
MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 198 
APRIL 1992, PAGES 513-529 

HIERARCHICAL BASES FOR ELLIPTIC PROBLEMS 

W. DORFLER 

ABSTRACT. Linear systems of equations with positive and symmetric matrices 
often occur in the numerical treatment of linear and nonlinear elliptic boundary 
value problems. If the CG algorithm is used to solve these equations, one is 
able to speed up the convergence by "preconditioning." The method of precon- 
ditioning with hierarchical basis has already been considered for the Laplace 
equation in two space dimensions and for linear conforming elements. In the 
present work this method is generalized to a large class of conforming and non- 
conforming elements. 

0. INTRODUCTION 

Consider elliptic problems in variational form of order 2m. Let X 
Hm '2(Q), and Q E in be a bounded domain. We want to find u E X such 
that 

(0.1) a(u, v) j A[Vmu, Vmv] = F(v) Vv E X 

Here, A denotes a strictly positive (possibly x-dependent) matrix; F is a 
functional on X, and a( , -) is assumed to satisfy 

COllIIU12m , < a(u, U) < C0II11UIm20 

for all u E X. The solution of this problem exists according to the Lax-Milgram 
theorem. One way to solve this problem numerically is to approximate X by a 
sequence of finite-dimensional spaces XN for N E N. If {Ui}i=1,N is a basis 
of XN, writing u in the form 

N 
u = aiui 

i=1 

leads to the equation 

(0.2) Sz=F, 

where z = [aiIi=1,N, Sij = a(ui, uj), and Fj = F(uj). The N x N-matrix S 
is positive and symmetric, and (0.2) can therefore be solved by the conjugate 
gradient (CG) algorithm. Given any initial vector z0, we get a sequence of 
vectors zk for k E N. Theoretically. the exact solution is reached with ZN. 
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In practice, however, the procedure will stop on account of a stopping criterion 
for the residual, 

ISzk - F12 < E, 

where E is a given small number. The number of iteration steps is controlled 
by the error estimate 

Izk -Hs < 2 (J/i I)k -Hfzs, 

where z is the exact solution, K = cond(S) is the condition number of S, and 
1z12 := Z*Sz [1, p. 25]. 

Now let XN be a finite element space. For a regular discretization of Q we 
get 

(0.3) K h-2m 

where h is the minimal diameter of the discretization [7, p. 187]. In order to 
speed up the algorithm, one can try to find basis transformations B for which 
the matrix (B-1)*SB-1 has a smaller condition number ("preconditioning"). 
On the other hand, we do not want the computation of B- z and (B-1)* z to 
be too complex. We require that the additional work is O(N) (that is what we 
usually have for S) . 

Many different preconditioning techniques can be found in the literature (e.g., 
SSOR-preconditioning, incomplete factorization [1, Chapter 1.4]). This work 
is devoted to the concept of hierarchical bases. 

Before proceeding, we want to point out that speeding up solvers for linear 
problems is also of importance for nonlinear problems. We refer especially to 
the nonlinear CG-method [6, Chapter 7]. 

In this work we follow the theory of hierarchical bases developed by H. 
Yserentant [9]. He showed that using this method reduces the condition num- 
ber of S in the case n = 2, m = 1, and for conforming linear elements, from 
O(N) to 0(1 log(N) 12). Moreover, the transformation to this new basis requires 
O(N) operations and the inverse matrix is also easily computed because this 
transformation can be represented as a product of simply structured matrices. 

The idea of this method is to decompose the finite element space V into a 
direct sum 

J 
V =e Wk, 

k=i 

where the spaces Wk belong to different levels of refinement of a given coarse 
discretization. They have the property that the conditioning of S, when re- 
stricted to Wk, is uniformly bounded and that the operator norm of the pro- 
jection V -- Wk is estimated by C(1 + J - k). For this we make use of an 
estimate which states that for all V E Ho2(BR), BR being the ball with radius 
R,and 0< a< R, 

(0.4) BO lvi < C (1 +log (-)) (L IVvI ) 

(We call this estimate the "inverse estimate," because the left-hand side can 
approximate supBR v I for a-- 0.) 
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Unfortunately, this procedure does not provide a similar improvement of the 
conditioning in higher space dimensions. Recently, a new class of precondition- 
ers was found which gives dimension-independent results (see [3, 10]). 

However, the aim of this work is to generalize the ideas of [9] to higher- 
order problems and to nonconforming finite element spaces. The result is that 
the condition numbers that can be achieved depend only on the space dimension 
and a certain defect, produced by the projections from one level to the next. 
The second phenomenon does not occur for linear conforming elements. 

This work is organized as follows. In the first and second sections the nota- 
tions and assumptions on the discretizations and the finite element spaces are 
introduced. The third section shows how to construct a hierarchical basis and 
states the requirements for the basis transformation which ensure the result. It 
is shown, by an example, how this can be applied to general conforming ele- 
ments interpolating at the vertices of the discretization. This new basis defines 
a set of nested spaces Vk c Vk+1, for k > 0 such that V., = V and Vk is iso- 
morphic (but not identical as in the case of linear conforming elements) to the 
finite element space Vk on the kth level discretization. In ?4, we then study the 
norm of the isomorphism Vk -- k . In ?5 we consider the stiffness matrix when 
restricted to Vk+1\fJk. The lowest and largest eigenvalues are estimated with 
respect to a suitable vector norm. We also achieve an estimate for the projection 
V -* Vk. Here we use the inverse estimate (0.4), which has to be assumed to 
be valid also for nonconforming elements. Under the usual assumptions on V 
and the discretization, such an estimate is proved for two dimensions in the 
supplement section at the end of this issue. In ?6 the estimates for the smallest 
and the largest eigenvalue of S corresponding to the hierarchical basis are de- 
rived. Recall that cond(S) = Amax/Amin. All these results are summarized in ?7. 
In ?8 we consider as an example the linear but nonconforming case and include 
some numerical results. 

Notation. The following notation will be used: 

Hm P (Q)), Ho"'m (Q) Sobolev spaces (with zero boundary data); 

||li|mp, 1l limPO corresponding norms: j2 j,, = 1j j 
11.2 

+ 11 * Ilm _,p; 

1l Ilm,p;G, l l ||m,p,O;G as above, but restricted to G C Q; 
da diam(Q); 

l1 * Ilm ,p, *; G scalee invariant norm": 11 112 

- d 2(m-k) I _ 112k G for G with dG > 0; 
k=O 

PM(Q) the set of all polynomials of degree m on Q; 

IGI the n-dimensional Lebesgue measure of G c pn; 

jvI the Euclidean vector norm for v E p n . 

In this article we use the symbols c and C as unspecified constants, that is, 
in a sequence of estimates these constants may vary from one estimate to the 
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next (collecting all factors we are not interested in) although the symbol is not 
changed. 

1. THE DISCRETIZATION 

Let Q? be a bounded domain in in assumed to be representable by a set of 
linear inequalities: 

Q={xER n :pkx< fk, k=1, ... ,M}, 

where Pk and Ik are given vectors and scalars, respectively, and M > n is an 
integer. This means that AQ has a piecewise flat boundary. Let Q be divided 
into simplices 

n = UTi 

(for i in a finite set of indices), such that ITi n TjI = 0 for i :A j (consider 
the simplices as closed subsets of Q). This partition will be referred to as 
macro-discretization S05. 

Denote by E the unit simplex. Let 9&E be a set of points contained in E; 
for definiteness, 

9E ={P1,.. ,PNE } 

Let m be the degree of the problem we want to approximate (see ?0). To each 
P E HE we assign a nonempty set p: 

pcf{(v,r):VEN, O<v<m-1, rENv, r=[rj,...,rj]} 
(for vi = 0 we let r = 0). An element of the set 

XE:= f q= (i, v, r): : E HE, (v, r) E X} 
will be called a node. As will be pointed out in ?2, the number v gives the order 
of differentiation, and the vector r gives a set of directions for an evaluation 
functional localized at zi. 

For every simplex T, let eT: E -- T denote an affine linear isomorphism 
with det(VeT) > 0. Define eT on the set AE by eT(p, v, r) := (eT(fi), v, r). 
For convenience we assume the following symmetry in the definition of 4E: 
for any eE assume 

eE (YE) = AE 

A refinement of E is a partition E = Ui E into a finite number of subsimplices 
Ei (IEi n Ej = 0 if i 0 j) . For simplicity we only consider refinements for 
which dE, > 1dE. For each Ei fix a mapping eE, (because of the assumed 
symmetry it does not matter which). A set of nodes on the refined simplex is 
defined by 

AjE = {q = eE1(q), jE XE, Ei C E}. 
It follows that, if Ei and E have i' as a common point, then there are 

q1i, q12 E XE such that ( v, 1, r) = eE1(qj1) = 
Now let us construct a set of nodes on go. For each T E / we fix eT: E 

T. Let 
AX:={q=eT(q):TE 9', ch YEE}. 

We proceed by refining the discretization Sj. For this purpose we map a par- 
tition of the unit simplex via eT onto T e Tj. In this way we can construct 
local or global refinements. One step of refinement is called complete if T is 
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partitioned into subsimplices T1 such that any simplex T1 with dT, = dT will 
not be refined in any further step. Applying one complete step of refinement 
to To yields SY and, as above, also a set of nodes A',. After having applied 
k steps, we get 7k and Ak, respectively. It will be assumed that this process 
leads to what is called a "regular discretization." This means that the quotient 
of the diameter of T and the radius of the inscribed ball remains uniformly 
bounded for all simplices in each discretization. For example, such algorithms 
are described in [2] or [8]. 

In many estimates it is important to separate the properties depending on 
the scale of a simplex T from those which are scale-independent. This will be 
indicated in the following way. For any T let T d 1 T denote the scaled 
simplex. If a constant depends on T, this means that it depends only on the 
scale-independent properties of T. 

If we write a b for two expressions a and b, which both depend on 
T, this means that there is an estimate ca < b < Ca with constants c, C 
depending only on T. 

2. THE FINITE ELEMENTS 

Let Vk be a finite element space corresponding to Xk . Following [4, p. 78], 
we can describe it by a triple (2, Sk, Xk), where Sk is a set of functions on 
Q and Xk a set of functionals on Sk. Let E be the unit simplex and SE a 
function space on E such that 

Pm-1(E) C SEc Cm (E). 
On T E A we define SkIT via the affine linear isomorphisms eT by 

SkIT:= {u = v o e1 :V ESE}. 
Note that u E IPm-I(T) whenever v E Pm-I (E). 

Now we want to construct the functionals. First, consider the discretization 
So. Define g to be the set of all points in Q lying in the (n - 1)-dimensional 
interior of the boundary of a simplex. Define vector functions al, .I. , an with 
the following properties: 

1. an is a unit normal vector on the corresponding face; 
2. a1, ... , an-, are linear independent tangential vectors; 
3. the vector fields are constant on each connected component. 

For Sk (where Yk is defined analogously) such vector fields are defined by the 
following recursion: 

if p E 7k I, then a1, ..., an are already defined; 
if P E Ykj\k-I, then define a1, ... , an using criteria 1-3. 

The canonical basis of Rn', interpreted as a constant vector field, is denoted 
by an+, ... , a2n . A global regularity condition on Sk may be given by Sk c 
Cm-li(Q), in which case we speak of conforming elements. If, on the other 
hand, Sk t Cm-I (Q), the elements are called nonconforming. In the latter case 
there are of course some regularity conditions which assure the usefulness of 
these elements for approximating problem (0.1). 

The set Xk can now be defined as follows. Let .,4k be the set introduced in 
?1. For each q = (p, v, r) E Xk we define a functional 

Fq: Cv(Q) i , 
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where for v E Sk 
Fk(V) = Vvv(p)[ar,(p), *, * art(p)] 

with 1 < rj < 2n. Of course, we have to assume that the functionals are well 
defined on functions in Sk . This follows immediately for conforming elements. 
For nonconforming elements, Fqk is a functional on Sk if p and the vector 
fields ar, are chosen properly. 

A basis of Vk shall be given by a set of functions !Dk e Sk, q E 4k, for 
which Fqk((k) = 5qq Recall that a function u in Sk is assumed to be uniquely 
defined by its values F1k (U). 

Now assume that we work with J + 1 levels, that is, k varies from 0 to J 
for a given J E N. For convenience we will omit the level index in the special 
case k = J, thus writing V = Vj and so on. 

For u E V let 
Z U12 IIUI1rn2OT |llV = || 2 , 0; T- 

TE?7 

This expression is assumed to define a norm on V, which means that this finite 
element space is an appropriate approximation of Ho7 2(Q). In the sequel we 
assume that it is sufficient to require that 

k := span{f4D q E (k\OXAk)}, 

where &'k = {q E 4k: P E OQ}. Note that 1l - IIv is also a norm on Vk. 
Moreover, for any Q' c Q we define 

|IUI12 a/ := E IIUI1m2toT~ 
TE?7 

For later use we state the scaling properties of the norm of the basis functions. 
For this purpose, consider CIk on T E gk . Defining 

q (X) = dT 7?q (d TX) X X E T, 

we obtain 
IV;liv; T de (v mlldll m,2,O; T 

Note that II Iq II,2,O; 1T 

3. THE HIERARCHICAL STRUCTURE 

a. The hierarchical structure on the nodes. In the following we want to con- 
struct a hierarchical order on X = XAj. Therefore, consider again E, the 
unit simplex. Applying one step of refinement, we obtain a discretization 9T 
and a set of nodes YE4 on E (see ? 1). Consider the set of invective mappings 
7r: PE I? -XEY of the form (p, vo, r) ~-4 (fi(p), v , r) (for appropriate mappings 
?r). With this, we get a set of similar mappings on 

k; T = j{q EAk: P E T} 

for each T E ST. Now we fit these mappings together in a suitable way to 
obtain a well-defined invective mapping 7ok: Ak - kl . As a consequence, we 
have that 7rk is the identity on each vertex, and if a node q is located on a 
face of a simplex T E Tk, then the same holds for 7rk (q) . 
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Having defined irk for k = 0,..., J - 1, we now define 

/Ik := {q E A: q = 7rJ-lo * o 7k(q'), q' E 4} 

for k = O ... ., J-1. Let Anj := X . Noting that A0 c _ * c AY, we define the 
nonempty sets of nodes of the kth level by Mk := Xk\4-I for k = 1, . .. , J . 

In particular, 3o := A0 . This leads to a decomposition of X into disjoint sets 

vt = U Sk' 
k=O 

or more generally, 4k = U0- 4r . In general, 4k $4 k, because Ak may differ 
from 4k in the first argument (compare with the construction of 7r above). But 
using the mappings 7rk , we may identify both. (More precisely, we may identify 
the set of points with the corresponding set of indices and put the numbering in 
a hierarchical order; this is what is done in applications.) Therefore, we write 
in the sequel 4rk = Xk and k = 4k- 

b. The hierarchical structure on the basis functions. Let 0 < k < J - 1. On 
Vk+l we define the following functions: 

(Dkl 
E ks~ for q e -Wk+1 q qq q 

q - q ~qq q7 

where C4k- $ 0 implies that {q, 4} c T for some T E Xk . Concerning the 
qq 

coefficients, we assume the following: 
(Al) (definiteness) For arbitrary u E Vk+l there are uniquely defined coeffi- 

cients ?iq and /3q such that 

U= Z aq q =EaqI<+ A flqk+l 
qEA4'k+ I qEAk qE ak+1 

(A2) (consistency) For T E Sj, let w E IPmI(T) . We know that W E Vk+ IIT. 
Expressing w in the new basis, we obtain that w E span(Dq : q E 4k; T) 
on T and, moreover, 

Yq( Yq E Dk on T. 
qE.k;T qE.k;T 

(A3) (stability) For u as in (Al) and T E Sk it is assumed that if q E k; T. 
then 

laq? <max Iac71. 
qEark+ 1; T 

(A4) (scale independency) The coefficients in definition (3.1) do not depend 
on the diameter of T after having applied the transformation 

T dT Ts Dk (X) F > d T qdX (x = dT')- 

In this sense, they are assumed to vary only in a bounded subset of R (inde- 
pendently of k). 
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We now define a new basis on V. This is done recursively. Let formally 

Pq =Fq for all q E X. Then for k = J - 1, .., set 

Tpk+i = E k _-k+l for q E Wk+l, q ~~qqT4q 
(3.2) quakk+l 

q q L qq q 
qEik + I 

with the coefficients given in (3.1) and fulfilling (Al)-(A4). 
We now express u recursively in the new basis. Starting with 

U= aqcIq= E aV-qI+ I:qfiq T 
q EAJ qEAJ- I qEWj 

we obtain for 0 < k < J 

E _ -k-1 E E 
IlT' 

quirk - I l=k qEWl 

Defining T = V we get the representation 
J 

1=0 qE-f, 

This new basis will be called the hierarchical basis. This recursive process also 
shows that the matrices B and B-1 (where B-1 transforms the original into 
the hierarchical basis) can be represented as a product of "simpler" matrices 
Bk, k = 0, ... , J. Here, "simpler" means sparse and easy to invert (this is 
due to the required localization of the coefficients in (3.1)). This is of great 
importance for the application of this basis transformation as a preconditioner. 

We are led to the following definitions for 0 < k < J: 

Vk:= span{Pq :0</? k, q E 1}, Wk :=span{'q: q E k}, 

k 

.LkU := E flq~q, fkU: ,Liu. 
qEflk 1=0 

One verifies readily that V = @Jo W1, IjU = u, and LkU = Iku - I 1U for 
all uEV and 1<k<J. 

c. Example. Let 93E be the set of vertices of E and let the spaces Sk be 
conforming. Then if 

ck _ J 6qV for q E Wk+lX 

F l k(q) for q E Xk, E -Wk+l, 

the assumptions (Al)-(A4) are satisfied. 

4. THE NORM OF THE HIERARCHICAL BASIS FUNCTIONS 

In this section we study the dependence of II'Pk I2 on the level index k. 
Therefore, we introduce the operator Qk: Wk -- Wk by 

Ei T k fi E D k 

qfEak flaWk 
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Now we prove the following 

Lemma. Let U E Wk be given. Then there exist constants a and T (not de- 
pending on k and J) such that 

1l U 12 < UTJ k 11QU112 

Proof. Let O < k < J - 1 and T E tk . We know that for W E Pm-I (T) 

W Z Yq q= Z q 
qEk;T q EAk;T 

If, for arbitrary u E Vk, we define a mapping by 

Vuck k bc -k U =L(J0qUq L q(Dq ~q 
q El~ q E, ~ 

we have just seen that u = ii on T for u E lPmq(T). Using the scaling 
required in assumption (A4) of ?3, we can derive the estimate 

|||V; T < T(T, ;)IIV; T 

because we showed that IIUI2 = 0 implies IIUII2 0. Note that VkIT is 
of uniformly bounded dimension. In the estimate above, 4 stands for the set 

of coefficients Ck ~-k -k+1 of coefficients 4'kq involved in the definitions of Fq and Foq but scaled to 
T. Recall that it is assumed in (A4) that these do not depend on the size of 
T. Take T to be the maximum of all T(T, 4) which can occur for T E tk, 
k = 0, ..., J. As a consequence, we get the estimate 

|||V;T - TIIV;T- 

On Vk, viewed as span( q E Xk), we define the mapping Qk: Vk Vk by 

q&~ q 
q 

qbEuck qfla1k 

Now let k = J - 1 and T E Tj- i. The first part of the proof shows that for 
U E i;TJ-1 

IIIV;T < T||Qj-,lUIV;T- 

Summing over all T E TJ-1 gives 

llullV < TIIQj-iulIv. 

Let us now assume that the estimate 

|lV; T - AkllQkUlIV; T 

holds for 1 < k < J- 1, T E St, and u E Vk. Consider uE VkE l and 
T E gTkl - Using (3.2), we can rewrite u as a function in Vk. But then the 
foregoing assumption can be applied, and the estimate 

fly V; T < ok ndQkUuVc;T 

follows. We can now apply the first step of the induction again to obtain 
11n 112 U r1 11 2 
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Therefore, 'kk-I = TZk and Zj-1 = T. Summation over all T e Tk yields 

gIU12V <TV k11 Ok~l~ 

Now let u E Wk, that is, u = E /1q'Pk. Utilizing (3.2), we rewrite u as a 
function on Vk. By the preceding result we have 

2 

IIUI12 < TzJkII1u1I2 = TJ-k Z f ok 

qfEak V 

So it remains to estimate the norm of the mapping 
V = WE qH*k aV EW k 

qdEk qdEk 

If the right-hand side is a polynomial, it is zero because of (A2). Using the same 
arguments as at the beginning of this section yields 

|lV; T - alVl; TV 

where a can be chosen independently of all T, k, and coefficients 4'k,* This qq 
gives 

gI112 < U7TJk klQkU 112.a 

5. ESTIMATES FOR THE PROJECTION OPERATORS 

Let us define the operator Lk := QkLk: V ` Wk. In the following we give 
two estimates for Lk U. 

a. Spectral estimate for ILk u I2 . Let 

V LkU = Z fiqqk 

qE~k 

Fix T E gk-l and consider VIT. If v E lPmq(T), we conclude from (A2) 
that v = 0 . This shows that liv T defines a norm on the coefficients of v IT. 
Scaling to T yields 

V = E flqd I'.k 

q E-k ; T 

Recall that IIIok112 I. 1 . Therefore, there are constants depending only on 

T and the number of coefficients of v IT such that 

,2, 0; T E: dT 
qEWk; T 

Rescaling establishes 

IIVI12; 
E 2d(v-m)+nlf 

12. 

q E-k ; T 

If we introduce the vector norm 

IZ1*2 T- = E 2T(v-m)+n Ifiq 
12 

*;T 
~~T qE-Wk; T 

for the vector representation z of u, this result can be written as IIaLk U u; T 

IZI2;T 
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b. The operator norm of Lk. Let u E V and T E Sk-I . We have proved in 
the first part that IILku12Z.T < CIZ12 for z the representation of u in the 
hierarchical basis. Recall how the basis transformation to the hierarchical basis 
is performed and that it is stable in the L??-norm by (A3). Using this, we can 
derive for each aq, q E Xk, that 

Iaq? < max la-I, 
qJE,4Vj;T 

and from the last transformation step we obtain 
m-i 

iq& < Cdv Vdv max Ia-I, 

where we used (A4). The constant in this estimate depends on the coefficients 

Cqkq . From this, we obtain immediately 
qq 

m-i 

IZI2 < C E df ) 2 

v=O 

for some appropriate triangles Dv E j, Dv c T. 
Let us first consider the case of conforming elements. In this case we refer 

to an estimate that is well known (e.g., [9]; see also Lemma 2 in the supplement 
of this issue). It states that 

(5.1) (+1 I v) ? Cdh2nK (-) IIVI,2 

holds for any v E Ho,2(T), where for A > 1 

() {I + log(A), n = 2, 
An-2 ~ n > 2. 

Applying this estimate to Vv v instead of v, for 0 < v < m - 1, yields 

(5.2) d 2(v-(m-1)) (- jivvi)2 < Cd 2nK (-) IIVIIn2,*;T 

v=O 

In case of a nonconforming space we assume that such an estimate generally 
holds. But for a certain class of elements, Lemma 3 in the supplement provides 
a proof that such an estimate can be obtained. 

The usual scaling technique shows that 

j i1Vvul IUIv, o;D. 

Thus, we get 

IZ12T< C max K d~IU1 l*; T _ DEg JDCT D) J V *; T 

For arbitrary w e lPmrn(T), T E Xk-j, we have Lku = Lk(u - w), and 
therefore 

ILkII; T<C {K (ax)}IV;T 
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using the Poincare inequality for functions having mean value zero (see the 
remark following Lemma 1 in the supplement). 

6. ESTIMATES FOR THE EIGENVALUES 

a. The minimal eigenvalue. Consider T E k- 1 for k = 1, ..., J. Utilizing 
the results of ?5 yields 

I <l;TC max fK(dT VI U2 l Z l*; T < D 7DCT {KdJJ j)}Uj V; T 

and summing over all T E X- gives 

S lzl*.T<Cmax max {K( l11U112V. T ' TE jDE5 , D CC T dD 

We introduce for k > 1 

dq:= max{dT: T ESk-l, q e T}, 

sum over k, and obtain 

J J 

lLoull2 + 5 5 2(v-m)+n flql2 ? C llLkull1 
k=1qE-Wk k=O 

max K dT\ ~2. IU1 
<CE max -a xK (= CA-' 

k=O TE -DE T; DC9 dD-) 11U11V JC 'lul_, 

b. The maximal eigenvalue. The following estimate holds without any further 
restrictions: 

J 52 J J 

IU12 < { SlLkul }2 < C T zk |1Lkul12V 
k=O k=O k=O 

(9 J 
< CKT,j 'jllLoull12 + k E d}2(v-m)+nlf12 

t ~~k=1 qE~k) 

(using ?5a), where KT, J := EJ Tk . If we can prove that for j > k there 
exists a < 1 such that 

(LkU, LJU)v < Cakllujjvj ivj|V 

for all u, v E V, the previous estimate can be slightly improved. Using the 
arguments in [9], we obtain 

J 

IuIl12 < C max(1, TJ) S llLku112v. 
k=O 

7. RESULTS 

The previous sections are summarized in the following theorem. 
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Theorem. Let Q be a polygonally bounded domain and (gk)k=O, ij a sequence of 
discretizations of LI fulfilling the assumptions stated in ? 1. Equip the discretiza- 
tions with finite element spaces as described in ?2. 

Assume that there exists a hierarchical structure fulfilling assumptions (Al)- 
(A4) of ?3b and that an estimate of the form (5.2) can be established in case of 
nonconforming elements. Then there exists a basis transformation B that can 
be represented as a product of matrices with small bandwidth and a diagonal 
matrix M, such that for S being the matrix in (0.2), 

(7.1) cond(M*B*SBM) < CKT,JAJ. 

The constant C depends on scale-invariant properties of the triangulation and 
the conditioning of the stiffness matrix on the coarsest level. Moreover, 

fAO((J + 1)2) n=2, 

A-f0(2j(n-2)) n > 2, 

and KT, = LO Tk, for T as described in ?4. If we have, in particular, a 
uniformly refined discretization consisting ofsimplices of approximately the same 
size, and if h = 2-J is the average diameter of the simplices of the finest level, 
then (with Id denoting the logarithm to base 2) 

A_ j O(jld(h)12), n =2, K 
f O(Ild(h)j), T= 1, 

0- (h-(n-2)), n > 2, Ot - =I (-d(T) ) T> 1. 

Under the additional assumption stated in ?6b, one has the improved estimate 

KT, j =max(1 ,rj), 

so that for T = 1 we have K,, j = 1. 

Proof. Using the notation of ?6, we have already shown that 

cA 1 (IILouII2i + E E d2(v-m)+nflq 12 | < ? u12 
k=1 qEk / 

and 

IIUI12 < CKTj (ILouII2 + d2(-m)+n Zfi 12 

k=1 qEk / 

Take z to be the vector of the coefficients for u in the hierarchical basis. Recall 
that IIUII2 z*B*SBz, where S is the stiffness matrix for the original basis. 

With constants depending on the smallest and largest eigenvalue of the prob- 
lem on the coarsest level and an appropriate diagonal matrix M, we derive 

cA-'1z12 < z*M*B*SBMz < CKT,jIz12. 

Notice that by the definition of the refinement procedure we have for T e 9k 
and D e S9] with D c T 

d < C2Jk. 0 
dD- 

Remarks. (i) As proposed in [9], one can invert So, the stiffness matrix for the 
coarsest problem, to improve the constants in the estimate above. In this case, 
replace the submatrix in M corresponding to the coefficients for the coarsest 
level by SO 1 . 
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(ii) We observe (as was known before [9]), that the improvement in the 
behavior of the condition number in two space dimensions is quite better than 
in three dimensions. Note that the conditioning of the stiffness matrix in (0.2) 
does not depend on the space dimension. On the other hand, the condition 
number due to the hierarchical basis does not depend on the order of the elliptic 
problem. Therefore, one may obtain satisfactory improvement for 4th-order 
problems in three dimensions (if z is close to 1). 

(iii) If a conforming element is a polynomial when restricted to a single 
simplex and if we use the hierarchical structure proposed in ?3c, we find that 
r = 1, because we can exactly reproduce the basis functions on the next level. 
As an example, we refer to the case of the linear element [9] (see also [5]) and 
as a contrast to the RHCT-element [4], where z 2. 

(iv) As one can see in ?4, z can be obtained by means of local considerations. 
In practice it may be enough to consider only a few situations to obtain a 
reasonable value for r. For this purpose we consider T, the refined simplex 
T', and the corresponding stiffness matrices S and S' (restricted to T) . Given 
the coefficients of the basis transformation, we can compute S, the stiffness 
matrix with respect to the basis functions of the coarse level. z is now the 
maximal eigenvalue of the matrix S1SS . But S and S are not bijective, since 
Sz = 0 if z corresponds to a polynomial function. However, both matrices are 
symmetric, and therefore we can restrict ourselves to the subspace Image(S). 
Notice that we have required that Ker(S) = Ker(S) . 

(v) The assumption that Q is a polygonally bounded domain can be re- 
moved. Assume that aQ is sufficiently smooth. We start again with a macro- 
discretization 9j and perform a complete refining step to obtain 7. Now 
we improve the approximation of the boundary of Q by modifying 81 to a 
discretization 5j* (see, for example, [4, Chapter 4.3]). Then we refine 7;* to 
obtain 2 and modify 2 to get 2*, and so on. We introduce a hierarchi- 
cal structure as before. In order to compare the spaces Vk to the spaces Vk, 
we have to take into account the modification Sk - *, that is, we have to 
compare Vk with Jk* and Jk* with Vk. Notice that even in the case of con- 
forming linear elements this will produce a defect (z > 1) . However, using the 
regularity assumption on a Q, we notice that in each step we get an additional 
factor of the form 1 + chk for 0 < k < J. But the product of these factors is 
uniformly bounded, and we end up with the same results as presented here. 

8. THE NONCONFORMING LINEAR ELEMENT 

Here we want to discuss the case of nonconforming linear elements in R2. 
Let (Gs)k be a sequence of global refined triangulations (that is, every triangle 
is partitioned into four similar triangles). A basis function looks as follows: 

0 0 

0o0 



HIERARCHICAL BASES FOR ELLIPTIC PROBLEMS 527 

It is continuous on the inner edge (where it is 1) and on the other edges it is only 
continuous at the midpoints. The set of all midpoints of the edges belonging to 
Q will be denoted by X. In general, a function in V is only continuous at 
points in X. In this example, the set of nodes is given by 

X = {(P, , 00): p E #} . 

The problem mainly consists in finding a hierarchical structure on X#. 

a. The hierarchical structure. Assume that an orientation is given for each edge. 
The definition of 7T is shown in the following picture: 

q3~~~~~~~q 

q3 

q2 q2 

As explained in ?3a, this will define a hierarchical structure on the nodes. Con- 
sider the following triangle: 

1 2 

12 i2 

Here, 

il, i2, i3 are the nodes on the next higher level and 
i l i2, i3, il, j2,13 are the nodes on the actual level. 

The new basis functions (restricted to one triangle) are given by 

Di, =Di, + (Di, + 4(,l + ci3) + CLj2 

1i 2( i-oi) o 

cFi2 =i+2 + + O'il + (kj2) + C(3 

Di3 =?i3 + (Di, + 4(D2 + Oh3) + Ckilj 
13 23 13 

If we require that 24 + C = 1, it is easily seen that this definition fulfills the 
assumptions (Al)-(A4). According to this definition, the transformation from 
the standard to the hierarchical basis looks like 

a= (ai + ai- ) a + 

Ail ail -ail a* 

flil aj ai- 4(Z6 + Zi2) - Ci3a*aaa 
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The dots refer to analogous relations for the other coefficients. 
In proving the estimate (7.1) for the case of nonconforming elements we 

have to show that the estimate (5.1) holds. This is proved in Lemma 3 in the 
supplement. 

b. Numerical results. To give an example, we restrict ourselves to a triangulation 
of Q = [0, 1] x [0, 1] consisting entirely of triangles having two sides of equal 
length enclosing an angle of 900. Calculating z numerically gives the following 
results: 

0.0 0.1 0.2 0.3 0.4 0.5 

4.00 3.00 2.32 2.02 2.08 2.5 

1d(r) 2.00 1.58 1.21 1.01 1.06 1.32 

The smallest and the largest eigenvalue were computed by vector iteration and 
inverse vector iteration, respectively. Furthermore, the Dirichlet problem 

Au=0 inQ, 

U(X , y) = x2 _ y2 in aQ 
was solved (it denotes the number of iterations). PGG I refers to our hierarchical 
basis preconditioning with - = 0.4, while PCG II stands for the corresponding 
preconditioning with 4 = 0.5. 

CG PCG I PCG II 

Amin Amax it Amin Amax it Amin Amax it 

2 0.43 11.5 10 1.2 18 14 1.3 24 14 

3 0.10 11.7 30 0.85 28 23 0.93 42 25 

4 0.025 11.8 61 0.66 44 36 0.72 74 39 

5 0.006 11.8 121 0.53 69 48 0.59 130 58 

6 - - 235 - - 67 - - 87 

If Ck is the condition number of the kth refinement, then 

Ek *= 9log(Ck /Ck-1) 

log(Nk/Nk-1) 
is an approximation for the exponent v in the assumed law Ck = CNkv (Nk = 

dim(Vk)). For PCGI we get E5 0.95 and for PCGII we get E5 1.1. For 
the 6th refinement, the computation time for solving the Dirichlet problem with 
PCG I preconditioning is about 0.6 times the time needed for the ordinary CG 
algorithm. 
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