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ERROR ESTIMATES WITH SMOOTH AND NONSMOOTH DATA
FOR A FINITE ELEMENT METHOD
FOR THE CAHN-HILLIARD EQUATION

CHARLES M. ELLIOTT AND STIG LARSSON

ABSTRACT. A finite element method for the Cahn-Hilliard equation (a semilin-
ear parabolic equation of fourth order) is analyzed, both in a spatially semidis-
crete case and in a completely discrete case based on the backward Euler method.
Error bounds of optimal order over a finite time interval are obtained for solu-
tions with smooth and nonsmooth initial data. A detailed study of the regularity
of the exact solution is included. The analysis is based on local Lipschitz con-
ditions for the nonlinearity with respect to Sobolev norms, and the existence
of a Ljapunov functional for the exact and the discretized equations is essen-
tial. A result concerning the convergence of the attractor of the corresponding
approximate nonlinear semigroup (upper semicontinuity with respect to the dis-
cretization parameters) is obtained as a simple application of the nonsmooth
data error estimate.

1. INTRODUCTION
The Cahn-Hilliard equation
(1.1) u +ANu—-Ap(u) =0, xeQcR? >0,

where typically ¢(u) = u3 — u, together with appropriate boundary and ini-
tial conditions, is a phenomenological model for phase separation and spinodal
decomposition. The boundary conditions are such that the fourth-order differ-
ential operator in (1.1) can be written as the square of a second-order elliptic
operator. Relying on this fact, we study numerical schemes for (1.1), which
for the approximation of the spatial variables are based on standard Galerkin
finite element methods for second-order elliptic problems. We discuss spatially
semidiscrete schemes as well as a completely discrete scheme based on the back-
ward Euler method.

A semidiscrete finite element method (with numerical quadrature) of this
type for the Cahn-Hilliard equation was first introduced and analyzed by Elliott,
French, and Milner [7]. Completely discrete schemes based on the same idea
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were discussed by Du and Nicolaides [5] and Du [4]. For numerical schemes
based on other approximations of the fourth-order elliptic operator we refer to
Elliott and Zheng [8] (conforming elements in 1-D) and Elliott and French [6]
(nonconforming elements in 2-D).

In these works the analysis is restricted to solutions which are bounded uni-
formly in time, so that one may essentially assume that the nonlinearity ¢
satisfies a global Lipschitz condition. Because of the lack of a maximum princi-
ple this means that one has to prove (or assume) that the solution is sufficiently
smooth depending on the number of space dimensions.

The purpose of the present work is to prove error bounds that are optimal
both in the order of convergence and in the regularity assumed of the initial data.
In particular, we would like to allow initial data of low regularity (compared
to the number of derivatives occurring in equation (1.1)). The reason for this
is the existence of a Ljapunov functional for equation (1.1) and its discrete
counterparts, which yields an a priori bound, uniform in time, for the H! norm
of the solution and for the discrete approximations considered. The Sobolev
space H!(Q) is therefore a natural space in which to prescribe initial data.

Moreover, error bounds for solutions with nonsmooth initial data have inter-
esting applications in the study of the longtime behavior of discrete solutions,
see Heywood and Rannacher [12], Hale, Lin, and Raugel [10] and Kloeden and
Lorenz [14]. As an example of this, we prove a result concerning the convergence
of the attractor of the corresponding approximate nonlinear semigroup. More
precisely, we demonstrate that the discrete attractor is upper semicontinuous
with respect to the discretization parameters.

With initial data in H!(Q), the solution is not bounded uniformly in time
(except in the case of one space dimension). Instead, we base our analysis on
uniform bounds in the H! norm for the exact and discrete solutions and local
Lipschitz conditions for the nonlinearity ¢. These are typically of the form

ll6(u) — ¢(W)llx < C(llullg s [0llg)llu—vly,

where ||+ |x, || -|ly are appropriate Sobolev norms.

Nonsmooth data error estimates for finite element methods have been proved
earlier by Johnson, Larsson, Thomée, and Wahlbin [13], Crouzeix, Thomée,
and Wahlbin [3] and Crouzeix and Thomée [2] in the context of a semilinear
parabolic problem of second order with globally Lipschitz continuous nonlin-
earity. Similar results were obtained by Helfrich [11] in an abstract framework,
using local Lipschitz conditions. See also Heywood and Rannacher [12] for
related results in the context of the Navier-Stokes equations.

Loosely speaking, our main result (Theorem 6.5) states the following: Let
u, be the spatially semidiscrete approximation using a finite element method
of order r and with mesh parameter %, and let the initial approximation be
chosen as the L, projection of the exact initial value u,. Then for r = 2 or
3 (piecewise linear or quadratic finite elements) we have

lun(t) — u(®)|r, < Clug, TYH't=, 0<t<T,

for 1 <a <r, provided that uy has o derivatives in L, (together with appro-
priate boundary conditions). An analogous result is obtained in the completely
discrete case (Theorem 7.2). The restrictions r = 2 or 3 and o > 1 are
probably due to our method of proof, but in the light of a counterexample in
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[13, 3] some restriction of this type might be expected. We have, however,
not been able to adapt this counterexample to the present situation. See also
Remark 2 of §5 below.

The outline of the paper is as follows. In §2 we present three initial-boundary
value problems for the Cahn-Hilliard equation and put them into a common
abstract framework. In §3 we introduce spatially semidiscrete and completely
discrete finite element methods for these problems. In §4 we state a result con-
cerning the regularity of the exact solution, which is needed in the subsequent
error analysis. Its proof is given in an Appendix in the Supplement section
of this issue. In §5 we estimate the difference between the exact solution and
the solution of a discrete linear auxiliary problem. This analysis is based on
energy estimates. In §6 we prove error estimates for the spatially semidiscrete
approximation, and in §7 we do the same for the fully discrete approximation.
This analysis is based on semigroup techniques. Finally, in §8 we demonstrate
the existence of global attractors for the nonlinear semigroups defined by the
Cahn-Hilliard equation and its approximations, and prove a result concerning
the convergence of the discrete attractors.

2. THE CAHN-HILLIARD EQUATION

Let Q be a bounded domain in R? for d < 3 with a sufficiently smooth
boundary. We consider the finite element approximation of the following initial-
boundary value problems: Find u(x, ¢) for x € Q, ¢t > 0, such that

(2.1) U — A(—Au+ ¢(u)) =0, xeQ, t>0,
(2.2) u(x, 0) = up(x), xX€eQ,
subject to one of the three sets of boundary conditions,
(2.3-a) u=0, —-Au+¢(u)=0, xedQ, t>0,
ou 1o}
(2.3-b) 5;—0, 5};(—Au+d)(u))_0, x€edQ, t>0,
(2.3-¢) u(x+Le;, t)=u(x,t), xedQ, t>0, i=1,...,d.

Here, ¢ is a given polynomial satisfying the structural assumptions

#(s) = y'(s), degree y =2p,
wis)>cols|® —ci, w'(s)>-p* VseR,

where ¢g >0 and 2<p< oo if d <2, p=2 if d = 3. In the case of the
Dirichlet boundary conditions (2.3-a) we make the additional assumption that
¢(0) =0.

In (2.3-b) we have used the notation §/0v for the outward normal deriva-
tive, and in (2.3-c), the case of periodic boundary conditions, we understand Q
to be a “cube” (0, L)? with e¢; denoting the unit vector in the direction of the
X;-axis.

The differential equation in (2.1) is known as the Cahn-Hilliard equation. It
arises in continuum models of phase separation and spinodal decomposition,
cf. Cahn and Hilliard [1]. The field variable u is a scaled concentration of one
species in a binary mixture and the “free energy” y is a double well potential.
A typical example for y is w(s) = }(s? — ?)? with ¢(s) = s(s? — B?).

(2.4)
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In order to put these three initial-boundary value problems in a common
abstract framework, we introduce some notation. Let || - | and (-, :) denote
the usual norm and inner product in L, = L(Q), and let H® = H5(Q) with
norms || - ||; be the usual Sobolev spaces.

For the no flux and the periodic boundary conditions (2.3-b, c), it is easy to
see that a sufficiently smooth solution of (2.1), (2.2) satisfies conservation of
mass,

/u(x,t)a’x=/u0(x)a’x, t>0.
Q

Q

Introducing the change of variables # = u — %y and (i) = w(ii + %), where
Uy denotes the average of ug, we see that the equatiors (2.1), (2.2), (2.3-b, ¢)
and the structural assumptions (2.4) remain unchanged. Henceforth, for the
boundary conditions (2.3-b, c), we assume that the initial datum satisfies
Jouo(x)dx = 0. For these boundary conditions we let H denote the subspace
of L, which is orthogonal to the constants, H = {v € L, : (v, 1) = 0}, and let
P be the orthogonal projection of L, onto H. Clearly then Pf = f— f. For
the Dirichlet boundary conditions (2.3-a), welet H = L, and P =1. We then
define the linear operator A = —A with domain of definition

D(A)={veH*:v=00ndQ},

9(A)={veHanzg%=Oon89},

DA ={veH’NnH:v(x+Le;)) =v(x)forxedQ, i=1,...,d},

for the three sets of boundary conditions, respectively. Then A is a selfadjoint
positive definite densely defined operator on H , and (2.1)—(2.3) may be written
as an abstract initial value problem

U+ A%u+ APp(u) =0, t>0,

(23) u(0) = up.

By spectral theory we may also define the spaces H® = &' (4%) with norms
[v|y = ||4%v]| for real s. It is well known that, for integer s > 0, H* is a
subspace of H*NH characterized by certain boundary conditions, and that the
norms |-|s and ||-||; are equivalent on H*. This can be proved by means of
the spectral theorem and trace inequalities, see Thomée [18, p. 34] for a proof
in the case of the Dirichlet boundary condition. In particular, we have

H'={veH':v=00n0Q},
H'=H'nH,
H' ={veH'nH:v(x+Le;)) =v(x)forxedQ, i=1,...,d},
for the three sets of boundary conditions, respectively, and the norm |v|; =

|4%v| = ||Vv| is equivalent to |[v||;, on H'. Apart from this, we shall only
need the inequality

(2.6) lvlls < Cslvls, veH, s>0,

which follows by interpolation between the corresponding inequalities with in-
teger s.
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We also define G: H — H? to be the inverse of 4. It is convenient to
extend it to all of L, by Gf = GPf for f € L,. Thus, v = Gf if and only
if Av =Pf, or equivalently

veH', (Vu,Vx)=(f,x) VxeH.

Clearly, G is selfadjoint positive semidefinite on L, and positive definite on
H.

We next derive an a priori bound in the H' norm for solutions of (2.5).
This bound (and its discrete counterparts) will be basic to all of our analysis
below. Applying G to (2.5), we have

Gu; + Au+ Po(u) =0,
and taking the inner product of this with u,, we obtain

(Guy, ug) + LDiJul? + D, / w(u)dx =0,
Q
Setting V(u) = 3|u|? + [, w(u) dx (“the free energy functional”), we conclude
t
(27) | IGkulPds + V(@) = V(wo),  0st<oo,
0

provided that uy € H!. In view of the structural assumptions (2.4) it follows
that ¥V is a Ljapunov functional for the initial value problem (2.5) (see §8 below
for the definition of this concept). Moreover, by the Sobolev imbedding of H'!
into L,, (where p is as in (2.4)) the identity (2.7) implies an a priori bound:
If uy € H' with |lug||; < R, then

(2.8) [u()li < C(R),  0<t< oo

In the sequel we shall always assume that uo € H! (at least), so that (2.8) holds.
We also note that the derivative of ¥ (“the chemical potential”) is given by
w="V'"(u)=Au+ Pod(u) = -Gu,.

Finally, we let E(f) = exp(—tA42) denote the analytic semigroup generated
by —A4%. Much of our analysis will be based on the variations of constants
formula,

(2.9) w(t) = E(f)up — / "E(t - 5)APo(u(s)) ds,
0
for solutions of (2.5).

3. THE FINITE ELEMENT METHOD

For the approximation of the Cahn-Hilliard equation we assume that we have
a family {S}};>o of finite-dimensional approximating subspaces of H!. At the
end of this section we formulate the approximation assumption upon which we
shall base our error analysis. But first we formulate our discrete equations.

Consider, to begin with, the no flux boundary conditions (2.3-b). Recalling
the usual weak formulation of the corresponding initial-boundary value prob-
lem, we state the following semidiscrete problem: Find u,(¢), v,(¢) € S such
that

(Un,e> )+ (Vop, V) =0 Vx €Sy, t>0,

(3.1) (Vns X) = (Vuy, Vx) +(d(us), x) VX €Sy, >0,
uy(0) = upp ,
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where ug, € S, is a suitable approximation of uy € H!. Since we are assuming
that %y = 0, it is natural to assume that %y, = 0, too. It is easy to see that this
can be achieved, e.g., by taking g, to be the orthogonal projection of uy € H!
onto S;, with respect to the L, inner product, or with respect to the H! inner
product. Let now ‘
Sp={x€Sw:(x,1) =0}

It is immediate from (3.1) that u,(z) € S, if wug, € S,. Therefore, u, can
equivalently be obtained from the following equations: Find u(2), wy(t) € S
such that

(Un,i» X) + (Vwy, Vx) =0 VY €S, t>0,
(3.2) (Wh, x) = (Vup, Vx)+ (p(un), x) VX E€Sy, t>0,
uy(0) = ugp ,

where now ug, € S), is an approximation of uy € H!. (The relation between
wy and v, is w, = v, — U, .) Equivalently, we may write this as
u;,,,+A,2,uh+A;,P,,d>(uh)=0, t>0,

un(0) = uon ,

where the operator 4,: S, — S, (the “discrete Laplacian”) is defined by

(AhX3”)=(VXaV”) VX,ﬂGSh,

and P,: L, — S, is the orthogonal projection. Clearly, A4, is selfadjoint pos-
itive definite, and we let G, denote its inverse. As for G, it is convenient to
extend G, to all of L, by G, f = GyP,f for f e L,. Thus, v, = G, f if and
only if A4,v, = P,f, or equivalently

vR €8y, (VUp,VX)=(f,x) Vx €S

We note that, thus defined, G, is selfadjoint positive semidefinite on L, and

.. . - 1
positive definite on S, . We also record the facts that [|4; x|l = Vx| = [xIx
for all y € Sj,, and that for the “discrete chemical potential” w; in (3.2), we
have wy, = Ayuy + Prod(uy) = —G;,uh,, .

The above refers to the no flux boundary conditions. In the case of the
Dirichlet boundary conditions (2.3-a), we define instead

Sp={x€Sy:x=00n0Q},
and for the periodic boundary conditions (2.3-c), we set
Sp={xeSp:x(x+Le)=x(x)ondQ, i=1,...,d}.

Starting with (3.2), we then reiterate the above arguments and definitions. The
initial value problem (3.3) is thus a common framework for our semidiscrete
approximations of the three initial-boundary value problems (2.1)-(2.3).

We now derive a discrete counterpart to the a priori bound (2.8). In fact,
V(u) = %u?+ Jq w(u)dx is a Ljapunov functional for (3.3), too. To see this,
we argue in the same way as in the proof of (2.7) and obtain

(3.3)

t
/||Géuh,,||2ds+V<uh<t>)=V(uo,,), 0<1<oo,
0
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which leads to the a priori bound: If uy;, € S, with ||ug|l; < R, then
(3.4) lun(®)lli < C(R), 0<t<oo.

With Ej () = exp(—tA}) we have the variations of constants formula,

(3.5) un(t) = Ep(t)tiop — /O Ep(t - ) Ay Py (un(s)) ds.

for solutions of (3.3).

We next formulate a fully discrete approximation based on the backward
Euler method. This means that we replace the time-derivative in (3.2) or (3.3)
by a backward difference quotient 8,U, = (U, — U,_;)/k , where k is the time
step and U, is the approximationto u attime ¢, =nk, n=0,1,2,.... We
thus seek U, € S, such that

8,U, + A2U, + Ay Pyp(U,) =0, t, >0,

(3.6)
Uy = Uop.

Again, it turns out that the functional V' is a Ljapunov functional for (3.6).
In fact, arguing as in the proof of (2.7), we obtain
(G0, Uy, 8,Up) + (43,Uy, 8,:Uy) + (¢(Uy,), 9,U,) = 0.

Here, _ _ _
(ApUn, 8,Uy) = 18,|Un 2 + 1k[8,U, 3.

Recalling the condition y”'(s) > —fB? in (2.4), we obtain that
(3.7) W(r)(r—s) > p(r)— w(s) - 1B*(r—s)?,
so that
(6(Un), B.Uy) > B, /Q w(Uy) dx — Lk B[, Uy 2.
Hence,
1 p— —
1G78,Un|* + k|8, Unl} + 8.V (Un)
< Sk BBULP < $kBHIGEB Unl? + 4KIBLUnl}.
Thus, if k < 4/*, this shows that
n
1
13T NGEBUnl® + V(Un) < V(uon),  0< 2y <00,
j=1

which leads to the a priori bound: If ug, € S, with |lugs[l; < R, then

(3.8) [Unlh £C(R),  0<ty <co.
This time, the variation of constants formula becomes
n
(3.9) Up = Efyuon —k > Efy /" 44 Pyp(U))
j=1

where Ep, = (I +kA})~!.
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We conclude this section by formulating an approximation assumption for
the spaces S, C H I, which will be the basis for our error analysis below. Let
R,: H' — S, be the Ritz projection defined by

(V(Rpw —v),Vx)=0 Vxes,.
We assume that, for r=2 or r=3,

(3.10) [Ryv — vl < Ch*lg,  —(r-2)<I<1, 1<B<r
(Recall that |v|_; = |G| = sup, e (v, x)I/Iv]1.) From this assumption it
follows that

(3.11) 1Py — o]l < CH'Jul,.

The main examples of this situation are obtained by letting S, be the stan-
dard piecewise linear (r = 2) or piecewise quadratic (r = 3) finite element
spaces.

4. EXISTENCE AND REGULARITY OF SOLUTIONS

We now state a result concerning existence and regularity of solutions to

the Cahn-Hilliard equation (2.5). Global existence has been proved by several
authors under various assumptions of initial regularity, see, e.g., Nicolaenko,
Scheurer, and Temam [15], Temam [17], Elliott and Zheng [8], Zheng [21] and
von Wahl [20]. Our error analysis depends on precise regularity estimates for
the exact solution, most of which are not available in the literature, and we
therefore develop the required results in the following theorem. Our approach
is based on the techniques of [20], where global existence of solutions with
initial data in H'! was shown.
Theorem4.1. Let a €[1,3], B€[0,4), j,[=0,1,2, with 4j-2I4+8 > a,
and let T, R > 0 be arbitrary. If uy € H* with |uglo < R, then equation
(2.5) has a unique solution u which belongs to C([0, T], H*)nC((0, T], L,).
Moreover, there is a constant C = C(T, R, B) such that

(4.1) IG'Diut)|p < Cri*t=5°,  0<t<T.

The estimate (4.1) means that the solution operator of the nonlinear Cahn-
Hilliard equation enjoys (at least to some extent) a smoothing property analo-
gous to that of the analytic semigroup E(t):

(4.2) IDIE(t)v]p < Ca gt~ [v]a, >0, 0<a<B.
The proof of Theorem 4.1 can be found in the Supplement section of this issue.

5. ERROR ANALYSIS FOR A LINEAR PROBLEM

In this section we shall discuss the following linear nonhomogeneous variant
of the Cahn-Hilliard equation (2.5): Let u satisfy the initial value problem

2u=AP
(5.1) U, + A“u f, t>0,
u(0) = up,
together with the regularity assumption that, for some 7 > 0, a € [0, 3],
K>0,
I_f-a

(5.2) IG'Diu(t)||p < Ke7+5~5*, 0<t<T,
forall B €[0,3], j,1=0,1,2 with 4j—2/+ B >a.
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We shall apply this in the following two situations: If u is the solution
of (2.5) (i.e., f = —é(u)), then (5.2) holds with K = C(T, R) whenever
|uole < R according to Theorem 4.1. If u(t) = E(t)up (i.e., f =0), then we
have K = Clug|o according to (4.2).

We first consider a semidiscrete finite element approximation wu,(¢) € S,
given by

uh,,+A,2,uh=Ahth, t>0,
u;,(O) = Pyuy.
We shall estimate the difference between u; and u under the regularity as-

sumption (5.2). This analysis is linear in the sense that u;, depends linearly on
u.

(5.3)

Observe that by applying G2 to (5.1) we obtain G?u,+u = Gf and, similarly
for (5.3), Giup,,+ uy = Guf, where we have used the fact that GP = G,
Gy P, = Gy, . For the difference e = u;, — u we then have

Grei+e = (Gy— G)f = (G} — G*)u = (G — G)(Pf — Guy) — G4(Gy — Gy
= (G — G)Au — Gp(Gy — G)uy = (Ry — Iu — Gy(Ry — I Guy,
where the identities Pf—Gu, = Au, R, = G, A have been employed. It follows
that
(5.4) Gies+e=p+Gyn, t>0,
with
=Rp—DNu, n=-(Ry—1)Gu,.
Equation (5.4) is the basis for the estimation of e . It is convenient to first give
a lemma providing estimates of p and 7.

Lemma 5.1. Let r = 2 or 3, and let u satisfy (5.1) and (5.2) for some a €
[0, r]. Assume that 1 < B <r, 0< B —a < 2. Then the following bounds hold
for 0<t<T:

(5.5) Y| Dip(t)| < CKhPt=55
(5.6) HIDIn()| < CKhP1-3-52
(5.7) 1A < CKhP1-*55
(5.8) I7(1)) < CKRPri=55

where p(t fo p(r)dr, 7i(t) = fo 7)dt. Moreover,

(5.9) /Ot(fllpll2 + 2ol + <A1 + 1Al + <l + tinel|?) de
< CK2h¥=50,
Proof. By (3.10) and (5.2) we have
DI p(t)ll = ¥ | (Ry = )D}u(t)l| < CHAP | Dju(t)l|s < CKAP1=5
which is (5.5). Similarly,
¢|Din(0)| = ||(Ry — D]Guy(1)| < CHRP|D{Guy(t)|s < CKP1=4-"5,
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and (5.6) is proved. Using these estimates, we obtain
(0 < /Ot lp(z)lldt < CKh? /l =5 dr = CKhP
and °
LIO] = /Ot In(z)l dv < CKh* /Ot 15 dr = CKhP =",

provided, in the latter case, that 0 < f—a < 2. For f—a = 2 we have instead

t t
/ Gu,dt / udt
0 8 0 )

= ChP||u(t) = uolla < CHP(Ju(®)lla + lluolla) < CKAP.

This proves (5.7) and (5.8). Finally, (5.9) is an immediate consequence of the
previous bounds. 0O

Lemma 5.2. Let r =2 or 3, let u satisfy (5.1) and (5.2) for some o € [0, r],
and let uy, be the solution of (5.3). Assume that 0 <r—a <2. Then

(5.10) lup(t) —u(®)|; < CKR~'t=7*, 0<t<T, [=0,]1.

Moreover, for the “chemical potential” w = Au — Pf and its approximation
wy, = Apuy, — Py f , we have

|7(2)|| < Ch? < Chf

r—a

(5.11) lwa(?) —w()|| < CKW't™375, 0<t<T.
We remark that C is independent of T .

Proof. Let B be asin Lemma 5.1. We first note that by our special choice P,uq
of discrete initial value we have G,e(0) = 0, where e = u, — u. In order to
prove the case / = 0 of (5.10), we start out by taking the inner product of (5.4)
with e,. Using the fact that G, is selfadjoint positive semidefinite on L, , we
get

1G> + 3 Dillel* = (p, &) + (1, Ghe) < (p, e) + 51nll* + 31|Grerll?,

which shows
|Gredl® + Dillell* < 2(p, &) + Il

Multiplying this by 2,
2| Ghed|l* + Du(2le]?)
< 2tllel* + 2D/ (p, €)] — 41(p, €) = 28%(ps, €) + 2l
< (D (p, &)1+ tlpl* + 2llodl® + 2llnll* + tlell?),
and integrating with respect to ¢, we obtain after a simple kick-back argument

t
|| PGueP d+ 2lel?
t
< cpl? + C/O (llpll® + 2l pl* + lnl* + zllell) dx.
Invoking the bounds for p and #n in Lemma 5.1, we conclude that

t . t
(5.12) / 2(GyerlP dr + 2lle|? < CK2h#12~55 4 C / tlle|l? dx.
0 0
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We now have to estimate fol 7|le||? dt, and we therefore multiply (5.4) by e
to get

3Dil|Grell? + llell* = (p., €) + (1, Gye) < 3llpII* + 3llel® + 7] [ Gaell

whence
Di||Gell* + llell* < llplI* + 2linll | Grel-

Multiplication by ¢ now yields
Dy(t||Gxell®) + tlell® < tlpl* + 2l1nl|* + 21| Gpel*,
so that, in view of (5.9),
t t
1| Gyell* + /0 Tlle|*dz < /O (ellpll® + 2|7l + 2[|Gyell*) d=

(5.13) t
< CK2h2-5" 1 2 / Gl dx.
0

To derive an estimate of f(; |Gre||*> dt, we integrate (5.4) with respect to 7,
taking Ge(0) = 0 into account. This yields

Gie +¢é = p+ Gy, t>0,
where é(¢) = f(f edrt, etc. Multiplication by e = D,é gives
IGrell® + 3Dllel* = (5, e) + (i1, Ghe) < |1l llell + 317l1* + 31 Grell?,
which after some simple manipulation leads to
t t
/0 |Grell* d7 + |lé|* < /0 (71> + 2111l llell) d
t
< [P + <151 + felel?) de
t
< CKMPp-"5 4 / tlle|?d,
0
and, upon substitution into the right-hand side of (5.13),
t —a
(5.14) / tlle|2dt < CK2h2#Ep-55"
0
Taken together, estimates (5.12) and (5.14) yield
t —a
(5.15) / 2||Gped2dt + 2|2 < CK2h2B -5,
0

and the case / = 0 of (5.10) follows.
It is now convenient to estimate the difference between w and wj; . Observe
that

W —wy = =Guy + Gyuy = Gp(uy  — t;) + (Gp — G)u, = Gre, — 1,
and hence
(5.16) |lw — wg|l < ||Grexll + 7]l
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In view of Lemma 5.1 it is therefore sufficient to bound Gje, . Differentiating
(5.4) with respect to ¢ yields

Gheu + e = pi+ Gy
Taking the inner product of this equation with e, gives
SDUIGhedl + lleddl” = (pes e0) + (e, Gher)
and after multiplication by 73,
%Dt(ZSHGhet“z) +8e? = %tZHGhet”z +8(pe, &) + (., Gher)
< CEGred* + 2llpd? + 2imel®) + 52 Mled?,
so that

t t
(5.17) 2|Gpedl? +/ Ole* dr < C/O (IGredl* + 2Nl o>+ |m))?) d.
0
Combining (5.15) and (5.9) with (5.17), we obtain
t —a
3| Gre? +/ e |? dt < CK2h2b -5,
0

Together with (5.16), this implies
(5.18) lwh(t) — w(D)|] < CKhBr =5,

and the desired bound (5.11) follows.

Finally we estimate the H! norm of e by interpolating between the known
bounds for the errors in u; and wy,. Let e = (u, — Ryu)+ (Rpu—u)=0+p.
Since, by (3.10) and (5.2),

lp(t)ll < Ch = lu(@)ll, < CA =155,
it is sufficient to make the following estimation:
1013 = (V(up — Ryu), V(up — Ryu)) = (V(up — 1), V(up — Ryt))
= (Apuy — Au, uy — Ryu) = (wy — w , up — Ryu) + (Pof — Pf, up — Ryut)
= (W —w, up — Rput) < |lwp — w ||up — Rpull
< llwp — w|| (lup — ull + [[Rpte — ul]).
Hence, in view of (5.18), (5.15) and (5.5), we have

(5.19) 16@)|, < ChPr—4=*, 0<t(<T,

for a<f<r.If a<r—1,then wecantake f =r—1,and thecase /=1 of
(5.10) follows. If r — 1 < a < r, we argue differently. A glance at (5.4) reveals
that

G%et + 0= —Gzp; + Gh’],

or
0, + A20 = —Pyp; + Ay Py1.

An estimation of ||@||; can be based on this equation via the variation of con-
stants formula (cf. the proof of Lemma 6.8 below). We omit the details. O
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Remark 1. If we choose B =r in (5.19) we obtain a bound of superconvergent
order for the gradient of 60 = u, — Rju:

lun(t) = Ryu()|l; < CH't73~5°,  0<t<T.
In the case d < 2 this can be used to show an error bound of almost optimal
order in the maximum norm, see Thomée [18, p. 11].

Remark 2. The restriction r—a < 2 occurs in (5.8); all other steps of the proof
are valid under the less stringent condition 7 —a < 4.

For the special case of equation (5.1) with f = 0, we have the following
result.

Corollary 5.3. Let r=2 or 3. Then

|Ex(2)Pyv — E(t)v|| < CH't™ 5o, t>0, veH.
Proof. Lemma 5.2 shows (cf. (5.15))
IEA(2)Pro — E()o]| < CR*E o], ¢>0,

which is the desired result when r = 2. For r = 3 we note that Lemma 5.2
also shows
|E4(t)Pyv — E(t)v|| < Ch3|v)3, t>0,
and the proof can be completed by Helfrich’s iteration, cf. Thomée [18, pp.
39-41]. O
We now turn to the fully discrete case. The backward Euler method applied
to (5.3) defines U, € S, by (fn = f(tn), tn=u(tn))

(5.20) 8, Uy + AU, = ApPpfr, th >0,

U() = Phuo.
Analogously to (5.4), we obtain for the difference e, = U, — uy :
(5.21) Gigten +en = pn+ Gpln + Gpén, th>0,
with

pn=Rp—Dup, {=—-(Ry— I)thun » &= —Glgtun — u(tn)]-
Equation (5.21) is the basis for the estimation of e,. It is convenient to first
give a lemma providing estimates of p,, {,,and &,. In Lemma 5.2 we allowed
a = 0 in order to have Corollary 5.3. In the remainder of this section we assume
that a > 1.

Lemma 5.4. Let r = 2 or 3, and let u satisfy (5.1) and (5.2) for some a €
[1, r]; assume further that a < B < r. Then the following bounds hold for
0<t,<T:

(5.22) ta1[Bupall < CKRP LTS,

(5.23) pall < CKRBL™

(5.24) Iall < CKRPES,

(5.25) 16l < CKREEE™F

(5.26) leall < CKkty 15

(5.27) 1Génll < CK(AP2h™"F 1 keay™" ),



616 C. M. ELLIOTT AND STIG LARSSON

and

n
kS (psIP + 2oy 13epi I + 61551 + 215112 + 1851
j=1
(5.28) + llefl1? + £ 1Grés 1)

_B-a _4-q
<CKXWPe T + k27T,

where pn =k pj, Co =k &, & =k X]_ & . Moreover, for t; <
ty < T, we have

(5.29) 18,0l < CKhP 1 15

(5.30) 1Benl| < CKkty 15
Proof. To begin with, (5.5) implies

ty . _1_B=a
||p,||drsCK””%/ 15 gt < CKRPL T
thy

— 1 [
Pl < g |
for n > 2, since #, < 2t,—; . This proves (5.22). The bound (5.23) is proved
in the same way as (5.7). Next we note that {, = (R, —I)G(u, —up) = fj», and
hence (5.25) is the same as (5.8). For the proof of (5.24), we have by (3.10)
and (5.2)

t

(Ry, —1)% ' Gu,dt

< Chﬂ.l_ "
- k

[1Cnll = | Guyl| g d7

th-1 Ih—1

tn Ca _1_pB—c _1_pB-a
gcxhﬂ%/ 45 g < CRRAC AT < cRmP R
t

n—1

P ba
for n > 2. For n =1, we have instead ||{;]| = ¢4l < CKhﬂtlé 7 by
(5.25). In order to prove (5.26), we use Taylor’s formula to get

llenll =

Iy
< / |Gl de

th—1

e
E/ (‘r—t,,_l)Gu,tdr

th—1

t —a 4—a

<CK [" % dr < CKkE] T < CKkiy TR

th—1

for n>2,and for n=1

4—a
7

k k
leal] < %/ oGl d < CK%/ D% dr < CKK'-5* = CKke[?
0 0

In a similar way we get

tn .
1B:all < CHO / |Guully de < CKRP ;15
n—2

which is (5.29), and

@

—_ t" _3_4=a
18,2l < / |Guell d < CKkiy 7,

h-2



A FINITE ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION 617

where we have used the fact that ||Guy,(t)|| ~ ||un(t)|]2 ~ CKt~3-%", cf. the
end of the proof of Theorem 4.1. This proves (5.30). For the estimation of
Gré, we write

Ghénll < 11GEnll + [(Gh — G)énll-

Here,

kiGb‘j

j=1

1Génll =

LY
kZE/ (t—tj-1)G*uy drt
j=1 7 Vi
4—a

t" tn —Q pa—
<k [MIGudlde < Crk [ dr < CRk T
0 0

since o > 1, and

kzn:GSj

J=1

k> (Ry—I)Gej|| < Ch*

J=1

B B

tn “
< Ch¥ (/ G2l 5 dr+kZ|leut(tj)I|ﬂ)

0 =

1(Gh — G)énll =

B

kznj GPuq(t))

J=1

n
k Z ngtuj

J=1

+

tn —a n _B—a -
< CKh* (/ 5 d‘c+kztj 7 ) < CKhPt) L“_,
0 -
J=1
and (5.27) is proved. Finally, (5.28) is an immediate consequence of the previ-
ous bounds. O

Lemma 5.5. Let r =2 or 3, let u satisfy (5.1) and (5.2) for some a €[1,7r],
and let U, be the solution of (5.20). Then

(5.31) (|Un —u(to)l; < CK(16 T + ke %), 0<ty<T, 1=0, 1.
Moreover, for the “chemical potential” w, = Au, — P f, and its approximation
W, = A,U, — P, fn, we have

(532)  (Wa—-w(t)ll< CKW T 4kt %), 0<ty<T.
Proof. Let B be as in Lemma 5.4. In order to prove the case / = 0 of (5.31),

we start out by taking the inner product of (5.21) with d,e,. Using the fact
that G, is selfadjoint positive semidefinite on L, , we get

||Gh—a—ten||2 + (en, 5,6’,,) = (pPn, 5ten) + (&n, thten) + (&n, thten)
< (Pn> 0cen) + 1 Eall® + llenll* + 311GhD cenll®,

which shows
1GhBenll* + 2(en , Dren) < 2(pn > Ds€n) + 2ICnll* + 2llenll>.
Using the identity
(5.33-a) 3 ((anbn) = (8:an)bn + an—1(9:bn)
(5.33-b) = (0an)bn + an(0:bn) — k(8,a,)(0:bn),
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we obtain
Ghd enll® + Dcllenll* + k13 enll?
<20,(pn s €n) = 2(01pn , €n) + 2k(D:pn , Dyen)
+ 2018nll + 2llenll* < 28:(pn, €n) — 2(8:pn, en)
+ k|8 pnll* + kI3 enll® + 2[1Call? + 2lenl>.
Cancelling the term k||8,e,||? , multiplying by 2_, and using (5.33-a) yields

ta-111Ghd enll* + 3 .(t7]leal?)
< 2t,_yllenll® + 20023 (pn s €4)]
= 4ty (Pns €n) = 2t5_1(Bipn, €n) + ta_(8:pall® + 265_ Gl + 222, llenll?
< COAta(pn s €)1+ tall pull® + 131 18:2nl1 + N Eall? + Lllenl® + tullenl®).

Multiplying by k& and summing with respect to n, we obtain after a simple
kick-back argument

n
kS B 11Gh3 e + 2]lea?
j=1

n
< Colloal? + Ck (1l + -1 18ep11* + 2IE1P + el + tlles1?).
j=1

Invoking the bounds for p,, {, and ¢, in Lemmas 5.1 and 5.4, we conclude
that

n
kS 2_111Gh3 e + 2llenl?
2
(5.34) ’ )
_B=ca _4—a
< CK? (h”ti kT thjue,wP) .

J=1

We now have to estimate & E;;l tillejl|?, and we therefore multiply (5.21) by
en to get

(Giz,gten , €n) + ”en"2 = (pn, en) + (Cn, Gren) + (en, Gyey)
< 312all? + Slleall® + (ICall + lleal) | Grenll
whence, by (5.33-b),
3//|Ghenl® + kIGhB enll* + llenll* < l12nll* + 2(1IZnll + llenl)l|Ghenll.
Multiplication by ¢, and using (5.33-a) now yields
3(tnr1lGrenll?) + ktnl|Ghd1enl|* + tullen]|®

< IGhenll® + tall pull® + 282 (1Call + llEnl) || Grenll
< tallpnll® + 26201 8all* + 262 ||€al|? + 2]|Grenl|?,
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so that, since Geg = 0 and in view of (5.28),

n n
k> tlleil* < Ck Y (il + 21E17 + Ellesll + 11GrejlI)
535 7 = .
2282550 | 2250 2
SCKXW¥67 7 +k% T )42k Y [|Grejll*.
j=1

To derive an estimate of k3;_, [|Gye;l|?, we sum (5.21) with respect to 7,
taking Gjey = 0 into account, which yields

Ghen + &, = pn+ Gplu + Ghién, tn >0,
where é, =k Z;;l ej, é =0, etc. Multiplication by e, = 8,6, gives
IGrenll® + $0:l1éall* + 5K118 a1
= (Pn,en)+ (én s Gren) + (Ghén, en)
< &I + §lIGhenll® + (Il 2nll + 1Ghénllenll
which after some simple manipulation leads to

n n
kY 1Ghei > + lleall® < kDU + 2150 + IGagillles)

=1 j=I1
n
(5.36) <k Y12+ 267 18517 + 265 1Gaés 17 + 5lles1)
j=1
2—B=a 2_4za “
SCKYh¥6" 7 + K2, 7 )+ k> tllell?,

j=1
and, upon substitution into the right-hand side of (5.35),

n —a —a
(5.37) kS tillel? < CKAR#ETT 4+ k227,
j=1
Estimates (5.34) and (5.37) now yield
‘ = 2 b= 2—4-a
(5.38) k>0 11Gdejl* + thllenll* < CK*(WP 1, T + k%, 7)),
Jj=1

and the case / =0 of (5.31) follows.
It is now convenient to estimate the difference between w(¢,) and W, . Ob-

serve that
w(ty) — Wn = —Guy(ty) + thtUn = thten —{n —é&n.

The last two terms {, and ¢, are estimated as desired by (5.24) and (5.26). In
order to estimate G,0;e,, we form the backward difference of (5.21):

G,2,5,2en +8/6n =0,pn+ G,0ln + G018, n>2.
Taking the inner product with 9,e, and using (5.33-b), we get
10111GhB enll* + 3k1G1D en]|® + 118 el
= (5tpn s 5ten) + (51Cn > thten) + (5t8n > thten)'
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Hence, by a simple kick-back argument,
311GhBenl* < N18:pall* + 2110:Lall + 102 l)|GrD en]l-

Multiplying by £3_,, using (5.33) and the fact that 0,(z3_,) < 3t2_, , now yields

n—1
3:(t3_,11G10 en||?)
< 362_111Ghdenll* + 1521180 nll* + 285 _5(118 Lall + 118:8nl) | GaD renll
< C(E2_111Ghdenl* + £3_1118:onll* + ta_2ll0:Lull* + 14 _5110:2nll?).
In a standard way we conclude

ta- 1G9 enl®

n
R — — — -
< Ck Y (5-[1Ghdees|* + B l18eps 1 + 6121188511 + ]2 118:8511%)
j=2

and hence, by (5.38) and Lemma 5.5,

— _B=a _4—a
£ 1GhBrenl> < CK (P2 T 4 k22T,

for n > 2. For n =1 we recall that G,ey = 0, so that in view of (5.36) and
(5.37),

1Ghder|l = k"||Gren|| < CK(hﬂtl‘%“ﬂz—a i kzl—%—"‘T“)_

Taken together, these estimates prove (5.32).

Finally, the estimate of the H! norm of e, is proved by interpolation be-
tween the known bounds for the errors in U, and W, just as in the proof of
Lemma 5.2. O

6. ERROR BOUNDS FOR THE SEMIDISCRETIZATION IN SPACE

In this section we shall estimate the difference between the solution u of the
nonlinear Cahn-Hilliard equation (2.5) and its semidiscrete approximation u
defined in (3.3). We begin by settling the question of existence, uniqueness and
stability for u, . Recall the a priori bound

(6.1) lun@llr < Cllluonlly),  0<t<oo,

that we obtained in (3.4). Since (3.3) is a finite-dimensional system of ordinary
differential equations with differentiable nonlinearity, this bound immediately
gives global existence:

Lemma 6.1. The initial value problem (3.3) has a unique solution, which exists
for all time.

In our error analysis we shall use the following bounds for the nonlinearity

p(u).
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Lemma 6.2. Let ||v|;, ||lw|i < R. Then

(6.2) 16/ (W)z]l < CR) ||zIls,
(6.3) l6(v) — p(w)|| < C(R) v — w]]; ,
(6.4) ()l < C(R),

(6.5) I1GH ¢’ (v)z]ll < C(R) ||z]l,

(6.6) 1G} [$(v) — d(w)][| < C(R) lv — w,
(6.7) 1G} (1 (v) — ¢’ (w)]2)| < C(R) v — w]l[|2]s.

Proof. We only demonstrate (6.5) and (6.6); the remaining bounds are proved
in a similar way. First note that, by Holder’s and Sobolev’s inequalities (d < 3),
1 ’
(6.8) 16E 1= sup 2l < cy gy,
x|
XES, 1

Since by assumption (2.4), ¢ is a cubic polynomial if d = 3, we thus have

I1G}[¢'(0)z1ll < Cll' (v)2l| 1, < CllY' @)1z, 2z,
<C+PIRlzl < €1+ vzl

which is (6.5), and (6.6) readily follows. The modification needed when d < 2
and ¢ has arbitrary degree is obvious. O

Remark. The local Lipschitz condition (6.6) was used by Thomée and Wahlbin
[19] in the error analysis of finite element methods for semilinear parabolic
problems of second order.

We also need the following well-known generalization of Gronwall’s lemma.
We include a proof for the sake of completeness.

Lemma 6.3. Let the function ¢(t, t) >0 be continuous for 0 <1 <t<T.If
t
p(t, 1) sA(t—t)“'+°‘+B/ (t—s)""Po(s, 1)ds, 0<t<t<T,
T
for some constants A,B > 0, «a, B > 0, then there is a constant C =
C(B,T,a, ) such that

p(t, 7)< CA(t — 1)~ !t 0<7t<t<T.
Proof. Tterating the given inequality N — 1 times, using the identity

t
(6.9) / (t—s) (s —1)" " ds = C(a, B) (t — 1) "*+F, a, >0,
T
and estimating (f — 7)# by T#, we obtain

t
p(t, 7) < CIA(t—r)“+“+C2/ (t—s)""*Ny(s,1)ds, O0<t<t<T,

T
where C; = C(B,T,a, B, N), C, = C(B, f, N). We now choose the
smallest N such that —1 + N > 0, and estimate (¢t —s)~'*Nf by T-1+Nf
If -1+ a > 0, we obtain the desired conclusion by the standard version of
Gronwall’s lemma. Otherwise, we set (¢, 1) = (t — 7)!~%¢(¢, 7) to obtain

t
y/(t,t)§C1A+C3/(s—t)’”"‘v/(s,r)ds, 0O<t<i<T,
T
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and the standard version of Gronwall’s lemma yields w(z, 1) < CA for 0 <
7 <t < T, which is the desired result. O

We now turn to the stability of u;, with respect to perturbations of the initial
value.

Lemma 6.4. Let uﬁli), i = 1,2, be two solutions of (3.3) with initial values
ug',z and satisfying ||u§1’)(t)||1 <R for 0<t<T, i=1,2. Then for j =
-1,0,1, j<I=0,1 we have

60) = uP O < CR, ) Fu) —uglly,  0<t<T.

Proof. The proof is more or less the same as that of Theorem 6.5 and we omit
it. O

We are now ready to formulate our main result.

Theorem 6.5. Let r = 2 or 3, and assume that for some o € [1, r] we have
uyg € H™ with

(6.10) luolla < Rvs  Nu@lh + lun(Dlh Rz, 0<t<T,.
where u and uy, are the solutions of (2.5) and (3.3), respectively. Then
(6.11) [lun(t) — u(t)ll < Clluon — Putiol| + CH't™F",

(6.12) [lun(t) — u()lls < Ct='FJuoh — Pyol; + CH='t=5*,  j=0,1,

for 0<t<T,where C=C(R,,R,, T).
Proof. It follows from Lemma 6.4 that we may assume that ug, = Pyup; oth-
erwise, the additional errors in (6.11) and (6.12) caused by such a perturbation
of the discrete initial value are bounded by

Cllugn — Pyoll and  CtFfugy — Pytol;,  j=-1,0,1, 0<t<T,

respectively. Assuming thus that ug, = P,uo, we shall compare u, with the
auxiliary function i,(t) € S, defined by

7 Aliy, = —An P,
(6-13) uh,t + . huh h h¢(u) s t> 03
uh(O) = Pyuy.
Setting ¢ = u;, —u and & = i, — u, we know from Lemma 5.2 and (6.10) that
(6.14) lé@ll; < C(Ry, TYR™' =, 0<t<T, 1=0,1

By Duhamel’s principle (3.5), we have
e(t) = &(t) + (up() — uy (1))
t
= e(0) - [ Bu(t = APl (s(2) - u(x))]
t 1
= &)~ [ A}Eu(t - DG 8(us(x) - d(u(@)]de
By (6.14), the Lipschitz condition (6.6) and (6.10), we obtain

t
le()ll < C(Ry, TYW't=5* + C(Ry) /0 (t— ) He()l dt,
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and Gronwall’s Lemma 6.3 shows
le()ll < C(Ri, Ry, TYW'™ 5, 0<t<T.
For the proof of (6.12), we use (6.3) instead:

t
le@llr < lle@lh + C/O 14} Eq(t — 1) Pulg(ua(2)) — du())]] d

t
< C(Ry, TYW't=5* + C(Ry) / (t - 1) Hle(@)ll; dx,
0

and (6.12) follows by Gronwall’s lemma. O

In order to apply the above result, we must verify assumption (6.10). In view
of (2.8) and (6.1), we find that (6.10) holds, for example, if it can be proved
that ||ugs|l1 < C|luolli independently of 4. Clearly, this holds if wuy, = Ryug .
Another possibility is to choose ug, = P,ug, provided that we have the inverse
inequality

(6.15) lxlly < Ch=Mlixll  Vx € Sh.

It is easy to see that (6.15) and (3.10) imply ||P,uoll; < Clluoll; -
In view of (3.10) and (3.11), we have

|Ryuo — Pyto|j < |Rytto — tol; + |0 — Pyttol; < ChP~I|uy|g,

for 1< p<rand j=0if r=2, j=-1,0 if r = 3. (The negative
norm bound for the error in P, follows from (3.11) by a well-known duality
argument.) The following corollaries are now evident.

Corollary 6.6 (Smooth data). Let r = 2 or 3, and assume that uy € H' with
|u0|r <R.

(1) If uop = Ryug, then
lun(t) —u(t)|| < C(R, T)A", 0<t<T,;
(2) if uop = Pyuo and (6.15) holds, then
lun(t) —u(®)l; < C(R, )R, 0<t<T, 1=0,1.

Corollary 6.7 (Data in H'). Let r =2 or 3, and assume that uy € H' with
|uolt < R.

(1) If upp, = Ryug, then

lun(t) —u(t)ly < CR, T)W 't ,  0<t<T;
(2) if uop = Pyug and (6.15) holds, then
lun() —u(@®)|; < C(R, TW~'r=F, 0<t<T, 1=0,1.

The estimation of the error in the semidiscrete “chemical potential” wj;, =
Apup + Pyd(uy) is more technical. We shall only present a result for the case
of nonsmooth data: uy € H'. In the proof of this we shall need the following
bound for uy ,.
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Lemma 6.8. Let |[ugy|li < R. Then
(6.16) lug (O < CR, T =5,  0<t<T, 1=0,1.
Proof. Let z, = uy ,. Then by differentiation of (3.3), we have
zn,o+ Apzp = —ApPyd (up) 2,

and after multiplication by ¢,
Di(tzy) + Aj(t24) = zi — tA Pyg (un) 2,

= —Ajuy — ApPyd(uy) — tARPuo (un) 2,
where we have used (3.3) in the last step. Hence,

t
tz(t) = — /0 Ey(t — 5)(A2up(s) + ApPud(un(s)) + 4, Pyt (un(5))z4(s)) ds ,
so that, by the boundedness of ||uy||;, (6.4) and (6.5),
tzu(t) < C /0 (t = )= ([lup($)ll1 + 11G} $(un(9))]| + s G [ (un(s))za(s)1Il) ds

(6.17)

< C(R)t? + C(R) /0 t(t — 5)7%s||z4(s)| ds.

Now Gronwall’s Lemma 6.3 yields t||z,(¢)|| < C(R, T)t+ for 0 <t < T, which
proves the case / = 0 of the lemma. The proof for the case / = 1 can be based
on the first identity in (6.17). We proceed in the same way, using the known
bound for ||z,| and the bound (6.2) for ||¢'(uy)zs|l. O

Theorem 6.9. Let r =2 or 3 andlet ug € H' with |ug|; < R, and ugy = Pyug .
Then for the “chemical potential” w = Au+ P$(u) and its approximation wy, =
Apuy, + Pyd(uy) we have

lwa(t) —w(®)|| < C(R, K™%, 0<t<T.
Proof. Again, we use the auxiliary function #, defined in (6.13). Let e

Up—u, zp = Uy — iy, and Wy, = Aty + Pydp(u) = —Gyiiy .. Since wy —w
(wy, — Wy) + (W, — w), where by Lemma 5.2

(6.18) [wa(t) —w()|| < ChT~ =5 =Ch'r™%, 0<t<T,

it remains to estimate wy, — Wy, = —Gy(uy , — ty,;) = —Gpzy,, . The function
z, satisfies

(6.19) Zh, + Ajzy = APof . f = o(u) — p(up).

Differentiating this equation we get
Zh,nt A%,Zh,t = Ay Py fr.
Multiplying by ¢ and using (6.19) yields
D,(tz;,,,) + A,zl(tzh,,) =2zZp .+ tAhPhﬁ = ——Aﬁzh + Ahth-f- tAhtht.
Hence, by Duhamel’s principle,

t t 1 1
(Grzh. (1) = /0 ALEy(t — $)zn(s)ds + /0 A Ey(t - 5)GLf(s)ds

t
+/ Eh(t—S)th;(S)SdSEll+12+I3.
0
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Here, by the error bounds in Lemma 5.2 and Theorem 6.5, we have
<€ [ = Hz@lds <O [ 5t ds < oo
Similarly, by (6.6),
L]l < c/ t = s)~}lle(s)| ds < Ch"1'="
For I3, we write f; = —[¢'(uy) — ¢'(u)luy,, — ¢'(u)e, , so that
~ [ 4B - 608 ) — ¢ oDl )5 s
- /0 TE(t - 5)Py — E(1 - )] 18 (u(s))ec(s)ls s

t
- / E(t — 5)[¢' (w(s))eu(s)]s ds = Is + Is + Is.
0
Here, by (6.7), Theorem 6.5 and Lemma 6.8, we have
t
Ll < C /0 (t =) Hlun, () lle(s)]| sds < Ch'1'~

Further, by Corollary 5.3, (6.2) and the bounds for u, and u, , in Theorem
4.1 and Lemma 6.8, we obtain

t
5|l < Ch* / (t = $)~Elle(s)lls sds < ChT1=%.
0

For Iy we argue as follows. Let y € L, be arbitrary. Then
(E(t = 5)[¢'(u(s)e(s)], x) = (Gex(s) , AP[¢' (u(s))E(t — 5)x])
< IGe(s)Il | AP[¢' (u(s))E(t — s)x]I|-

By a careful exploitation of Sobolev’s inequality (d < 3) and the moment
inequality

(6.20) lvlg < Clols vy B=(1-0)5+07, 0€[0, 1],

we may show
[4P[¢' (w)v]ll < C (1 + |ulsuly)lvl2,

where % < 7 < 3 (cf. the proof of Lemma A.1 in the supplement). Hence, by
the regularity estimates for u(z) and E(¢), we have

| A[¢" (w($)E(t = 5)x1ll < C (1 + u(s)|1|u(s),)|E( — $)xl2
<C(t-9) s all,
and, since y is arbitrary, we conclude that
IE(t — )[4 (u(s))e()]I < C (¢ = 5)" s~ F|Geu(s)Il,

where o =y—1¢€ (% , 2) . Therefore,

t
Il < C / (t — )" 4s' 5| Gey(s)]] ds.
0



626 C. M. ELLIOTT AND STIG LARSSON

Here, Ge; = —(Gp — G)uy,, — (W, — w) + Guzp,, , where by (3.10) and Lemma
6.8 with /=r—2 (hence /=0 or 1),

1(Gh = G)un, (DIl < CH||Guy, ()| < Chlfun, (8)ll,—2 < CH'E=F.

Taking this together with (6.18) and the above bounds for I;, j=1,...,6,
we now have

1Gyzp (1) < CH'1'" +c/ (1= )45 %|Gpzp (5)lds, O<t<T,
or, with ¢(t) = tGyzy (1),
t
o(t) < Chri' =% + c/ (t—s)"ts~%p(s)ds, O<i<T.
0

Iterating this inequality once, recalling that ¢ < 2, we obtain (cf. the proof of
the Gronwall Lemma 6.3)

t
o(t) < CH 1'% 4+ C/ sTig(s)ds, 0<t<T,
0

and since 1 — (r + 1)/4 > 0 the standard Gronwall lemma shows ¢() <
Chrt!=% for 0 < ¢ < T, which implies the desired bound for Gnzy,,. O

7. ERROR BOUNDS FOR THE COMPLETELY DISCRETE SCHEME

The purpose of this section is to estimate the difference between the solution
u of the Cahn-Hilliard equation (2.5) and its completely discrete approximation
U, defined in (3.6). The argument is completely parallel to that of the previous
section and we only present an outline indicating the modifications needed. We
first recall that, if k < 4/8*, then we have the a priori bound (3.8). Using this
bound, we conclude that (3.6) has a unique solution U, forall ¢, if k is small.

In the proof of our main result we need a discrete version of the Gronwall
Lemma 6.3:

Lemma 7.1. Let 0< ¢, <R for 0<¢t,<T. If

On < Aty 't +A2z“+"2+Bth‘_‘jfl 9;, 0<t,<T,
Jj=1

for some constants A;, Ay, B > 0, ai,ay, B > 0, then there are constants
ko =ko(R, B, B) and C=C(B, T, a1, ay, B) such that, for k < ko,
On < C (At 14 4 Ayt 1122, 0<t, <T.

Proof. The proof is completely analogous to the proof of Lemma 6.3. Iterating
the given inequality, using

kzt—Ha —1+ﬁ < C( ﬂ)l;l+a+ﬂ, a, >0,

n—j+1°%j
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which follows by comparison with the integral in (6.9), we get

n
9n < Cr (it + 4o + Gk Y 1,14 g
j=1

g Cl (Alt;l+a1 + Azt;l+az)
n—1
+C2kzt;_1;_ivlﬂ¢j+C2kNﬂR, 0<t, LT,
j=1

where C, and C, are the same as before, and —1+ NS > 0. If k is small,
then we may cancel the last term on the right and the proof is completed by
means of the standard discrete Gronwall lemma. In this connection, if a; > a3,
say, and —1 + a; < 0, we first set w, = £, %@, to get
n—1
Un S Ca(AiIg ™2+ ) + Cok Y 742y, 0<t, <T,
j=1

which leads to y, < C (4t ™"+ A4;) for 0<¢, <T. O

We can now state our main result. For simplicity of presentation we assume
that ug, = P,uo. The modifications needed for other choices of discrete initial
data are exactly the same as in the previous section.

Theorem 7.2. Let r =2 or 3, and assume that for some o € [1, r] we have
Uy € H* and ug, = Pyup with
luolla < Ri;  lula)lli +1Unlli <Rz, 0<t < T,

where u and U, are the solutions of (2.5) and (3.6), respectively. Then there
are ko = ko(Ry) and C = C(Ry, Ry, T) such that, for k < kg,

4+l—a

WUp = ut)ll; <C (Rt ™ +kty *), 0<t,<T, [=0,1.
Proof. We define U, € S, by
3,Un + A3U, = —ApPro(u(tn)) , tn >0,
U, = Pyuyg.
With e, = [Uy — Uyl + [Uy — u(ts)] = Zy + &, , we know from Lemma 5.5 that

4+l—a

(71.1) el SCRy, T) (W't % +kty ), 0<t,<T,1=0,1.

We first demonstrate the case / = 0. By the variation of constants formula
(3.9) we have

en = tu— k'S Bl ABLIG(U)) - Slulty)]
j=1

Using the fact that
£ _s
47 Efvll < Cpty *llv]l,  8.>0, 820,

and the Lipschitz condition (6.6), we obtain

_r—a _4-a n _3
llen)]| K C(Ry, T) (W't * +kt, ° )+C(R2)k2t,,_‘j+l||ej||, 0<t,<T,
Jj=1
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and the desired bound follows by the discrete Gronwall Lemma 7.1. Similarly,
for the case / = 1 we use the discrete analogue of the proof of (6.12). However,
this does not work when « = 1, owing to the strength of the singularity of the

4l=a

term kt, ¢ in (7.1). Instead, we argue as follows when a = 1: From the
equation for Z, and (5.33) it follows that

gt(tnzn) + A}Z,(tnzn) = Zn—l - tnAhPh[¢(Un) - ¢(u(tn))] ) ty > 0.
Using Zy = 0 and (6.3), we obtain by the variation of constants formula

n n
Lo i .
tllZalls < &3 NAZEG T INZioall + C(R) KN IIA;%EZ,, T g5l
j=2 j=1
By a modification of the first part of this proof we have here (with a =1)

IZll < CRy, Ro, T) (W14, +ki7Y),  0<4<T.
Together with (7.1), this shows

_r=1
tallealli < C(Ry, Ry, T) (W't * +k)

"3
+CR)EY 1,5 tillejll,  0<t, <T,
j=1
and the desired result follows. O

8. STABILITY OF ATTRACTORS

Let u(z) = 7 (t)(up) denote the solution of the Cahn-Hilliard equation (2.5).
Then . (¢) is a nonlinear semigroup in H'!. Similarly, (3.3) and (3.6) define
nonlinear semigroups () and ;7 in S, C H' by u(t) = Jp(t)(uos) and
Up, = 1 (uor) . We show below that 7 (¢) has a global attractor & . This
means that &/ C H' is a maximal compact invariant set which attracts every
bounded subset of H'. See Hale [9] for the definitions of these terms. We also
show that J,(¢) and 7, have global attractors %, and % , respectively, in
Sh cH'.

We may think of J,(t) and J,} as perturbations of .7 (¢), and the purpose
of this section is to use our error bounds for solutions with initial data in H'
to prove a stability property of the perturbed attractors %, and % .

In fact, applying Theorems 6.5 and 7.2 with uo = up, € S, C H', we
immediately obtain

Corollary 8.1. Let r =2 or 3, R > 0, and let J C (0, o0) be a compact
interval. Then, for small k, we have
Ow(R, J) = sup S;lelyll«%,'(t)(’v)—<7(t)('v)||1 <C(R, )W,

vES)
llvll} <R

Onic(R, J) = sup sup 190 (@) = T (ta)W)lli < C(R, (R ™! + k).
vesy, In
lloll <R

(Note that the constant blows up as J approaches 0 or oo.) Since 6;,(R, J)
—0, o(R,J)— 0 as h, k — 0 for any R, J, it follows that

(8.1) d(sh, ) —0, dy,Z)—0 ash, k—0,
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see Temam [17, Theorem 1.1.2]. Here, d(A, B) = sup,c 4 infycp|la—b||; is the
(unsymmetric) semidistance between the sets 4, B. Thus (8.1) means that for
any & > 0 there is 4 such that &, lies in an &-neighborhood of &, or, in the
terminology of [9], that %}, is upper semicontinuous at A= 0.

The idea of the proof of (8.1) is to compare a discrete trajectory uy(z) on
time intervals [NT, (N+ 1)T], N=1,2,..., to exact trajectories u(¢) with
U(NT) = up(NT) using Corollary 8.1. The length T of these intervals is
determined as the time it takes for &/ to attract any initial value into a %8-
neighborhood of itself. Everything being uniform on bounded sets of H!, one
may conclude that u,(¢) belongs to an e-neighborhood of &7 for h < hy =
ho(e), t>T=T(e).

The same idea of using a nonsmooth data error bound to obtain a result
about the long-time behavior of discrete solutions can be found in Heywood
and Rannacher [12]. See also Hale, Lin, and Raugel [10] and Kloeden and
Lorenz [14] for related results on the upper semicontinuity of attractors.

We conclude this section by demonstrating the existence of the attractors &,
&, , and %%, . This follows easily from a general result about asymptotically
smooth gradient systems, see Hale [9, Theorem 3.8.5]. We verify the assump-
tions of this theorem.

First we note that .7 (¢) isa C!-semigroup in H'. This means that for fixed
t the mapping ug — 7 (t)(uo) is Fréchet differentiable, which is easily proved
using the techniques of the proof of Theorem 4.1 in the supplement. Next we
note that the smoothing property of .7 (¢) obtained in Theorem 4.1 implies
that 7 (t) is completely continuous. This implies that .7 (¢) is asymptotically
smooth and that all positive orbits y*(v) = {7 (¢)v : t > 0} are precompact
(see [9, Corollary 3.2.2, Lemma 3.2.1]). We also note that 7 (¢) is a gradient
system, i.e., it is a C'-semigroup with the additional properties:

(1) each bounded positive orbit is precompact;

(2) there is a Ljapunov functional for 7 (¢), i.e., there is a continuous
mapping V: H! — R such that

(3) V is bounded below;

(4) V(u) > oo as |u|; — o0}

(5) t— V(J (t)v) is nondecreasing;

(6) if v is such that V(J (t)v) = V(v) for all ¢, then v is an equilibrium
point of 7 (t).

We have already verified (1). Moreover, we saw in §2 that V(v) = 1jv|? +
Jow(v)dx is a Ljapunov functional for 7 (¢).

Finally, we need to check that the set of equilibrium points & of J(¢) is
bounded in H'. To see this, let v € &. Then Av + P¢(v) = 0, so that
[v|? + (¢(v), v) = 0. Using (3.7) and (2.4), we get

2, 2
ol + collvllZ, < C+38%00I> < C(1+vIE,),

which shows that |[v]|; < C.

We are now in a position to apply [9, Theorem 3.8.5]. We conclude that
J (t) has a global attractor % . Moreover, the attractor is connected and equal
to the unstable manifold of the set & . Similar arguments apply to .7,(¢) and
Z,% . In this case the complete continuity is automatic by finite dimensionality.
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