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FINITE ELEMENT APPROXIMATION 
OF A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION 

WITH A WEAKLY SINGULAR KERNEL 

C. CHEN, V. THOMEE, AND L. B. WAHLBIN 

ABSTRACT. We give error estimates for the numerical solution by means of the 
Galerkin finite element method of an integro-differential equation of parabolic 
type with a memory term containing a weakly singular kernel. Optimal-order 
estimates are shown for spatially semidiscrete and completely discrete methods. 
Special attention is paid to the regularity of the exact solution. 

1. INTRODUCTION 

We shall consider the initial value problem (with Ut = a u/Ot) 
At 

ut+Au= jK(t-s)Bu(s)ds+f(t) in Q, for t > 0, 

(1.1) u=O onaQ, t>0, 

u(0) = uo in Q, 

where A is a linear positive selfadjoint elliptic and B a general partial differen- 
tial operator of second order with smooth, time-independent coefficients, where 
K is a weakly singular kernel K(t) such that 

(1.2) IK(t)l < Ct- with 0 < a < 1, for t > 0, 

and where Q is a sufficiently smooth domain in Rd. d > 1 . Integro-differential 
equations of this nature appear in applications such as heat conduction in mate- 
rials with memory, population dynamics, and visco-elasticity; cf., e.g., Friedman 
and Shinbrot [3], Heard [5], and Renardy, Hrusa, and Nohel [12]. For equations 
with nonsmooth kernels such as in (1.2), we refer to Grimmer and Pritchard 
[4], Lunardi and Sinestrari [10], and Lorenzi and Sinestrari [9] and references 
therein. Finite element methods for problems of the form (1.1) with a smooth 
kernel K have been discussed in, e.g., Sloan and Thomee [13], Yanik and Fair- 
weather [15], Thomee and Zhang [14], LeRoux and Thomee [6], Cannon and 
Lin [1], and Lin, Thomee, and Wahlbin [7]. 
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For the numerical solution we assume that we are given a family {Sh } of 
finite-dimensional subspaces of Ho' = Ho1 (Q) such that 

(1.3) inf{llv - xli + hllv - xIli} ? Ch2IlvII2, Vv e H2 n Ho, 
XESh 

where is the norm in L2 = L2(Q) and 1 IIs that in HS = Hs(Q). 
We consider first the semidiscrete problem of finding Uh: [0, ??) ' Sh such 

that 
it 

(Uh, t, x) + A(Uhx)= JK(t-s)B(Uh(S), x) ds + (f(t), x), 

)VxeSh, t>O, 
Uh(O) = UOh, 

where (a .) is the inner product in L2 and A(, *) and B(, *) are the bilinear 
forms on Ho' associated with the differential operators A and B, and where 
UOh is an appropriate approximation in Sh of the initial data in (1. 1). We shall 
show that, for each T > 0, we then have the error estimate 

(1.5) IIuh(t) - u(t) < CTh2 {11uo12 + j IlutII2ds} for t < T. 

We shall also consider the discretization in time of (1.4). Thus, let k be 
a time step, and let Un e Sh be the approximation of the exact solution of 
(1.1) at time tn = nk. The time discretization considered will be based on the 
backward difference quotient jtUn = (Un - Un-')/k. The integral term then 
has to be evaluated by numerical quadrature from the values of the Un, but 
since the integrand is singular, even when the solution is smooth, we shall use 
product integration: We shall approximate 0 in Jn(q) - ftn K(t_-s)q (s) ds 
by the piecewise constant function taking the value 0(tj) in (tj, tj+ 1), and thus 
use 

n-I pt3~1 n-I 
Jn (q) Qn(q$) = Z K(tn - s)q(tj)ds =E Kn-ji(tj), 

j=-0 
t 

1=0 

where 
otj 

(1.6) K= J K(s) ds. 

Our completely discrete scheme is therefore 

(at Un, %) + A( Un' X) 
n-I 

(1.7) = Kn-jB(UjX)+(f(tn),X), VxESh, nf> 1, 
j=0 

U0 UOh. 

For this completely discrete method we shall show 

(1.8) UUn - u(tN)I < CT(h2 + k) {IIuoI2 +j (Iluttli + IlutII2)ds} for t < T. 

Before we analyze these discrete methods, we shall discuss the existence and 
regularity of the solution of (1.1) and show, in particular, that the regularity 
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required for the estimates (1.5) and (1.8) are satisfied under appropriate as- 
sumptions on the data. In the case of a weakly singular kernel the regularity of 
the solution with respect to time is limited, which makes higher-order quadra- 
ture formulas less attractive, as well as quadratures based on the use of sparser 
sets of time levels, such as those treated in [13] and [6]. 

2. AN EXISTENCE AND REGULARITY RESULT 

In this section we shall study the existence and regularity of the solutions of 
(1.1 ) and show, in particular, that the regularity required for the error estimates 
(1.5) and (1.8) holds under appropriate assumptions on the data of (1.1). 

We shall need the following version of Gronwall's lemma. 

Lemma 1. Assume that y is a nonnegative function in L1 (0, T) which satisfies 
rt 

(2.1) y(t) < b(t) + fi j(t - s)-y(s) ds for 0 < t < T 

where b(t) ? 0, f8 > 0. Then there is a constant CT such that 
at 

y(t) < b(t) + CT j(t - s)-b(s) ds for t < T. 

Proof. Let K1 (s) = 8ls- for 0 < s < T, and let K1 * f denote the convolution 
rt 

(K1 * f )(t) = j KI (t-s)f(s) ds. 

Recall that this is a bounded operator on LI (0, T). With K1 the kernel of the 
i times iterated convolution, we have 

Ki(s) < C(i, a)si1a- 

and we easily see that Ki * b(t) < CK1 * b(t) for i > 2. Hence, applying KI* 
to (2.1) i times in succession, we obtain 

y(t) < b(t) + C(K1 * b)(t) + (Ki * y)(t). 

For i(1 - a) - 1 > O ,we have 

(Ki *y)(t) < C jy (s)ds 
0 

and we can use the ordinary Gronwall lemma. Since 
rt J b(s) ds < C(K1 * b)(t) 

this concludes the proof. D 

We shall also need the following lemma. 

Lemma 2. Let K E LI (0, T). Then for each e > 0 there is a constant CE = 

CC(IIKIIL1(o,T)) such that 

(2.2) fT0 j K(t - s)f(s)f(t) dsdt 

<221T T t 
< e; f(t)2 dt + Cc; JK(T -t)l; f(S)2 ds dt. 
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Proof. In this proof, let (., ) and 11 * 11 denote the inner product and norm in 
L2(0, T). We have, using the Cauchy-Schwarz inequality, 

t 2 

1(K * f )(t)12 < I j K(s)l 11/2 K(s)I 1/2 1f (t - s)I ds) 

? IIKII|,(O T) j IK(s)|f 2(t - s) ds. 

Hence, integrating with respect to t and changing the order of integration, and 
then changing variables, 

IlK * f 112 < IIKIIL (0 T) J K(s) I f 2(t - s) dtds 

PT rT 

- IIKIIL (O, T) j IK(T - T)I f 2(a) dur dT. 

Hence, for the left-hand side of (2.2), 

(K * f, f )I < ?1K * f li Ilf II < 8I1f 112 + 1IIK * f112 

< 811f 112 +- I lllL (,( T) I; K(T -t)| I f(s)2 ds dt, 21 

which is the desired inequality. El 

The following is our main existence and regularity result. 

Theorem 1. Assume that u0 e H8 n Ho, f e W([0, T]; Hfi-2) and tyft e 
L,,(0, T; Hi-2) with / > 2, 0 < y < 1. Then there exists a unique solu- 
tion of (1.1) in W ([0, T]; L2) . Furthermore, u e W([o, T]; H2 n Ho4), Ut e 
W([0, T]; L2) n LL(O, T; H2 n Ho)), and utt e LI(O T; L2) 

Proof. We shall use the procedure of Faedo-Galerkin. Let {q$j}j be the eigen- 
functions of A. We first seek un e 9n = span[ql, .. n, qn] satisfying 

t 
un +Aun = / K(t-s)PnBun(s)ds+Pnf(t) in Q, for t > 0 

(2.3) un=0 onaQ, t>O, 

un(0)=Pnuo inQ. 

Here, Pn denotes the L2 projection into 9n . By standard arguments, cf., e.g., 
Linz [8], this system of ordinary integro-differential equations has a solution 
un e W ([O. T]) nW2((O, T]). 

We shall next derive a priori estimates for un . We first show that, indepen- 
dently of n, 

(2.4) (jT Iiu11nII dt) + ( n IlutIIP dt) <1 CTM y 

for some p = p(a)> 1, 
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where 

Mf, r = Mfl,Y(Uo, f) 1)UO11fl + I|f(O)I1fl-2 + SUP(sYIft(s)I1f-2). 
s<t 

Differentiating (2.3), we find that Vn = un satisfies 

vn + Avn = K(t)PnBPnuo 
t~~~~~f 

+10 K(t-s)PnBvn(s) ds + Pnft(t) in Q, t > 0, 

(2.5) vn=0 onOQ, t>0, 
vn (0) = -APn uo + Pnf(O) in Q. 

We now define w' = wn j, j > 1, inductively by 

wt4+Aw1=K(t)PnBPnuo+Pnf(t) inQ, t>O, 
w1 =0, onOQ, t>O, 

W 1 (0) = -APn uo + Pnf(O), 

and then, for j > 2, 

t 
wJ +AwJ = jK(t - s)PnBwj-1(s)ds = Wj-1(t) in Q, t > 0 

WJ=O onOi2, t>O, 

w'(0)=0 inQ. 

Setting zJ = vn - j~ wI, we find for j > 1 

t 
zJ + AzJ =1 K(t - s)PnB(z' + wJ)(s) ds 

t 
(2.6) K(t-s)PnBzj(s)ds+gj inQ, t>O, 

zi=0 onOaQ, t>0, 

ZJ(0) = 0 in Q. 

We shall show below that, for any j > 1 and 3 with 2 < 3 < fi, there is a 
constant Cj = Cj(a, 3) such that 

(2.7) Iw'(t)ll5 < Cut -+(j8-J)/2+(j-1)(1-a) M 

Assuming this for a moment, we conclude first that 

( T 8 (/p 
(2.8) 11w 11ilP dt) Cj, M8,y for some p 1,> z1 
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In order to bound z', we first note that by (2.7) 

jig' 11 = f K(t - s)PnBwJ (s) ds 

at 
<?C (tC -s)-( s-?M+(j- -)dsMfl<CM,, if j(1 -a) > 1. 

We now multiply (2.6) by 2Azi (t) and integrate to obtain 

T 

j1A1/2zi(T)112 + 2 IIAziI12dt 

T t T 

< C ] (t2- s)IzJ(s)II2IWzJ(t)112 dsdt + C IIZ'i112 dsMfi,8. 

Hence, using Lemma 2 with e suitably chosen for the double integral, and the 
Cauchy-Schwarz inequality for the last term, we have 

2 I z'II~dt<CM/ + o IzjII2 dt + C] (T -t)- 11]z(s)I2 dsdt. 

Moving the second term on the right over to the left and using Lemma 1, we 
conclude that 

1 
21 

jZj j12dt < CTMfl, for j(1 - a) > 1. 

In particular, the estimate for un in (2.4) follows from this and (2.8). 
It remains to show (2.7). For this purpose we first recall that the semigroup 

E(t) generated by -A satisfies, for q E Hu with q = 0 on aQ if u > 1 

(2.9) IIE(t)OII, < Ct-(v-u)12jjljj',, 0 < ? < ?v, jt < 2.5. 

(For ji > 2.5, further boundary conditions have to be imposed on 0.) We 
have the representation 

rt 
W= -E(t)APnuo + E(t)Pnf(O) + j E(t - s)K(s)PnBuo ds 

t 
+ jE(t -s)Pnft(s) ds, 

so that for 5 < fi (which we may clearly assume less than 2.5), 

IW11w < Ct-C+(u1-6)'2(IuoIlfi + Ilf(O)Ifl-2) 
rt 

+ C j(t - S)- 1+(fi-)/2s-a ds luo lf 

at 
+ C j(t _ S)-l+(4-5)12S-7(S7 Ilif(S)11,8-2) ds 

< Ct-h +(fl-of)/2 M by i2 

We now proceed with a proof of (2.7) by induction for j > 2 and assume the 



FINITE ELEMENT APPROXIMATION 593 

result holds for j - 1. We note that then, for 2 < J < , 

rt 
11 WJ'-(t)I11-2 < C j(t- S)-aWj- 1(S)1I3 ds 

t 
< C. I (t - S)-S-1+(fl-3)12+(j-2)(l-a)dsl 

< C t__ -1+(8-.)/2+(j- )(I-a) 

Thus, by (2.9), if e < J </J, we obtain 

I1WJ(t)11C = jE(t - s)WJ-V1(s) ds 

rt 

<Cj-1 (t S)-1+(5-c)12S-I+(fi-c5)/2+(j-1)(1-a)ds MAlf 2 

< C_ 1t-1+(f6)/2+(J-1)(1-a) A 

which completes the proof of (2.7), and thus of the estimate for the first term 
in (2.4). Clearly, we then also have Ijun(t)II2 < C, and it follows easily from 
(2.5) that the bound for u7n in (2.4) is satisfied, and hence also that 

(2.10) jjun(t)jj2 + 1u7n(t)jj < C for 0 < t < T. 

We next proceed with a limiting argument. Writing (1.1) in weak form, we 
have 

at 

(ut7qm)+ A(u",qm) = j K(t - s)B(Un , qm)dS + (f(t), qm) for m < n, 

un(O) =Puo. 

By (2.10), a subsequence tn converges weak* in L,,(O, T; H2), and we re- 
fer to that limit as u. By (2.4) we may also assume that a (further) subse- 
quence un converges weakly in Lp(0, T; H2). Since un converges to ut in 
the distribution sense, the weak limit is Ut also in Lp (0, T; H2). In particular, 
Ut E Lp(O, T; H2). Similarly, by (2.4) again, utn- Utt in Lp(O, T; L2). By 
(2.10) we may further assume that (U7,n ), A(Unq) and B(un, qm) all 
converge weak * in Lo,(O, T), and the limits are (ut, Obm), A(u, ?Om), and 
B(u, qm), respectively. Hence, for any Y/ E L1 (0, T) and m > 0, 

T 

fA (ut(t)qm) + A(u(t) ,m) 

-j K(t - s)B(u(s), qm) ds - (f(t), $m)] y/(t) dt = 0. 

Since (Ut, qm) and (Utt, qm) both belong to LI (0, T), we have that (Ut, qm) 

is actually continuous on [0, T]. One similarly sees that A (u, /m) and B(u, q m) 
are continuous. Hence, using the density of the Om, one obtains the weak form 
of (1.1). Since U E LI(0, T; H2 n Ho1) and Ut e LI(0, T; H2 n Ho) , we 
have actually U E W([0, T]; H2 n Ho) . Similarly, Ut E W([0, T]; L2), and one 
concludes that (1.1) holds as an equation in W([0, T]; L2). 

This completes the proof of the theorem. E 
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To see that, in general, utt blows up as t -) 0, consider the problem 
rt 

ut +Au = (t - s)-Au(s) ds in Q, for t > 0, 

u=O onaQ, fort>O, 
u(O)=q inQ, 

where 0 is an eigenfunction of A corresponding to the eigenvalue A. Setting 
u(x, t) = k(x)y(t), we have for the scalar function y 

rt 

y' + Ay = A j(t-s)-sy(s)ds fort>O, 

y(O)= 1, 

and hence 
rt 

y"(t) = At- _ Ay'(t) + A j(t - s)-y'(s) ds. 

Since y' e F ([0, T]), we conclude that, for this particular function, (cf. also 
Miller and Feldstein [ 1 1 ]) 

IlUttll _ At-a as t --O . 

3. DISCRETIZATION IN SPACE 

In this section we shall derive the error estimate (1.5) stated in the introduc- 
tion for the semidiscrete method (1.4). 

For the analysis we introduce, following [1], the Ritz-Volterra projection Vh 
defined for an appropriately smooth function u by 

(3.1) A((Vhu-u)(t), x) = J K(t-s)B((Vhu-u)(s), )ds, VX e Sh, t > 0. 

We have the following error estimate: 

Lemma 3. We have for the Ritz- Volterra projection 

II(Vhu - u)(t)II + hll(Vhu - u)(t)I1i 

< Ch2 sup llu(s) 112< Ch2 {IIUo112 + j IlUtII2 ds}. 
s<tO 

Proof. Let W = Vhu and p = W - u. We begin with an HI estimate, and 
introduce also the standard Ritz projection Rh defined by 

A(Rhu-ux)=0, VxeSh. 

We recall that (see Ciarlet [2, (18.3) and (19.13)]), under the assumption (1.3), 

IIRhu - ull + hIIRhu - ul I < Ch2I1UII2. 

We have, using the definition of W, that, with c > 0, 

cll(W- RhU)(t) 112 < A(W - RhU W- RhU) = A(p, W - R U)(t) 
rt 

= j K(t - s)B(p(s), (W - Rhu)(t)) ds 

< CII(W - Rhu)(t)I1 j (t - s)-aI|p(S) 11 ds 
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and hence 
t 

IIp(t)Iii < C] (t - S)-aIIp(S)II1 ds + II(Rhu - u)(t)I1i. 

Lemma 1 now implies 

II P(t) III < CT SUP II (Rh U- u)(s) III < CTh sup l u(s)|112. 
s<t s<t 

We next turn to the L2 estimate, which will be derived by a duality argument, 
thus using 

IIp(t)II = sup (p(t), q). 
11011=1 

For each such 0, we let qi be the solution of 

AyVI in Q, q/ = O on aQ, 

and recall that 

(3.2) IIY'112 < CIIOII = C. 

Then, for x e Sh, 

(p(t), q) = A(p, V/) = A(p, q/ - x) + A(p, x). 

Here, 

A(p, x) = K(t - s)B(p(s), x) ds 

= X K(t-s)B(p(s), % - V) ds + K(t-s)(p(s), B* V/) ds, 

and hence, with x = RhWV, using (3.2), 

(p(t), <) < C sup Ilp(s) l I IIRh V - VII I + Cj(t-S))-aIIp(S)II ds I" 1V2 
S<tO 

r o ~ ~ ~~~~~~~~t 
<C { h2 sup I1u(s)112 + j(t - s)-llp(s)II ds}. 

S<tO 

Thus, 

IIp(t)II < Ch2 sup IIu(s)II2 + Cj (t _ S)-llp(S)lds, 
S<tO 

which by Lemma 1 completes the proof of Lemma 3. C 

We shall also need the following estimate for the time derivative of the error 
in the Ritz-Volterra projection. 

Lemma 4. Under the assumptions of Lemma 3 we have, for p = Vh u - u, 

j(IIptII + hIIptIII) ds < Ch2 {IIuoII2 +; IIutII2ds}. 

Proof. Writing (3.1) in the form 
t 

A(p(t), X) =/K(s)B(p(t -s), X) ds, VX E Sh, 
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we obtain by differentiation 

(3.3) A(pt(t), x) = K(t)B(p(O), X) + K(s)B(pt(t - s), x) ds. 

We begin with the H1 estimate. We have, for W = Vhu, 

cl Wt - RhutI1I < A(Wt - RhUt, Wt - RhUt) 

- A(pt, Wt - Rhut) = K(t)B(p(O), Wt - Rhut) 
rt 

+ J K(t - s)B(pt(s), Wt - Rh Ut) ds. 

Hence, 
t 

||I(Wt -Rh Ut) (t)||1 <- Ct || p(O)1|| + C (t -S)-a1lPt (S)II, d s 

or 

t Ilpt(t)Iil ? CtaI|p(O)I11 + II(Rhut -ut)(t)Ili + C J/(t -s)aI|pt(s)Iil ds 

< Ch{t-ajjuO112 + Ilut(t)112} + C (t - s)-allpt(S)IIi ds. 

Thus by Lemma 1, 

I1pt(t)III < Ch {t-" IIUoI2 + IlUt(t)112 + j (t - S)-a 1lUt(S)I2 ds} 

and finally 

I tIptIds < Ch {IIUOI2 + jIUtII2 ds + f S- T)-a JIUt(T)112 dTds} 

< Ch {IIUOI12 + j IlUtII2ds}- 

We now turn to the L2 bound and write, with the notation of Lemma 3 and 
using (3.3), 

(pt (t),)= A (pt(t) 5 V) 

= A(pt(t), 5V - X) + K(t - s)[B(pt(t), ' - X) + (pt(s), B* q/)] ds 

+ K(t)[B(p(O), 5t' - x) + (p(O), B* V/)]. 

With an appropriate choice of x we obtain that 

I1pt(t)II < Ch {IIpt(t)IIi + j(t - s)-Illpt(s)II i ds} + Ch2t-a a1uo112 

t 
+ C j(t - s)- IIpt(s)II ds, 

from which we conclude by Lemma 1 that 

Ipt(t)II < Ch {IIpt(t)I11, + (t - s)-allpt(s)II ds} + Ch2t-aIuoII2. 
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After integration and using the H1 estimate already derived we have 

j IlPtII ds < Ch j IIpt(s)III ds + Ch2IIuoII2 < Ch2 {IIuoII2 + j Ilut(s)II1 ds} 

which thus completes the proof. El 

Theorem 2. Assume that UOh is chosen so that 

IIUOh - uoII < Ch2IIuoII2. 

Then for each T > 0 there is a constant CT such that for the solutions of (1. 1) 
and (1.4) 

IlUh(t) - U(t)I < CTh2 {IIUoI12 +j IIUtII2 ds} for t < T. 

Proof. In a standard fashion we write 

Uh - U = (Uh - VhU) + (VhU - U) = 0 + p. 

Lemma 3 immediately gives the desired estimate for p, so it remains to bound 
6. 

We have directly from our definitions 

(t, x) +A(6, x)= K(t-s)B(6(s), x)ds+ (pt, x), Vx E Sh, 

and hence, setting x = 0, 

2d 110112+ A(, 0) < C (t _ S)-116 (S)III0(t)IIIds + IIPtII 11011. 

By integration this yields 
T 

I11(T) 112 + f 110112 dt 

<C {I6(O)II2 + jj(t - s)-a6(s)IIlII6(t)III dsdt + IIptII 11611 dt} 

Using Lemma 2 with a suitable choice of e for the double integral, we thus 
have 

I16(T)II2 + f 1101162 dt 

? C {11(0)112 + j IIPtII 11611 dt + (T - t)-; II6(s)II2dsdt} 

By Lemma 1, therefore, we obtain the bound 

I16(T) 112 + j1II1II dt ? CT {116(0)II2 + fTIIptII 11611 dt} 

whence, using also Lemma 4, and noting that Vh (0) = Rh, 

I16(T)lI < CT {110(0)1l + ilPtll dt} 

< CT lluOh - RhUoll + h2 (IIuoI12 + f lutll2 ds) }. 
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In view of our choice of UhO this completes the proof of the desired estimate 
for 0, and thus of the theorem. El 

4. THE COMPLETELY DISCRETE SCHEME 

In this section we shall consider the completely discrete method (1.7). 
In the next lemma we estimate a time-discrete LI (O, T; L2 (Q)) type norm 

of the quadrature error 
n-I tn 

6n( 1:= Kn -j q(tj) K(tn - s)0(s) ds, 
j=0 

where Kj is defined by (1.6). 

Lemma 5. For each T > 0 there is a constant CT such that, if qt e L1 (O T; L2), 
then 

N ftN 

k 11 |8n(0)II < CTk I0bt(s)II ds for Nk < T. 
n=I 

Proof. By the definition of the Kj we have 

6n(0) = Z Jt' K(tn - s)(q (tj) - q (s)) ds, 
j=O t, 

so that by (1.2), for each x e Q, 
n-I t+1 tj+1 

Ign(k)l < ? IK(tn - s)I j kt(o)I da ds 

n-I k I d+ 

< C lua, n-i 1 0?t(u)l du 5 

j=o t 

where 
rtj 

(4.1) ,uaJ = j s- ds =(1 _ )-1(t3- - tI-a) 

By integration in x and use of Minkowski's inequality this yields 
n-I tJ+i 

IIen (?0)I < CE a,n-j' ll?tII ds. 
j=0 

Hence, by interchanging the orders of summation we find 

E 1n (0) II| < C E E Ua J n-j IIt lids < CT IIJtII ds, 
n=l j=O n=j+l 

since 

N 
t-' =1 s -a ds < CT = (1 -)a1T1-. 

n=j+1l 

This completes the proof. C1 

The following two lemmas are discrete analogues of Lemmas 1 and 2, and 
are proved similarly to these. 
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Lemma 6. Let 7 j be defined by (4.1) and assume that Yn > 0 and satisfies 

n-1 

Yn < bn+flEiPan-jYj forn >O, 
j=O 

where bn > 0, B > 0. Then for each T > 0 there is a constant CT such that 

n-1 

Yn < bn + CT Z yUa, n-jbj for nk < T. 
j=O 

Lemma 7. Let K e LI(0, T), and let Kj be defined by (1.6). Then for each 
e > 0 there is a constant C. = Cc(IIKIIL1(o,T)) such that 

N n-1 N N-I n-1 

E ZKn-jfjfn <8JZfn2+CeZIKN-n I fJ2 
n=1 j=O n=1 n=O i=O 

The following error estimate is our main result of this section. Its proof will 
require the inverse estimate 

(4.2) liXil1 < Ch'tIxII, VX E Sh. 

Theorem 3. Assume that Sh satisfies (4.2) and that Uoh is chosen so that 

(4.3) I1uOh - uoII < h2I1uoII2. 

Then for each T > 0 there is a constant CT such that for the solutions of (1.7) 
and (1.1) 

IIUn - U(tn)11 ? CT(h2 + k) {IIuOII2 + j (IlUttl + lUtII2) ds} for t < T. 

Proof. With Vh the Ritz-Volterra projection introduced in (3.1), we write 

Un- U(tn) = (Un - Vhu(tn)) + (Vhu(tn) - U(tn)) = ofn + pn. 

The term pn is estimated as desired by Lemma 3. For o'n we have by our 
definitions 

n-i 

(4.4) (tonG, X) + A(o~n x X) = ZKn-jB(6i , X) + (Tn z X) 
j=0 

where 
n-1 tn 

(Tin x ) = (uh-O un Vu x)+ZL Kn-jB(Vhu', X)-] K(tn-s)B(Vhu(s), X)ds. 
j=O 

Defining Bh: Ho' -- Sh by 

(Bhq$,X)=B(q+,X), VXESh, 

we may write 
Tn = ut7-OVhun + En(Bh Vhu). 

We shall show by an energy argument that 
N N 

(4.'5) ,lNl < T1011+kElTnl for Nk < T. 
n=1 
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Assuming this for a moment, we then write Tn = n I, where 

Tn =Ut -atu, 

t2= jqt(un-M V8)=-t Tn ~ ~ hun) -gtPn 

T3 = 8n (BhU), 

T 4= 8n(BhP)- 

We have at once 

N N tn tN 
kZ JITz'I ? CkZJ 1 Iuttli~ds=CkjIIutt II ds n=r 

n=l1l n=l tn-l1l l/ 

and, by Lemma 4, 
N N tn tN 

k 1: IIT2 1 < l iptil ds II p IItl ds 
n=1 n=l tnflO 

< Ch2 {IIUO1I2 +j IlUtll2 ds}. 

To estimate T3, we note that when u is smooth, Bhu = PhBu and hence, 
by Lemma 5, 

N tN tN 
k 11 JT 311 < Ck I [PhBut ll d s < Ck ||u||ds kZ nTI /fI~~t~s?Cc IlUtII2ds. 

n=1 

Using the inverse assumption (4.2), we have 

(BhP, X) = B(p, x) < clIplllXIIxI < Ch-lllplllIIXll, 
so that 

IIBhpII < Ch'IIpII-. 
Hence, for T4 we have by Lemmas 5 and 4, 

N tN 

k Z |I 141| < CTkc IIBhptII ds 
n=1 

rtN r tN 

< CTkh-1 f lPtli, ds < CTk {11uo12 + jt 1utll2 ds}. 

Inserted into (4.5), these estimates show 

IIONII < CTIIUOh- RhUOII + CT(h2 + k) {IIUOII2 + (flUtttl + IlUtII2) ds}. 

In view of (4.3) this completes the proof. 

It remains to show (4.5). For this we choose X = on in (4.4), which yields 

1 n-i 
,9tIlonll2 + kla/ItOnII2 +A(On, on) = ZKn-jB(OJ, On) + (Tn, on), 

2 ~~~~~~=0 
whence 

n-1 

jthIIonII2 + ilonIi1?C2 anIIOIlIn~ C InI on II 
I|n2+10 < C ,n-jll~jlllll + CIITnI | 

j=0 
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and, after summation, 
N N n-I 

II6N112 + kZE IInII2 < 1100112 + CkZ Z8an-jII6'IIII6nII1 
n=1 n=1 j=O 

N 

+ Ck E IIiTn i6 II nI. 
n=1 

Using Lemma 7 with K(t) = Ct-, we may conclude 
N N 

IIONII2 + ke 1: IInIl2 < 110011' + CkE 1: TnII1 n1 

n=1 n=1 

N-I n-I 

+ C JUc,N-n 11k111|j 
n=O 'kj=o 

In combination with Lemma 6, applied to YN = k EN=1 IIjI 12, this shows 

/ ~N 
116N112 < CT (110112 + k E IIlnI l|on II) for Nk < T. 

from which (4.5) follows. 
This completes the proof. C1 
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