 
= 2cA((2I - Tk)w, Tkw), 

i.e., (4.19) holds. 
Combining (4.14), (4.16), (4.18), and (4.19) gives 

i 

A(u, u) < C(j-1) (:A((2I-Tk)Ek1U, TkEk-1U)) 
k=l 

for C = [(1 + C2/2)(2Cl)1/2 + (CRC1)112]2. This completes the proof of the 
theorem. 

Remark 4.1. The requirement that inequality (4.7) need only hold on ;k is 
important in local refinement applications. These are discussed in more detail 
in [9]. However, to apply Theorems 3.1 and 3.2, one need only provide a 

decomposition of the subspace %k . The resulting smoothing operator Rk only 
involves computation in the subdomain where the new nodes are being added. 

5. IMPLEMENTATION OF THE SMOOTHING PROCEDURE 

In this section, we consider implementation of the smoothing procedures de- 
scribed in ?3. We shall see that the additive schemes correspond to generaliza- 
tions of block Jacobi iteration. The product schemes correspond to generaliza- 
tions of block Gauss-Seidel iteration. The observations that, e.g., Gauss-Seidel 
iteration is a product scheme of the form of Algorithm 3.1 are not new (cf., for 
example, [17]). We include this section only to stress the point that the results 
provided earlier apply to the smoothers commonly used in multigrid algorithms. 

We first consider computer implementation of the parts of Algorithm 2.2 
which are relevant to the smoothing procedures. Assume that a decomposition 
of Ak of the form of (3.1) is given which satisfies (3.3) and (3.4). Moreover, 
assume that there is a basis {qi } for Ak such that each 9ki has a basis 
consisting of a subset of {/4}. Let M denote the stiffness matrix associated 
with this basis, i.e., Mim = (Ak~i, OM)k. In implementation, one seldom is 

required to solve (2.1) but rather the equivalent matrix equation 

MU = F, 

where U is related to the solution of (2.1) by u = Ej Uoij and F is a known 

vector of coefficients (Fi = (f, q$j). Consequently, in the multigrid imple- 
mentation, we are required to compute the action of Rk on a function g E Ak 
which is represented by the inner product vector Gi = (g, 14)k. 
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We first consider the case of the additive smoothing operator defined by (3.2). 
Let Si denote the indices of {q$m} which correspond to the basis functions of 

Ak . We note that the vector WI representing the function w I A1 Q1g 
satisfies the equation 

MiWi = Gi 

where 
{ M m iflmESi, 

Mlim = if lA m and either 1 Si or m Si, 
1 if 1 = m and 1 0 Si 

and 

Gi _ Gm if m E Si, 
m O otherwise. 

We now consider the case when all of the subspaces are disjoint. Then, we 
may partition the basis elements into groups corresponding to the subspaces. 
Under this ordering, the vector W = {Wi} representing the function w = 

E A,-iQ Qg satisfies the equation 

MaW= G. 

where Ma is the block diagonal part of the matrix M. In the case when each 
subspace has one degree of freedom associated with a given basis function, then 
W is given by 

Wi = (Ak~4 Xq)$'Gi, 

i.e., the smoother corresponds to the Jacobi method applied to the diagonally 
scaled stiffness matrix. 

We next consider the case of the multiplicative smoother. Again, we look at 
the case when all of the subspaces are disjoint and the basis elements are ordered 
into groups accordingly. The matrix M has a block structure corresponding to 
this ordering with blocks denoted by Mi'm, i, m = 1, ... ,1. As usual, we 
write 

M = L +D + U, 

where L, D, and U are respectively, block lower diagonal, block diagonal, 
and block upper diagonal. Let Fi be the vector of data corresponding to these 
blocks, i.e., F1 = ((f, q$k1), ..., (f, q$km2)k, where ml and m2 denote the 
first and last basis element corresponding to the subspace Ak' . Let the vectors 
Vi be the vectors of coefficients representing the functions vi appearing in 
Algorithm 3.1. These are partitioned in a similar manner. We first note that 
the ith step in (3.14) only changes the ith component. Thus, the ith component 
of VI is defined by the equation 

M1, iV/i = F -E ZMi, m Viml F - ZMimlm - ZMi, m VOm. 
m<i m<i m>i 

This can be rewritten as 

(L + D)V1 = -UVo + F, 
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and corresponds to block Gauss-Seidel iteration applied to the stiffness matrix 
M. 

6. TYPICAL FINITE ELEMENT APPLICATIONS 

In this section, we discuss developing smoothers using the techniques of ?3 
for finite element multigrid applied to a second-order elliptic boundary value 
problem. First, we consider the case when the subspace is defined in terms of 
a quasi-uniform triangulation which approximates the original domain. This 
often leads to spaces {ok} which are not nested. The case of mesh refinement 
is discussed next. We will see that it is easy to apply the techniques presented 
earlier to develop smoothers which only require computation where new nodes 
are being added and give rise to effective multigrid algorithms. 

We shall consider the problem of approximating the solution U of 

(6.1) LU=F inKQ, 

U = 0 on A. 

Here Q is a domain (not necessarily polygonal) in n-dimensional Euclidean 
space and L is given by 

Lv =_E ax (aij ax ) 

with {a1j} uniformly positive definite and bounded on Q. The form A cor- 
responding to the above operator is given by 

(6.2) A(v, w) = E 2aiOj ,9X dx 
i,j=1 

x x 

This form is defined for all v and w in the Sobolev space HI (Q) (the space of 
distributions in L2(Q) with square-integrable first derivatives). Clearly, U E 

Ho (Q) is the solution of 

A(U, 0) = (F, 0) for all 0 E Ho' (Q), 

where Ho (Q) is the subspace of HI (Q) of functions which vanish in the ap- 
propriate sense on aQ and (., -) denotes the L2 inner product on Q. 

We will first discuss the case of quasi-uniform triangulation. We assume 
that Q has been approximately triangulated with a sequence of quasi-uniform 
triangulations ik = Uj T of size hk for k = 1, ... , j, where the quasi- 
uniformity constants are independent of k. We define Ak to be the set of 
piecewise linear functions (with respect to the triangulation Uj Ti ) which vanish 
on a0k. If Q is polygonal, then it is possible to take Qk = Q and construct 
triangulations which are nested. 

We next define the inner product (, .)k . We do not have complete freedom 
here, since we must choose an inner product so that either (4.1) or (4.5) are 
satisfied, depending on the application. Let {yky} be the collection of nodes 
corresponding to the triangulation for 4k . It suffices to take 

(6.3) (U, V)k = hn U(yk)V(yk)- 
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Note that the quasi-uniformity of the triangulations implies that the norm II Ilk 
is equivalent to the L2(Q) norm on the subspace Ak. The operators Ak, 
k = 1, ..., j, are then defined by 

(6.4) (Akv, q$)k = A(v, q) for all q E Ak. 

Finally, the operators Ik are defined by nodal interpolation, i.e., IkW is defined 
to be the unique function in Ak which equals w at the nodes of Ak . 

Let {qijk1iN denote the usual nodal basis associated with the subspace Ak . 

Partition the integers { 1, 2, ... , Nk } into sets SI, S2, ... , SI and define 9kI 
to be the span of the basis functions with indices in Si. The discussion in the 
previous section shows that implementation of (3.2) and Algorithm 3.1 reduce 
to block Jacobi and block Gauss-Seidel iteration on the stiffness matrices. These 
subspaces provide a direct sum decomposition of the space Ak and hence, the 
decomposition u = E ui with ui e ki is uniquely defined. In addition, since 
the matrix with entries Nim = (q4k, q$k)k is diagonal, 

EI 1UiI1 = IIuI12 
i= 1 

i.e., (3.4) holds with co = 1. 
The constant cl appearing in (3.3) is related to the geometry of the subspaces. 

For i = 1, 2,...1 , let QK denote the union of the supports of the basis 
functions defining fki. Note that Kim is nonzero only if Qk n $km :A 0o. Let 
X4 be the number of subdomains {Qm} which intersect Q5,. Then we can 
take cl in (3.3) to be the maximum of {Xk} for i = 1, 2,... ,1. In the 
case of point relaxation (i.e., 9ki = {cq4} ), cl can be taken to be one plus 
the maximum number of triangles which meet at a given vertex. Alternatively, 
for line relaxation, the grid consists of a regular rectangular mesh and the ith 
subspace is defined to be, for example, the span of the basis functions on the 
ith horizontal mesh line. In this case, cl = 3. Obviously, many other examples 
are possible. 

We next consider the case when the mesh results from a local refinement. 
To illustrate this situation, we consider the case of two spatial dimensions. We 
note that for refinement applications, it is only possible to prove (4.1) with a 
C,> which grows with powers of the ratio of the diameters of largest to smallest 
triangle in the refined mesh. In contrast, estimates of the form (4.5) hold with 
constants independent of the mesh parameters. Consequently, we shall only 
consider the case of nested spaces and inherited operators. 
, We start with the definition of the nested refined grids. These grids are 
defined in terms of a given sequence of nested subdomains 

iQj C KQj-l C ... C QO0 = K2. 

We assume that we are given a coarse triangulation of Q = Um Tm . This coarse 
triangulation provides the first grid {I~} }. Given that a grid {I- 1 } has been 
defined, the grid {ITM} is defined by refining those triangles of {I- 1} which 
are in Qk. This refinement is done, for example, by breaking each triangle of 
the mesh TM } in Qk into four triangles by connecting the midpoints of the 
edges. We assume a0k aligns with the mesh {I 1M 
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s r, s, t: Slave Nodes 

FIGURE 6.1 

A mesh transition region 

The space Ak is defined to be the set of continuous functions on Q which 
are piecewise linear with respect to the grid {ITm} and vanish on aQ . We note 
that the continuity constraint implies that there are no new degrees of freedom 
corresponding to nodes on a0k (see Figure 6.1). These new nodes on a0k 

will be called slave nodes since, by continuity, their values are determined by 
the values of their neighboring nodes (which were already in the previous grid). 
It is easy to see that the space Ak has a nodal basis consisting of the vertices 
of {Tm } excluding the slave nodes. 

For this application, we shall take (., .)k to be the L2(Q) inner product. 
The operators {Ak} are defined by (6.4) and the operators Ik are defined to 
be the natural injection of Ak4-I into 4k . 

A sequence of operators Qk, k = 1, ..., 1, are constructed in [9] satisfying 
(4.5). These operators, in addition, satisfy (Qk - Qk-l )V E 4k for all v E J, 
where 

(6.5) Ak = {q) E A Isupp q C Qk}. 

Now, to apply Theorem 4.3, we need only provide a decomposition of the 
subspace 4k . Note that 4k is a finite element space corresponding to a quasi- 
uniform triangulation of Qk. Accordingly, the constructions given above can 
be used. Note that this leads to smoothing algorithms which only require com- 
putation involving the nodes of ik and not on all of the nodes of the space 
Ak - 
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