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HIERARCHICAL BASES FOR ELLIPTIC PROBLEMS

W. DORFLER

ABSTRACT. Linear systems of equations with positive and symmetric matrices
often occur in the numerical treatment of linear and nonlinear elliptic boundary
value problems. If the CG algorithm is used to solve these equations, one is
able to speed up the convergence by “preconditioning.” The method of precon-
ditioning with hierarchical basis has already been considered for the Laplace
equation in two space dimensions and for linear conforming elements. In the
present work this method is generalized to a large class of conforming and non-
conforming elements.

0. INTRODUCTION

Consider elliptic problems in variational form of order 2m. Let X :=
Hg"’z(Q) ,and Q € R” be a bounded domain. We want to find ¥ € X such
that

(0.1) a(u,v):= /QA[V’”u, V™]=F(v) YveX.

Here, A denotes a strictly positive (possibly x-dependent) matrix; F is a
functional on X, and af(-, -) is assumed to satisfy
collullZ, 2.0 < alu, u) < Gollull, 5.0

for all # € X . The solution of this problem exists according to the Lax-Milgram
theorem. One way to solve this problem numerically is to approximate X by a
sequence of finite-dimensional spaces Xy for N € N. If {u;},—; n is a basis
of Xy, writing # in the form

N
u= Z iU
i=1

leads to the equation
(0.2) Sz=F,

where z = [a;)i=1,n, Sij =a(u;, uj), and F; = F(u;). The N x N-matrix §
is positive and symmetric, and (0.2) can therefore be solved by the conjugate
gradient (CG) algorithm. Given any initial vector z°, we get a sequence of
vectors z¥ for k € N. Theoretically, the exact solution is reached with zV.
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In practice, however, the procedure will stop on account of a stopping criterion
for the residual,
ISzk — F|*<e,

where ¢ is a given small number. The number of iteration steps is controlled

by the error estimate
k
K = VK -1 0 =

" —Z|g <2 z'—7Z|s,

=25 <2 (YETT) 120~ 3ls
where Z is the exact solution, ¥ = cond(S) is the condition number of S, and
|z|3 := z*Sz [1, p. 25].

Now let Xy be a finite element space. For a regular discretization of Q we

get

(0.3) K~ h™2m,

where £ is the minimal diameter of the discretization [7, p. 187]. In order to
speed up the algorithm, one can try to find basis transformations B for which
the matrix (B~!)*SB~! has a smaller condition number (“preconditioning”).
On the other hand, we do not want the computation of B~!z and (B~!)*z to
be too complex. We require that the additional work is O(N) (that is what we
usually have for §).

Many different preconditioning techniques can be found in the literature (e.g.,
SSOR-preconditioning, incomplete factorization [1, Chapter 1.4]). This work
is devoted to the concept of hierarchical bases.

Before proceeding, we want to point out that speeding up solvers for linear
problems is also of importance for nonlinear problems. We refer especially to
the nonlinear CG-method [6, Chapter 7].

In this work we follow the theory of hierarchical bases developed by H.
Yserentant [9]. He showed that using this method reduces the condition num-
ber of S in the case n =2, m = 1, and for conforming linear elements, from
O(N) to O(|log(N)|?). Moreover, the transformation to this new basis requires
O(N) operations and the inverse matrix is also easily computed because this
transformation can be represented as a product of simply structured matrices.

The idea of this method is to decompose the finite element space V' into a

direct sum S
V=D,
k=1

where the spaces W) belong to different levels of refinement of a given coarse
discretization. They have the property that the conditioning of S, when re-
stricted to W}, is uniformly bounded and that the operator norm of the pro-
jection ¥V — W is estimated by C(1+ J — k). For this we make use of an
estimate which states that for all v € Hol ’2(BR) , Br being the ball with radius
R,and 0<o < iR,

) R\ 12 NE
0.4 — v|<C{1+]o (—)) (/ \% ) .
04 gy fwisc(ivweg(Z)) ([ o

(We call this estimate the “inverse estimate,” because the left-hand side can
approximate supg, |v| for 6 — 0.)




HIERARCHICAL BASES FOR ELLIPTIC PROBLEMS 515

Unfortunately, this procedure does not provide a similar improvement of the
conditioning in higher space dimensions. Recently, a new class of precondition-
ers was found which gives dimension-independent results (see [3, 10]).

However, the aim of this work is to generalize the ideas of [9] to higher-
order problems and to nonconforming finite element spaces. The result is that
the condition numbers that can be achieved depend only on the space dimension
and a certain defect, produced by the projections from one level to the next.
The second phenomenon does not occur for linear conforming elements.

This work is organized as follows. In the first and second sections the nota-
tions and assumptions on the discretizations and the finite element spaces are
introduced. The third section shows how to construct a hierarchical basis and
states the requirements for the basis transformation which ensure the result. It
is shown, by an example, how this can be applied to general conforming ele-
ments interpolating at the vertices of the discretization. This new basis defines
a set of nested spaces V} C Vk+1 , for k>0, such that ¥, =V and V is iso-
morphic (but not identical as in the case of hnear conforming elements) to the
finite element space V; on the kth level discretization. In §4, we then study the
norm of the isomorphism ¥, — V; . In §5 we consider the stiffness matrix when
restricted to I~/k+ 1\ Vi . The lowest and largest eigenvalues are estimated with
respect to a suitable vector norm. We also achieve an estimate for the projection
V — V. Here we use the inverse estimate (0.4), which has to be assumed to
be valid also for nonconforming elements. Under the usual assumptions on V'
and the discretization, such an estimate is proved for two dimensions in the
supplement section at the end of this issue. In §6 the estimates for the smallest
and the largest eigenvalue of S corresponding to the hierarchical basis are de-
rived. Recall that cond(S) = Amax/Amin - All these results are summarized in §7.
In §8 we consider as an example the linear but nonconforming case and include
some numerical results.

Notation. The following notation will be used:

H™?P(Q), H?(Q) Sobolev spaces (with zero boundary data);
0

- llm,ps I1lm,p,0 corresponding norms: |- |17, , = Il * I, 5.0
+ " "m l,p’
I *llm,ps6> I+ llm,p,0;¢ as above, but restricted to G C €2;
do diam(Q);
[ — “scale invariant norm™: |- |1, , ..¢

—Zd 212, 0.6 for G with dg > 05

P (Q) the set of all polynomials of degree m on Q;
|G| the n-dimensional Lebesgue measure of G C R";
|v| the Euclidean vector norm for v € R".

In this article we use the symbols ¢ and C as unspecified constants, that is,
in a sequence of estimates these constants may vary from one estimate to the
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next (collecting all factors we are not interested in) although the symbol is not
changed.

1. THE DISCRETIZATION

Let Q be a bounded domain in R” assumed to be representable by a set of
linear inequalities:

Q={xeR":pp-x< P, k=1,..., M},
where p, and f) are given vectors and scalars, respectively, and M > n is an
integer. This means that 8 has a piecewise flat boundary. Let Q be divided
into simplices
Q=
i

(for i in a finite set of indices), such that |T; N T;| = 0 for i # j (consider
the simplices as closed subsets of Q). This partition will be referred to as
macro-discretization 9 .

Denote by E the unit simplex. Let % be a set of points contained in E;
for definiteness,

Pg={P1,..- > Png}-
Let m be the degree of the problem we want to approximate (see §0). To each
D € P we assign a nonempty set 2 :
Zyc{(v,r):veN, 0<v<m-1, reN, r=][r,...,nl}
(for v =0 we let r =0). An element of the set
Mg ={q4=0D,v,r):DEFPE, (v,r) €25}
will be called a node. As will be pointed out in §2, the number v gives the order
of differentiation, and the vector r gives a set of directions for an evaluation
functional localized at p.

For every simplex T, let e7: E — T denote an affine linear isomorphism
with det(Ver) > 0. Define er on the set 4% by er(p, v, r):=(er(D), v, r).
For convenience we assume the following symmetry in the definition of /% :
for any er assume

ee(IE) = M.
A refinement of E is a partition E = |J, E; into a finite number of subsimplices
E; (JE;NEj| =0 if i # j). For simplicity we only consider refinements for
which dg, > %a’E. For each E; fix a mapping eg, (because of the assumed
symmetry it does not matter which). A set of nodes on the refined simplex is
defined by
N ={d' = e5(d), 4 €M, E CE}.

It follows that, if E; and E; have p’ as a common point, then there are
Gi, » 4i, € A& such that (p’, v, r) =eg,(§;) = eg,(4s,) -

Now let us construct a set of nodes on % . For each T € % we fix e7: E —

T. Let

M={qg=er(§): T €%, 4€M}.
We proceed by refining the discretization %, . For this purpose we map a par-
tition of the unit simplex via er onto T € 9. In this way we can construct
local or global refinements. One step of refinement is called complete if T is
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partitioned into subsimplices 7; such that any simplex 7; with d7, = dr will
not be refined in any further step. Applying one complete step of refinement
to S yields 7 and, as above, also a set of nodes .#;. After having applied
k steps, we get 7, and %, respectively. It will be assumed that this process
leads to what is called a “regular discretization.” This means that the quotient
of the diameter of 7 and the radius of the inscribed ball remains uniformly
bounded for all simplices in each discretization. For example, such algorithms
are described in [2] or [8].

In many estimates it is important to separate the properties depending on
the scale of a simplex T from those which are scgle-independent. This will be
indicated in the following way. For any T let T :=d, IT denote the scaled
simplex. If a constant depends on 7 , this means that it depends only on the
scale-independent properties of 7.

If we write a ~ b for two expressions a and b, which both depend on
T, this means that :Ehere is an estimate ca < b < Ca with constants ¢, C
depending only on T'.

2. THE FINITE ELEMENTS

Let V; be a finite element space corresponding to .9 . Following [4, p. 78],
we can describe it by a triple (Q, S, Z;), where Sj is a set of functions on
Q and X, a set of functionals on S; . Let E be the unit simplex and Sg a
function space on E such that

Pn_1(E) C Sg c C™(E).
On T € 9; we define Si|r via the affine linear isomorphisms er by
Silr:={u=voer':veSg}.
Note that u € P,,_;(T) whenever v € P,,,_(E).

Now we want to construct the functionals. First, consider the discretization
J . Define % to be the set of all points in Q lying in the (n — 1)-dimensional
interior of the boundary of a simplex. Define vector functions a, ..., a, with
the following properties:

1. a, is a unit normal vector on the corresponding face;
2. a1, ..., a,_; are linear independent tangential vectors;
3. the vector fields are constant on each connected component.
For 9, (where % is defined analogously) such vector fields are defined by the
following recursion:
if pe%_,, then ay, ..., a, are already defined;
if p € #\%_1, then define ay, ..., a, using criteria 1-3.
The canonical basis of R”, interpreted as a constant vector field, is denoted
by aui1, ..., az, . A global regularity condition on S; may be given by S C
C™1(Q), in which case we speak of conforming elements. If, on the other
hand, S, ¢ C™"1(Q), the elements are called nonconforming. In the latter case
there are of course some regularity conditions which assure the usefulness of
these elements for approximating problem (0.1).

The set X; can now be defined as follows. Let .#; be the set introduced in

§1. For each g = (p, v, r) € #; we define a functional

FF: C*(Q) - R,
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where for v € S
Ff(v)=V'v()[an(p), ..., a, ()]

with 1 <r; <2n. Of course, we have to assume that the functionals are well
defined on functions in S, . This follows immediately for conforming elements.
For nonconforming elements, Fq" is a functional on S, if p and the vector
fields a, are chosen properly.

A basis of V) shall be given by a set of functions CD’; € Sy, q € M, for
which Fj(®%) = d,7. Recall that a function u in S is assumed to be uniquely

defined by its values F)f(u).

Now assume that we work with J + 1 levels, that is, k varies from 0 to J
for a given J € N. For convenience we will omit the level index in the special
case k = J, thus writing ¥V = V; and so on.

For ueV let
lull} o= Nl 20.7-
TeT
This expression is assumed to define a norm on V', which means that this finite
element space is an appropriate approximation of H(;”’Z(Q) . In the sequel we
assume that it is sufficient to require that

Vi := span{®; : ¢ € (S \0)},

where 0.4 := {q € A : p € Q}. Note that || - | is also a norm on Vj.
Moreover, for any Q' ¢ Q we define

Il o = D Nl 2,00 gy -
TeS

For later use we state the scaling properties of the norm of the basis functions.
For this purpose, consider ®% on T € J; . Defining

k(%) := dp @k (drx), %eT,

we obtain

k2 +2(v— K112
DI 7 ~ dp IR | <

Note that ||<f>§||2 ~n~ 1.
m,2,0;T

3. THE HIERARCHICAL STRUCTURE

a. The hierarchical structure on the nodes. In the following we want to con-
struct a hierarchical order on .#° = .#;. Therefore, consider again E, the
unit simplex. Applying one step of refinement, we obtain a discretization Jz
and a set of nodes .7} on E (see §1). Consider the set of injective mappings
n: Mg — HZ of the form (p,v,r)~ (#(p), v, r) (for appropriate mappings
) . With this, we get a set of similar mappings on

Meri={qaeM:peT}

for each T € .. Now we fit these mappings together in a suitable way to
obtain a well-defined injective mapping 7, : %, — %41 - As a consequence, we
have that =, is the identity on each vertex, and if a node ¢ is located on a
face of a simplex T € .7 , then the same holds for 7, (q).
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Having defined n; for k=0, ..., J — 1, we now define
Hi={geN q=ns_10-om(qd), ¢ €M}

for k=0,...,J—-1. Let /Z = ./ . Noting that /%; - C /17; , we define the
nonempty sets of nodes of the kth level by ﬂk = /Vk\/%c fork=1,...,J.
In particular, ﬂo = //0 This leads to a decomposition of .#" into dlS_]Olnt sets

N = U P,
k=0
or more generally, ./, = Uf:o %, . In general, ;, # .} , because %, may differ
from .#; in the first argument (compare with the construction of 7 above). But
using the mappings 7, , we may identify both. (More precisely, we may identify
the set of points with the corresponding set of indices and put the numbering in
a hierarchical order this is what is done in applications.) Therefore, we write
in the sequel /Vk =¥ and ﬂk =% .

b. The hierarchical structure on the basis functions. Let 0 < k < J —-1. On
Viy1 we define the following functions:

—k+1 -3 & cpk+1 for g € Fy41,
(3 1) GEN 41
q) N e Lt for g € M,
GER 4

where C(’I‘a # 0 implies that {q, G} c T for some T € J;. Concerning the
coefficients, we assume the following:

(A1) (definiteness) For arbitrary u € V,,; there are uniquely defined coeffi-
cients @, and p, such that

_ =k —k+1
U= Z aq®§+l = Z aq¢q + Z ﬂqu .
qE€EN s qeN qER 41
(A2) (consistency) For T € ;. ,let w € P,,_1(T). Weknow that w € Vi y|r.

. . . . —k
Expressing w in the new basis, we obtain that w € span(®, : ¢ € k. 1)
on T and, moreover,

w= Y. yq75§= > 7 PE onT.

qe-Mc;T qe-/l/I‘c;T

(A3) (stability) For u asin (Al)and T € J; itisassumed thatif g € .,
then
;| < max |og|.
| ql - Ee/’/lﬁl:TI ql
(A4) (scale independency) The coefficients in definition (3.1) do not depend
on the diameter of T after having applied the transformation

T—d;'T, ®k(x)-dp?@kdrs)  (x =drg).

In this sense, they are assumed to vary only in a bounded subset of R (inde-
pendently of k).
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We now define a new basis on V. This is done recursively. Let formally
¥, =@, forall ¢ €./ . Then for k—J— I,...,0,set

PhHl= ) qu 7 for g € Bs1
9€Nq1
(3.2) !
k+l Z C +1 for ge ‘/I/]; ’
GERy 41

with the coefficients given in (3.1) and fulfilling (A1)-(A4).
We now express u recursively in the new basis. Starting with

—J-1
u=Y o®,= Y &¥, + Y B,
qeN; qeEN 71 qEZ;
we obtain for 0 <k < J

J
u= % '+ Y 8.

q€EM—y I=k g%

. =0 .
Defining ¥, = ‘}’2 , we get the representation

J
u=>y_ 3 BV

1=0 g%,
This new basis will be called the hierarchical basis. This recursive process also
shows that the matrices B and B~! (where B~! transforms the original into
the hierarchical basis) can be represented as a product of “simpler” matrices
B, k=0,...,J. Here, “simpler” means sparse and easy to invert (this is
due to the required localization of the coefficients in (3.1)). This is of great
importance for the application of this basis transformation as a preconditioner.

We are led to the following definitions for 0 < k < J :

Vi :=span{¥*:0< I <k, qe %}, W, = span{¥¥ : g € %},
q q

k
Liu:= Y BV, Tu :=Zl~4u.
1=0

qE€ERE

One verifies readily that V' = 69{:0 W , u=u,and Lyu=Iu— T,C_Iu for
all ueV and 1<k <J.

c. Example. Let % be the set of vertices of E and let the spaces S; be
conforming. Then if

C (Sqa for q € ‘%k+l s
@7\ FX@) forqe i, T€Fiu,
the assumptions (A1)-(A4) are satisfied.
4. THE NORM OF THE HIERARCHICAL BASIS FUNCTIONS

In this section we study the dependence of ||‘I‘§||%, on the level index k.
Therefore, we introduce the operator Qi : Wi — W, by

Y BYE— Y B

qE€ER qE€EFs
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Now we prove the following

Lemma. Let u € Wk be given. Then there exist constants o and t (not de-
pending on k and J) such that

lully < o/~ Quull} .
Proof. Let 0<k<J -1 and T € 9. We know that for w € P,,_(T)
—k
w= 3 70 = 3 7P
‘Ie/’/};;r qe‘/,/l‘c;T
If, for arbitrary u € V), we define a mapping by
U=y 0@ —i=Y wqﬁs,
q€M qE€EM

we have just seen that u = ## on T for u € Pp,_ (7). Using the scaling
required in assumption (A4) of §3, we can derive the estimate

Iy, < o(T, E)llully, 7
because we showed that [|u||}., = 0 implies ||i]|}.; = 0. Note that V| is
of uniformly bounded dimension. In the estimate above, { stands for the set
of coefficients C‘;‘E involved in the definitions of 5’; and 5’;“ but scaled to

T. Recall that it is assumed in (A4) that these do not depend on the size of

T . Take 7 to be the maximum of all t(f", ¢) which can occur for T € F,
k=0,...,J. As a consequence, we get the estimate

2 2
lally.r < tllully.r.

On Vk , viewed as span(?j; : g € 4;), we define the mapping Q, : Vk — Vi by

Y 0% 3 w,®%.

qa€M qEM;
Now let k =J —1 and T € 95_;. The first part of the proof shows that for
uevVy_, .

lully.r < TlIQy_ ully.r-
Summing over all T € J;_; gives

lully < <lIQy—yully .
Let us now assume that the estimate
Il 7 < Al Qrully,

holds for 1 <k < J-1, T € 9, and u € Vk Consider u € 17}(_1 and

T € J;_,. Using (3.2), we can rewrite u as a function in ¥, . But then the
foregoing assumption can be applied, and the estimate

¥, 7 < Al Qeull? .

follows. We can now apply the first step of the induction again to obtain

— _
1Qkully .+ < Tl Qp_ ull} .7
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Therefore, A;_; = t4; and A;_; = . Summation over all T € 9}_; yields
lully < /741 Qull} -
Now let u € W, thatis, u = qugk Bq‘P’; . Utilizing (3.2), we rewrite u as a

function on ¥, . By the preceding result we have
2

_knA _ —k
lally < </ ~FNQully = 7/ 7% | D B.P,
qER) 174
So it remains to estimate the norm of the mapping
_ —k
V=Y 0P -T=> 0P,
qEFy qERy
If the right-hand side is a polynomial, it is zero because of (A2). Using the same
arguments as at the beginning of this section yields
o}, < ollvliy,rs
where ¢ can be chosen independently of all T, k, and coefficients C(I;E‘ This
gives
lully < ot/ K| Quull}. O

5. ESTIMATES FOR THE PROJECTION OPERATORS
Let us define the operator Ly := QxLg: V — W. In the following we give
two estimates for Liu.
a. Spectral estimate for || L,u||2 . Let
vi=Liu= Y Bk
qEH

Fix T € 9;_, and consider v|r. If v € P,_(T), we conclude from (A2)
that v = 0. This shows that ||v||? . defines a norm on the coefficients of v|7.
Scaling to 7 yields
0= Y Bdidk.
qeﬂk;T
Recall that ||<f>§||fn 0.7~ 1. Therefore, there are constants depending only on
T and the number of coefficients of v|r such that
112 wp |2
qeﬂk;T
Rescaling establishes
2v—m)+ 2
Wl r~ Yo dr 1Bl
qeﬂk;T
If we introduce the vector norm
. 2v—m)+ 2
22,7:= Y 478,
qe'gk;T
for the vector representation z of u, this result can be written as ||Lku||%,; T~
2|2, T-
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b. The operator norm of L;. Let u € V and T € 9,_;. We have proved in
the first part that ||Lku||%,;T < Clzlf;T for z the representation of u in the
hierarchical basis. Recall how the basis transformation to the hierarchical basis
is performed and that it is stable in the L>°-norm by (A3). Using this, we can
derive for each @,, g € /#, that

oyl < max |az
| qI_EG/VJ;rl al,

and from the last transformation step we obtain

m—1

|ﬂq|s<fd;”2d¥a max lagl,
=0

EM;T7q=(V,~~~

where we used (A4). The constant in this estimate depends on the coefficients
C(’I‘a . From this, we obtain immediately

m—1
2 2(v—m)+ 2
22,7 < C D2 dr" T IVl oo,
v=0

for some appropriate triangles D, € 9;, D, Cc T.

Let us first consider the case of conforming elements. In this case we refer
to an estimate that is well known (e.g., [9]; see also Lemma 2 in the supplement
of this issue). It states that

(5.1) L/w " < carme (9T o
. D] /b )] < T dp 1,2,;T

holds for any v € Hy *(T), where for 4> 1
_ [ 1+log(4), n=2,
K(l)_{i"‘z, n>2.

Applying this estimate to V”v instead of v, for 0 <v <m — 1, yields

2v—(m=1)) [ 1 v 2—n. (AT 2
(52 Zd (i f701) < cazme (%) i .o

In case of a nonconforming space we assume that such an estimate generally
holds. But for a certain class of elements, Lemma 3 in the supplement provides
a proof that such an estimate can be obtained.

The usual scaling technique shows that

1 v
o7 L 197~ ol i
Thus, we get

d
2 T 2
lz|7.7 < CDEmal))(CT {K (dD>} lully .1

For arbitrary w € Pp—1(T), T € Jx_;, we have Lyu = Ly(u — w), and
therefore 4
Lelr < € max i (55) biulr.
D

DeJ; ,DCT
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using the Poincaré inequality for functions having mean value zero (see the
remark following Lemma 1 in the supplement).

6. ESTIMATES FOR THE EIGENVALUES

a. The minimal eigenvalue. Consider 7 € 9_; for k = 1,...,J. Utilizing
the results of §5 yields

dT 2
< _ .
s max {ic(5) biulpr.

and summing over all 7 € 9;_; gives
> |z, < Cmax  max {x (41)} Null? .
fex Te% DeJ; ,DCT dp
We introduce for k£ > 1
dg:=max{dr:T €I, q€ T},
sum over k, and obtain

I Loul? +Z ST AT B < CZnLkuuV

k=1 qe.gk

J
dr 2 . rA=1i12
ea}DeITn%xcyK (dp) lullyy == CA " lully -

b. The maximal eigenvalue. The following estimate holds without any further
restrictions:

J
lull? < {ZnLkunV} < CZr’ "ZnLkuuV
k=0 k=0
< CK.., {nmn% +Z 3 dé‘”‘m)+"|ﬂq|2}

k=1 q€.9?k

(using §5a), where K, ; := 211:0 7% . If we can prove that for j > k there
exists o < 1such that

(Liu, Liuyy < Co/*ully vy
for all u,v € V, the previous estimate can be slightly improved. Using the

arguments in [9], we obtain

J
lull} < Cmax(1, /)Y | Lyully .
k=0

7. RESULTS
The previous sections are summarized in the following theorem.
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Theorem. Let Q be a polygonally bounded domain and (J)r-q,; a sequence of
discretizations of Q fulfilling the assumptions stated in §1. Equip the discretiza-
tions with finite element spaces as described in §2.

Assume that there exists a hierarchical structure fulfilling assumptions (A1)-
(A4) of §3b and that an estimate of the form (5.2) can be established in case of
nonconforming elements. Then there exists a basis transformation B that can
be represented as a product of matrices with small bandwidth and a diagonal
matrix M, such that for S being the matrix in (0.2),

(7.1) cond(M*B*SBM) < CK; jA;.
The constant C depends on scale-invariant properties of the triangulation and
the conditioning of the stiffness matrix on the coarsest level. Moreover,
_{0((J+1)2), n=2,
TTlo@/y,  n>a2,
and K; j = Z,{=0 1k, for 1 as described in §4. If we have, in particular, a
uniformly refined discretization consisting of simplices of approximately the same

size, and if h = 27 s the average diameter of the simplices of the finest level,
then (with 1d denoting the logarithm to base 2)

A _{O(IId(h)Iz), n=2, K _{ o(judm)l, =1,
Oh=t-2),  n>2, “7T oh-Hwy, 1> 1.

Under the additional assumption stated in §6b, one has the improved estimate

K. ;j =max(1, /),

so that for =1 we have K; ;=1.
Proof. Using the notation of §6, we have already shown that

J
cA7' (IILouII%/ +>> d2<"-m>+"|/3q|2) < ulfy

k=1 qeﬂk

and

J
lull} < CKe, g (||Loul|2V +3 ) df‘”"'"””lﬁqlz) :
k=1 g€,
Take z to be the vector of the coefficients for u# in the hierarchical basis. Recall
that ||u||? ~ z*B*SBz, where S is the stiffness matrix for the original basis.
With constants depending on the smallest and largest eigenvalue of the prob-
lem on the coarsest level and an appropriate diagonal matrix M , we derive

cA'z* < z*M*B*SBMz < CK. 4|zI.

Notice that by the definition of the refinement procedure we have for T € J;
and DeJ; with DcCT

dr <C2'7* o

dp
Remarks. (i) As proposed in [9], one can invert Sy, the stiffness matrix for the
coarsest problem, to improve the constants in the estimate above. In this case,
replace the submatrix in M corresponding to the coefficients for the coarsest
level by S;'.
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(ii) We observe (as was known before [9]), that the improvement in the
behavior of the condition number in two space dimensions is quite better than
in three dimensions. Note that the conditioning of the stiffness matrix in (0.2)
does not depend on the space dimension. On the other hand, the condition
number due to the hierarchical basis does not depend on the order of the elliptic
problem. Therefore, one may obtain satisfactory improvement for 4th-order
problems in three dimensions (if 7 is close to 1).

(iii) If a conforming element is a polynomial when restricted to a single
simplex and if we use the hierarchical structure proposed in §3c, we find that
T =1, because we can exactly reproduce the basis functions on the next level.
As an example, we refer to the case of the linear element [9] (see also [5]) and
as a contrast to the RHCT-element [4], where T~ 2.

(iv) As one can see in §4, 7 can be obtained by means of local considerations.
In practice it may be enough to consider only a few situations to obtain a
reasonable value for 7. For this purpose we consider 7', the refined simplex
T’ , and the corresponding stiffness matrices S and S’ (restricted to 7). Given
the coefficients of the basis transformation, we can compute S, the stiffness
matrix with respect to the basis functions of the coarse level. 7 is now the
maximal eigenvalue of the matrix $~1S. But S and S are not bijective, since
Sz =0 if z corresponds to a polynomial function. However, both matrices are
symmetric, and therefore we can restrict ourselves to the subspace Image(sS).
Notice that we have required that Ker(S) = Ker(S).

(v) The assumption that Q is a polygonally bounded domain can be re-
moved. Assume that 9Q is sufficiently smooth. We start again with a macro-
discretization %, and perform a complete refining step to obtain 7. Now
we improve the approximation of the boundary of Q by modifying 9] to a
discretization J1* (see, for example, [4, Chapter 4.3]). Then we refine J;* to
obtain %5, and modify %; to get 7,*, and so on. We introduce a hierarchi-
cal structure as before. In order to compare the spaces ¥V, to the spaces Vj,
we have to take into account the modification 9, — 7, *, that is, we have to
compare ¥, with vy and V* with Vj . Notice that even in the case of con-
forming linear elements this will produce a defect (z > 1). However, using the
regularity assumption on 9Q, we notice that in each step we get an additional
factor of the form 1+ chy, for 0 < k < J. But the product of these factors is
uniformly bounded, and we end up with the same results as presented here.

8. THE NONCONFORMING LINEAR ELEMENT

Here we want to discuss the case of nonconforming linear elements in R?.
Let (J)r be a sequence of global refined triangulations (that is, every triangle
is partitioned into four similar triangles). A basis function looks as follows:
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It is continuous on the inner edge (where it is 1) and on the other edges it is only
continuous at the midpoints. The set of all midpoints of the edges belonging to
Q will be denoted by .# . In general, a function in ¥V is only continuous at
points in .# . In this example, the set of nodes is given by

A ={p,0,0):pef}.
The problem mainly consists in finding a hierarchical structure on ./Z .

a. The hierarchical structure. Assume that an orientation is given for each edge.
The definition of =z is shown in the following picture:

q: qs

q:

As explained in §3a, this will define a hierarchical structure on the nodes. Con-
sider the following triangle:

Here,

I, Iy, I3 are the nodes on the next higher level and
i1, 1,13, j1, j2, j3 are the nodes on the actual level.
The new basis functions (restricted to one triangle) are given by
i = ‘Dil + q),'; +f(¢jl + (DjJ) + C(Djz s
= 3(®, — D),
= (Diz + q)ié + é((pjl + q)jz) + Cq)is s
= 3Dy, - @),
= ‘Di3 + (D,'; +f(¢j2 + (Dj3) + C‘Djl ,
= 3 (s, — Py).
If we require that 26 + { = 1, it is easily seen that this definition fulfills the

assumptions (A1)-(A4). According to this definition, the transformation from
the standard to the hierarchical basis looks like

- - ~ EI
o) (SR ~ _

el ol ol ol ol

~
wl

Qi = j(a,l +a,~;), ooy
ﬂi{ = _ai;a cees

ﬂjl = ajl —é(ail +a—i2) - Calj 9 s .
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The dots refer to analogous relations for the other coefficients.

In proving the estimate (7.1) for the case of nonconforming elements we
have to show that the estimate (5.1) holds. This is proved in Lemma 3 in the
supplement.

b. Numerical results. To give an example, we restrict ourselves to a triangulation
of Q=[0, 1]x [0, 1] consisting entirely of triangles having two sides of equal
length enclosing an angle of 90°. Calculating 7 numerically gives the following
results:

19 0.0 0.1 0.2 0.3 0.4 0.5
T 4.00 3.00 2.32 2.02 2.08 2.5
1d(7) 2.00 1.58 1.21 1.01 1.06 1.32

The smallest and the largest eigenvalue were computed by vector iteration and
inverse vector iteration, respectively. Furthermore, the Dirichlet problem
Au=0 in Q,
u(x,y)=x>-y* indQ
was solved (it denotes the number of iterations). PGG I refers to our hierarchical

basis preconditioning with & = 0.4, while PCG I stands for the corresponding
preconditioning with & =0.5.

CG PCGI PCGII
J Amin  Amax it Amin  Amax il Amin Amax it
2 043 115 10 1.2 18 14 1.3 24 14
3 0.10 117 30 085 28 23 0.93 2 25
4 0025 118 6l 0.66 44 36 0.72 74 39
5 0.006 11.8 121 053 69 48 059 130 58
6 - - 235 - - 67 - - 87

If ¢, is the condition number of the kth refinement, then

_ log(cr/ck-1)
" log(Ne/Ni—1)
is an approximation for the exponent v in the assumed law ¢, = CN; (N, =
dim(V})). For PCGI we get E5 ~ 0.95 and for PCGII we get E5s =~ 1.1. For
the 6th refinement, the computation time for solving the Dirichlet problem with
PCGI preconditioning is about 0.6 times the time needed for the ordinary CG
algorithm.
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