
MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 198 
APRIL 1992, PAGES 603-630 

ERROR ESTIMATES WITH SMOOTH AND NONSMOOTH DATA 
FOR A FINITE ELEMENT METHOD 

FOR THE CAHN-HILLIARD EQUATION 

CHARLES M. ELLIOTT AND STIG LARSSON 

ABSTRACT. A finite element method for the Cahn-Hilliard equation (a semilin- 
ear parabolic equation of fourth order) is analyzed, both in a spatially semidis- 
crete case and in a completely discrete case based on the backward Euler method. 
Error bounds of optimal order over a finite time interval are obtained for solu- 
tions with smooth and nonsmooth initial data. A detailed study of the regularity 
of the exact solution is included. The analysis is based on local Lipschitz con- 
ditions for the nonlinearity with respect to Sobolev norms, and the existence 
of a Ljapunov functional for the exact and the discretized equations is essen- 
tial. A result concerning the convergence of the attractor of the corresponding 
approximate nonlinear semigroup (upper semicontinuity with respect to the dis- 
cretization parameters) is obtained as a simple application of the nonsmooth 
data error estimate. 

1. INTRODUCTION 

The Cahn-Hilliard equation 

(1.1) Ut + A2u-_Aq(u) =O x0 E ccR3, t>O, 

where typically 0(u) = u3 - u, together with appropriate boundary and ini- 
tial conditions, is a phenomenological model for phase separation and spinodal 
decomposition. The boundary conditions are such that the fourth-order differ- 
ential operator in (1.1) can be written as the square of a second-order elliptic 
operator. Relying on this fact, we study numerical schemes for (1.1), which 
for the approximation of the spatial variables are based on standard Galerkin 
finite element methods for second-order elliptic problems. We discuss spatially 
semidiscrete schemes as well as a completely discrete scheme based on the back- 
ward Euler method. 

A semidiscrete finite element method (with numerical quadrature) of this 
type for the Cahn-Hilliard equation was first introduced and analyzed by Elliott, 
French, and Milner [7]. Completely discrete schemes based on the same idea 
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were discussed by Du and Nicolaides [5] and Du [4]. For numerical schemes 
based on other approximations of the fourth-order elliptic operator we refer to 
Elliott and Zheng [8] (conforming elements in 1-D) and Elliott and French [6] 
(nonconforming elements in 2-D). 

In these works the analysis is restricted to solutions which are bounded uni- 
formly in time, so that one may essentially assume that the nonlinearity q 
satisfies a global Lipschitz condition. Because of the lack of a maximum princi- 
ple this means that one has to prove (or assume) that the solution is sufficiently 
smooth depending on the number of space dimensions. 

The purpose of the present work is to prove error bounds that are optimal 
both in the order of convergence and in the regularity assumed of the initial data. 
In particular, we would like to allow initial data of low regularity (compared 
to the number of derivatives occurring in equation (1.1)). The reason for this 
is the existence of a Ljapunov functional for equation (1.1) and its discrete 
counterparts, which yields an a priori bound, uniform in time, for the H1 norm 
of the solution and for the discrete approximations considered. The Sobolev 
space HI (Q) is therefore a natural space in which to prescribe initial data. 

Moreover, error bounds for solutions with nonsmooth initial data have inter- 
esting applications in the study of the longtime behavior of discrete solutions, 
see Heywood and Rannacher [12], Hale, Lin, and Raugel [10] and Kloeden and 
Lorenz [ 14]. As an example of this, we prove a result concerning the convergence 
of the attractor of the corresponding approximate nonlinear semigroup. More 
precisely, we demonstrate that the discrete attractor is upper semicontinuous 
with respect to the discretization parameters. 

With initial data in H1 (a), the solution is not bounded uniformly in time 
(except in the case of one space dimension). Instead, we base our analysis on 
uniform bounds in the HI norm for the exact and discrete solutions and local 
Lipschitz conditions for the nonlinearity 0. These are typically of the form 

HO(U) - q(V)x < C(lIullHl, 1VIIH)IIU -V1Y, 

where 11 ix, 11 IIy are appropriate Sobolev norms. 
Nonsmooth data error estimates for finite element methods have been proved 

earlier by Johnson, Larsson, Thomee, and Wahlbin [13], Crouzeix, Thomee, 
and Wahlbin [3] and Crouzeix and Thomee [2] in the context of a semilinear 
parabolic problem of second order with globally Lipschitz continuous nonlin- 
earity. Similar results were obtained by Helfrich [11] in an abstract framework, 
using local Lipschitz conditions. See also Heywood and Rannacher [12] for 
related results in the context of the Navier-Stokes equations. 

Loosely speaking, our main result (Theorem 6.5) states the following: Let 
Uh be the spatially semidiscrete approximation using a finite element method 
of order r and with mesh parameter h, and let the initial approximation be 
chosen as the L2 projection of the exact initial value uo. Then for r = 2 or 
3 (piecewise linear or quadratic finite elements) we have 

Uh(t) - u(t)11L2 < C(uo, T)hru 4, 0 < t < T, 

for 1 < a < r, provided that uo has a derivatives in L2 (together with appro- 
priate boundary conditions). An analogous result is obtained in the completely 
discrete case (Theorem 7.2). The restrictions r = 2 or 3 and a > 1 are 
probably due to our method of proof, but in the light of a counterexample in 



A FINITE ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION 605 

[13, 3] some restriction of this type might be expected. We have, however, 
not been able to adapt this counterexample to the present situation. See also 
Remark 2 of ?5 below. 

The outline of the paper is as follows. In ?2 we present three initial-boundary 
value problems for the Cahn-Hilliard equation and put them into a common 
abstract framework. In ?3 we introduce spatially semidiscrete and completely 
discrete finite element methods for these problems. In ?4 we state a result con- 
cerning the regularity of the exact solution, which is needed in the subsequent 
error analysis. Its proof is given in an Appendix in the Supplement section 
of this issue. In ?5 we estimate the difference between the exact solution and 
the solution of a discrete linear auxiliary problem. This analysis is based on 
energy estimates. In ?6 we prove error estimates for the spatially semidiscrete 
approximation, and in ?7 we do the same for the fully discrete approximation. 
This analysis is based on semigroup techniques. Finally, in ?8 we demonstrate 
the existence of global attractors for the nonlinear semigroups defined by the 
Cahn-Hilliard equation and its approximations, and prove a result concerning 
the convergence of the discrete attractors. 

2. THE CAHN-HILLIARD EQUATION 

Let Q be a bounded domain in Rd for d < 3 with a sufficiently smooth 
boundary. We consider the finite element approximation of the following initial- 
boundary value problems: Find u(x, t) for x E Q, t > 0, such that 

(2.1) Ut - A(-Au + 0(u)) = 0, x E Q. t > 0, 
(2.2) u(x, 0) = uO(x), x E Q. 

subject to one of the three sets of boundary conditions, 

(2.3-a) u=0, -Au+q(u)=0, xeaQ, t>0, 

(2.3-b) -=0, (-Au+q$(u))=0, xeoQ, t>0, 

(2.3-c) u(x+Lei, t) =u(x, t), x eoQ, t> 0, i= 1,...,d. 

Here, 0 is a given polynomial satisfying the structural assumptions 

(2.4) 0q(s) = V"'(s), degree V/ = 2p, 

ig(S) > COIS12p- C1, VI"(S) > _fl2 VS E R, 

where c0 > 0 and 2 < p < oc if d < 2, p = 2 if d = 3. In the case of the 
Dirichlet boundary conditions (2.3-a) we make the additional assumption that 
0(0) = 0. 

In (2.3-b) we have used the notation 0/ay for the outward normal deriva- 
tive, and in (2.3-c), the case of periodic boundary conditions, we understand Q 
to be a "cube" (0, L)d with ei denoting the unit vector in the direction of the 
xi-axis. 

The differential equation in (2.1) is known as the Cahn-Hilliard equation. It 
arises in continuum models of phase separation and spinodal decomposition, 
cf. Cahn and Hilliard [1]. The field variable u is a scaled concentration of one 
species in a binary mixture and the "free energy" V/ is a double well potential. 
A typical example for V/ is I(s) = I (S2 - fl2)2 with O(s) = 5(52 fl2) 
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In order to put these three initial-boundary value problems in a common 
abstract framework, we introduce some notation. Let 11 v 11 and (., -) denote 
the usual norm and inner product in L2 = L2(Q), and let HS = HS(Q) with 
norms 11 v 11, be the usual Sobolev spaces. 

For the no flux and the periodic boundary conditions (2.3-b, c), it is easy to 
see that a sufficiently smooth solution of (2.1), (2.2) satisfies conservation of 
mass, 

ju(x,t)dx = uo(x)dx, t>0. 

Introducing the change of variables i = u - Yo and @(a) = qV(ii + Yo) , where 
Yo- denotes the average of uo, we see that the equations (2.1), (2.2), (2.3-b, c) 
and the structural assumptions (2.4) remain unchanged. Henceforth, for the 
boundary conditions (2.3-b, c), we assume that the initial datum satisfies 
fn uo(x) dx = 0. For these boundary conditions we let H denote the subspace 
of L2 which is orthogonal to the constants, H = {v e L2 :(v, 1) = O}, and let 
P be the orthogonal projection of L2 onto H. Clearly then Pf = f - f. For 
the Dirichlet boundary conditions (2.3-a), we let H = L2 and P = I. We then 
define the linear operator A = -A with domain of definition 

9(A) = {v E H2: v = 0 on aQ}, 
2 Ov 

9(A) = v E H2nH: 
- 

=0 on aQ5 
9(A) = {v E H2 n H: v(x +Lei) = v(x) for x E aQ, i = 1, ..., d}, 

for the three sets of boundary conditions, respectively. Then A is a selfadjoint 
positive definite densely defined operator on H, and (2.1)-(2.3) may be written 
as an abstract initial value problem 

(2.5) ut + A2u + APq(u) = 0, t>0, 
u(O) = UO. 

By spectral theory we may also define the spaces HS= O(Al) with norms 
= IA~v2 for real s. It is well known that, for integer s > 0, Hs is a 

subspace of HS n H characterized by certain boundary conditions, and that the 
norms s and s * are equivalent on HS. This can be proved by means of 
the spectral theorem and trace inequalities, see Thomee [18, p. 34] for a proof 
in the case of the Dirichlet boundary condition. In particular, we have 

H1 = {v e H1: v = 0 on MI}, 
H1 =-HI n H, 
H1 = {v e H ln H: v(x +Lei) = v(x) for x E OQ, i = 1, .. , d}, 

for the three sets of boundary conditions, respectively, and the norm JvJ = 

A v 1 = IVvHI is equivalent to lvH1 on H1. Apart from this, we shall only 
need the inequality 

(2.6) EVIIS < CSIVIS, v E HS, s > 0O 

which follows by interpolation between the corresponding inequalities with in- 
teger s. 
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We also define G: H -- H2 to be the inverse of A. It is convenient to 
extend it to all of L2 by Gf = GPf for f E L2. Thus, v = Gf if and only 
if Av = Pf, or equivalently 

v el1, (Vv, Vx) =(f, X) VX EHt. 
Clearly, G is selfadjoint positive semidefinite on L2 and positive definite on 
H. 

We next derive an a priori bound in the HI norm for solutions of (2.5). 
This bound (and its discrete counterparts) will be basic to all of our analysis 
below. Applying G to (2.5), we have 

Gut + Au + Pq(u) = 0, 
and taking the inner product of this with Ut, we obtain 

(Gut, ut) + 'Dt uI2 + Dt J yi(u) dx = 0. 

Setting V(u) = 2 1UI2 + Vf (u) dx ("the free energy functional"), we conclude 
it 

(2.7) J IIG'ut 12ds + V(u(t)) = V(uo), 0 < t < oc, 

provided that Uo E fl . In view of the structural assumptions (2.4) it follows 
that V is a Ljapunov functional for the initial value problem (2.5) (see ?8 below 
for the definition of this concept). Moreover, by the Sobolev imbedding of HI 
into L2p (where p is as in (2.4)) the identity (2.7) implies an a priori bound: 
If Uo e H' with lluollI < R, then 

(2.8) Ilu(t)JIi < C(R), 0 < t < 00. 

In the sequel we shall always assume that Uo e H1l (at least), so that (2.8) holds. 
We also note that the derivative of V ("the chemical potential") is given by 
w = V'(u) = Au + Pq(u) = -Gut. 

Finally, we let E(t) = exp(-tA2) denote the analytic semigroup generated 
by -A2. Much of our analysis will be based on the variations of constants 
formula, 

(2.9) u(t) = E(t)uo - j E(t - s)APb(u(s)) ds, 

for solutions of (2.5). 

3. THE FINITE ELEMENT METHOD 

For the approximation of the Cahn-Hilliard equation we assume that we have 
a family {Sh }h>O of finite-dimensional approximating subspaces of HI . At the 
end of this section we formulate the approximation assumption upon which we 
shall base our error analysis. But first we formulate our discrete equations. 

Consider, to begin with, the no flux boundary conditions (2.3-b). Recalling 
the usual weak formulation of the corresponding initial-boundary value prob- 
lem, we state the following semidiscrete problem: Find Uh (t), Vh(t) E Sh such 
that 

(Uh,t, x) + (VVh, Vx) = 0 VX E Sh, t > 0, 

(3.1) (Vh, X) = (VUh, VX) + ((Uh) X %) VX E Sh, t > 0, 
Uh(O) = UOh 
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where UOh E Sh is a suitable approximation of Uo E H1 . Since we are assuming 
that Voi = 0, it is natural to assume that UOh = 0, too. It is easy to see that this 
can be achieved, e.g., by taking UOh to be the orthogonal projection of Uo E H1l 
onto Sh with respect to the L2 inner product, or with respect to the HI inner 
product. Let now 

Sh = {X E Sh: (X, 1) = 0}. 

It is immediate from (3.1) that Uh (t) E Sh if UOh E Sh. Therefore, Uh can 
equivalently be obtained from the following equations: Find Uh (t), Wh (t) E Sh 
such that 

(Uh,t, X) + (VWh, Vx)=O VX E Sh, t > 0, 

(3.2) (Wh, X) = (VUh, VX) + ((Uh), X) VX E Sh, t > 0, 
Uh(O) = UOh , 

where now UOh E Sh is an approximation of Uo e HE . (The relation between 
Wh and Vh is Wh = Vh - h.) Equivalently, we may write this as 

(3.3) Uht+AhUh + AhPh(Uh)=, t=> O 

Uh(O) = UOh , 

where the operator Ah: Sh 'h S (the "discrete Laplacian") is defined by 

(Ahx, C) = (VX, Vq) VX, J E Sh, 

and Ph: L2 '1 Sh is the orthogonal projection. Clearly, Ah is selfadjoint pos- 
itive definite, and we let Gh denote its inverse. As for G, it is convenient to 
extend Gh to all of L2 by Ghf = GhPhf for f E L2. Thus, Vh = Ghf if and 
only if AhVh = Ph f, or equivalently 

Vh ESh, (Vvh, VX) = (f, X) VX ESh- 

We note that, thus defined, Gh is selfadjoint positive semidefinite on L2 and 
positive definite on Sh. We also record the facts that IAJ = 

' 
VX H = 1' 

for all X E Sh, and that for the "discrete chemical potential" Wh in (3.2), we 
have Wh = AhUh + Ph q(Uh) = -GhUh, t - 

The above refers to the no flux boundary conditions. In the case of the 
Dirichlet boundary conditions (2.3-a), we define instead 

Sh = {X ESh :X = 0 on aQ}, 

and for the periodic boundary conditions (2.3-c), we set 

Sh = {X E Sh: (x + Lei) = x(x) on aQ, i = 1,..., d}. 

Starting with (3.2), we then reiterate the above arguments and definitions. The 
initial value problem (3.3) is thus a common framework for our semidiscrete 
approximations of the three initial-boundary value problems (2.1)-(2.3). 

We now derive a discrete counterpart to the a priori bound (2.8). In fact, 
V(U) = I I U12 + fn y (u) dx is a Ljapunov functional for (3.3), too. To see this, 
we argue in the same way as in the proof of (2.7) and obtain 

jtV 
JI |G2us t 12 ds + V(Uh (t) = V(UOh), 0 < t < o0, 
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which leads to the a priori bound: If u~h E Sh with IIUOh Ii < R, then 

(3.4) I1uh(t)II1 < C(R), 0 < t < 00. 

With Eh(t) = exp(-tA2) we have the variations of constants formula, 
t 

(3.5) Uh(t) = Eh(t)uoh - Eh(t - s)AhPhO(uh(s)) ds, 

for solutions of (3.3). 
We next formulate a fully discrete approximation based on the backward 

Euler method. This means that we replace the time-derivative in (3.2) or (3.3) 
by a backward difference quotient itUn = (Un - Un 1)/k, where k is the time 
step and Un is the approximation to u at time tn = nk, n = 0, 1, 2, . We 
thus seek Un E Sh such that 

(3.6) jtUn + Ah n + AhPhq(Un) = 0, tn > 0, 
Uo = UOh- 

Again, it turns out that the functional V is a Ljapunov functional for (3.6). 
In fact, arguing as in the proof of (2.7), we obtain 

(GhitUn, OtUn) + (AhUn, atUn) + (q(Un) O atUn) = 0. 

Here, 
(AhUn & jtUn) = 2 t|UnI + 2 kItUnI1. 

Recalling the condition yi"(s) > _,2 in (2.4), we obtain that 

(3.7) yi'(r)(r - s) > ,v(r) - qi(s) - 2f2 (r - S)2, 

so that 

(4(Un), i OUn) > it j y(Un) dx - Ikfl2ItU I2. 

Hence, 

JIG|OtUnll2 + 1kljtUn I + atV(Un) 

< kfnlh2tUnII < 'kfl4IIG ~TLn 112 + 'kltUn 12. 

Thus, if k < 4/fl4, this shows that 
n 

2kEZIIG1tUnI +V(Un) < V(UOh), 0 < tn < 00 

j=l 

which leads to the a priori bound: If UOh E Sh with Il UOh III < R, then 

(3.8) IUn I1I < C(R), 0 < tn < 00- 

This time, the variation of constants formula becomes 
n 

(3.9) Un = EknhUoh - k E Ek j+ Ah Ph 0 (Uj),, 
j=l 

where Ekh = (I + kA )-1. 
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We conclude this section by formulating an approximation assumption for 
the spaces Sh C H1, which will be the basis for our error analysis below. Let 
Rh: H1 --*Sh be the Ritz projection defined by 

(V(RhV-V), VX) = 0 VX E Sh- 

We assume that, for r = 2 or r = 3, 
(3.10) JRhv -v1 < Ch'-lilvl, -(r- 2) < 1 < 1, 1 <?3 ?r. 

(Recall that IvlI- = JIG'dv = supXEftl (v, X)I/IvI .) From this assumption it 
follows that 
(3.11) IlPhV 11 < ChriV Vr. 

The main examples of this situation are obtained by letting Sh be the stan- 
dard piecewise linear ( r = 2 ) or piecewise quadratic ( r = 3 ) finite element 
spaces. 

4. EXISTENCE AND REGULARITY OF SOLUTIONS 

We now state a result concerning existence and regularity of solutions to 
the Cahn-Hilliard equation (2.5). Global existence has been proved by several 
authors under various assumptions of initial regularity, see, e.g., Nicolaenko, 
Scheurer, and Temam [1 5], Temam [17], Elliott and Zheng [8], Zheng [21] and 
von Wahl [20]. Our error analysis depends on precise regularity estimates for 
the exact solution, most of which are not available in the literature, and we 
therefore develop the required results in the following theorem. Our approach 
is based on the techniques of [20], where global existence of solutions with 
initial data in HI was shown. 

Theorem4.1. Let a e [1,3], 3e [0, 4), j,1 = 0, 1,2, with 4j-21+/8>3 a, 
and let T. R > 0 be arbitrary. If Uo E fta with uoJca < R, then equation 
(2.5) has a unique solution u which belongs to C([0, T], Ha) n C1 ((o, T], L2). 
Moreover, there is a constant C = C(T, R, /1) such that 

(4.1) HIG'Diu(t)llf < Ct-j+l-a 0 < t < T. 

The estimate (4.1) means that the solution operator of the nonlinear Cahn- 
Hilliard equation enjoys (at least to some extent) a smoothing property analo- 
gous to that of the analytic semigroup E(t): 

(4.2) lD/E(t)vIfl < Ca,, t-- vla, t>0, 0< a <?1. 
The proof of Theorem 4.1 can be found in the Supplement section of this issue. 

5. ERROR ANALYSIS FOR A LINEAR PROBLEM 

In this section we shall discuss the following linear nonhomogeneous variant 
of the Cahn-Hilliard equation (2.5): Let u satisfy the initial value problem 

(5.1) ut+A2u=APf, t> , 
u(0) = uo, 

together with the regularity assumption that, for some T > 0, a E [0, 3], 
K > 0 , 

(5.2) HIGIDiu(t)<fl ? 2 - 2 , 0 < t < T, 

forall 1e[0,3], j,1=0,1,2 with 4j-21+ >3a. 
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We shall apply this in the following two situations: If u is the solution 
of (2.5) (i.e., f = -q!(u) ), then (5.2) holds with K = C(T, R) whenever 
luol, < R according to Theorem 4.1. If u(t) = E(t)uo (i.e., f = 0), then we 
have K = CIuol c according to (4.2). 

We first consider a semidiscrete finite element approximation Uh(t) E Sh 
given by 

Uh,t + Ah = AhPh t > O 

Uh(O) = PhUO- 

We shall estimate the difference between Uh and u under the regularity as- 
sumption (5.2). This analysis is linear in the sense that Uh depends linearly on 
u. 

Observe that by applying G2 to (5.1) we obtain G2ut + u = Gf and, similarly 
for (5.3), G2uht + Uh = Ghf where we have used the fact that GP = G. 

GhPh = Gh . For the difference e = Uh - U we then have 

G~et + e = (G - G)f - (Gh - G2)ut = (Gh - G)(Pf - Gut) - Gh(Gh - G)ut 

= (Gh - G)Au - Gh(Gh - G)ut = (Rh - I)u - Gh(Rh - I)Gut, 

where the identities Pf -Gut = Au, Rh = GhA have been employed. It follows 
that 

(5.4) Ghet + e = p + Ghi, t > 0, 

with 
p = (Rh -I)U, tj =-(Rh -I) Gut. 

Equation (5.4) is the basis for the estimation of e . It is convenient to first give 
a lemma providing estimates of p and I. 

Lemma 5.1. Let r = 2 or 3, and let u satisfy (5.1) and (5.2) for some a E 
[0, r]. Assume that 1 < /3 < r, 0 < /3 - a < 2. Then the following bounds hold 
for 0 < t < T: 

(5.5) tjjjDtjp(t) jj < CKhflt-,4 

(5.6) tj'IDtji(t)Il < CKhflt- 4, 

(5.7) 11p(t)JI < CKh~t' 4 

(5.8) H4q(t)II < CKhjt -6 

where j(t) = f p(T) d T.(t) = C(T) d T . Moreover, 

at 
(5.9) j p(r11P12 + T311PtI12 + Tr1pII2 + 114112 + T211I112 + T4111ti2 dT 

< CK2h2ft2+. 

Proof. By (3.10) and (5.2) we have 

tjIIDjp(t)II = tj'I(Rh - I)Dju(t)ll < CtjhIllDju(t)llfl < CKhlt-4 

which is (5.5). Similarly, 

t'JIDt'i(t)II = tjII(R - I)DIGut(t)ll < CtihOIIDjGut(t)I16 < CKh?t-'-' 
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and (5.6) is proved. Using these estimates, we obtain 

II(t)l < |Ip(T)II dT < CKh T 4dT = CKhflt1'-, 

and 

1*0(t)| < | 1)|(T) dT < CKh1 | 2 dT = CKhflt+, 

provided, in the latter case, that 0 < ,B- a < 2. For ,B- a = 2 we have instead 

l(t)ll < Ch"I Gut dT < Ch"6 Jut dTz - 

- Ch,611u(t) - UO11a < Chl(Ilu(t)lla + JJUOJca) < CKh6. 

This proves (5.7) and (5.8). Finally, (5.9) is an immediate consequence of the 
previous bounds. El 

Lemma 5.2. Let r = 2 or 3, let u satisfy (5.1) and (5.2) for some a E [0, r], 
and let Uh be the solution of (5.3). Assume that 0 < r - a < 2. Then 

(5.10) lUh(l) - u(t)Hi < CKhr4lt , 0 < t < T, 1 = O, 1. 

Moreover, for the "chemical potential" w = Au - Pf and its approximation 
Wh = Ahuh - Phf, we have 

(5.11) 
IlWh(t) -w(t)ll 

< CKhrt2 4 
0 

< t < T. 

We remark that C is independent of T. 

Proof. Let ,B be as in Lemma 5. 1. We first note that by our special choice Ph uO 
of discrete initial value we have Ghe(O) = 0, where e = Uh - u. In order to 
prove the case 1 = 0 of (5.10), we start out by taking the inner product of (5.4) 
with et. Using the fact that Gh is selfadjoint positive semidefinite on L2, we 
get 

11Ghet 12 + IDtlle 12 = (p, et) + (i, Ghet) ? (P, et) + 2j1ij12 + 112Ghet2, 

which shows 
11Ghet 112 + DtIle 112 < 2(p, et) + IlqII2 

Multiplying this by t2, 

t211 Ghet 112 + Dt (t2 Ile 112) 

< 2tJleHI2 + 2Dt[t2(p, e)] - 4t(p, e) - 2t2(pt, e) + t2llqll2 

< C(Dt[t2(p, e)] + tIlpHI2 + t3lHptIH2 + t2llqll2 + tileH12) 
and integrating with respect to t, we obtain after a simple kick-back argument 

t 
j z2JGhet 112 dz + t2 Ile 112 

< Ct2HIpHI2 + C j (tipI2 + T311PtHI2 + T2llHll2 + TlleH12) dT. 

Invoking the bounds for p and q in Lemma 5.1, we conclude that 

(5.12) jz2JGhet2 dz + t2JeI2 < CK2h22@ + CjTlleH12 dT. 
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We now have to estimate fo zTlle 12 dT, and we therefore multiply (5.4) by e 
to get 

'DtIlGheII2 + Ile112 = (p, e) + (q, Ghe) < 'Ip112 + I IpeII2 + I112 IIG e 

whence 
DtIIGheII2 + Ile112 < IIpII2 + 211ill lIGhell. 

Multiplication by t now yields 

Dt(tIIGheII2) + tIleII2 < tllpll2 + t211t112 + 211 GheII2 

so that, in view of (5.9), 
rt rt 

tIlGheII2 + ] TIeI112dz < ] (TzIp1j2 + T211 q112 + 2IIGheII2) dT 

(5.13) 0 

< CK2h2ft2 2 +2j IGheII2dT. 

To derive an estimate of fo IIGhe 12 dT, we integrate (5.4) with respect to t, 
taking Ghe(O) = 0 into account. This yields 

Gh~e + J= + Gh, t > 0 , t ~ ~ ~ ~ ~ ~ tO 
where e(t) = fo e dT, etc. Multiplication by e = DtO gives 

IIGheII2 + IDtIIeII2 = (p, e) + (4, Ghe) < IIPII Ilell + 1II'1I2 + 2IIGheII2 
which after some simple manipulation leads to 

ot rt 
j IIGheII2 dT + IIeII2 < ] (114112 + 211,Pl lhell) dT 

rt 
< I (11~12 + -1 

jIplI2 + 1 llell2) dT 
o~~~~~~~ 

< CK2h2ft2+ + 1 j Tfle 2dT 

and, upon substitution into the right-hand side of (5.13), 
t 2 

(5.14) j Tile 2dT < CK2h2 t 2 

Taken together, estimates (5.12) and (5.14) yield 

(5.15) J z2IIGhet dT + t2<1e112 ? CK2h2 t2 
a 

and the case / = 0 of (5.10) follows. 
It is now convenient to estimate the difference between w and Wh. Observe 

that 

W - Wh = -Gut + GhUh,t = Gh(Uh, t- Ut) + (Gh- G)ut = Ghet - 1, 

and hence 

(5.16) |w - Whll < liGhetll + 11,111. 
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In view of Lemma 5.1 it is therefore sufficient to bound Ghet . Differentiating 
(5.4) with respect to t yields 

G^2ett + et = pt + G ?t- 

Taking the inner product of this equation with et gives 

1DtllG1et112 + let 12 = (Pt, et) + (qt, Ghet), 

and after multiplication by t3, 

IDt(t3lIIGhetII2) + t3llet 112 = 4t2IIGhetII2 + t1(pt, et) + t3( ti, Ghet) 
< C(t2IIGhetj12 + t3IIptII2 + t4ll1t112) + I t3Ilet 12, 

so that 

(5.17) t3IIGhetlI2 + j T3letl12 dT < C j(r2IIGhetII2 + 311 pt112 + 411qtIl2) dT. 

Combining (5.15) and (5.9) with (5.17), we obtain 

t3llGhetlI2 + T3 jjet 112 dT < CK2h2 t2- 
- 

Together with (5.16), this implies 

(5.18) IIwh(t) - w(t)II < CKhfltL4 

and the desired bound (5.1 1) follows. 
Finally we estimate the H1 norm of e by interpolating between the known 

bounds for the errors in Us and Wh . Let e = (Us-RhU)+(RhU-U) _ +p. 
Since, by (3.10) and (5.2), 

Ilp(t)lIl < Chr-1 JIU(t0lr < Chr-1t- 4, 

it is sufficient to make the following estimation: 

10l = (V(Uh -RhU), V(Uh -RhU)) = (V(Uh - U), V(Uh -RhU)) 

= (Ahuh - Au, Uh - RhU) = (Wh - W, Uh - RhU) + (Phf - Pf, Uh - RhU) 

= (Wh -W, Uh -RhU) < llWh- W1 huh -RhUll 

< hIWh - whl (IUh - ull + IIRhU - uII) 

Hence, in view of (5.18), (5.15) and (5.5), we have 

(5.19) II0(t)111 < Chft-lF 4, 0 < t < T, 

for a < ? < r. If a < r- 1, then we can take = r- 1, and the case 1 = 1 of 
(5.10) follows. If r - 1 < a < r, we argue differently. A glance at (5.4) reveals 
that 

Gh20t + 0 _-Gipt + Gh6 

or 
Ot + A2= -Phpt+AhPhi- 

An estimation of 6 Iii can be based on this equation via the variation of con- 
stants formula (cf. the proof of Lemma 6.8 below). We omit the details. D 



A FINITE ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION 615 

Remark 1. If we choose f8 = r in (5.19) we obtain a bound of superconvergent 
order for the gradient of 0 = Uh - Rh U: 

IIUh(t) -RhU(t)II1 < Chrt 4 4 0 < t < T. 

In the case d < 2 this can be used to show an error bound of almost optimal 
order in the maximum norm, see Thomee [18, p. 11]. 

Remark 2. The restriction r - a < 2 occurs in (5.8); all other steps of the proof 
are valid under the less stringent condition r - a < 4. 

For the special case of equation (5.1) with f = 0, we have the following 
result. 

Corollary 5.3. Let r = 2 or 3. Then 

JjEh(t)Phv - E(t)v 11 < Chrt-I|v, t > 0, v E H. 
Proof. Lemma 5.2 shows (cf. (5.15)) 

jEh (t)Phv - E(t)vH| < Ch2cI|vH, t > O0 

which is the desired result when r = 2. For r = 3 we note that Lemma 5.2 
also shows 

IIEh(t)Phv - E(t)vII < Ch3Iv13, t > 0, 
and the proof can be completed by Helfrich's iteration, cf. Thomee [18, pp. 
39-41]. n 

We now turn to the fully discrete case. The backward Euler method applied 
to (5.3) defines Un E Sh by ( fn = f (tn) u Un = U(tn)) 

(5.20) OtUn + AhUn = AhPhfn, tn > ? 
Uo = PhU?- 

Analogously to (5.4), we obtain for the difference en =Un - Un 

(5.21) Gjten + en =Pn + Ghfn + Ghn , tn > ? 

with 

Pn = (Rh - I)un, X n =-(Rh - I)GOtun, Xen =-G[tun Ut(tn)]- 

Equation (5.21) is the basis for the estimation of en. It is convenient to first 
give a lemma providing estimates of Pn, n , and en . In Lemma 5.2 we allowed 
a = 0 in order to have Corollary 5.3. In the remainder of this section we assume 
that a > 1. 

Lemma 5.4. Let r = 2 or 3, and let u satisfy (5.1) and (5.2) for some a E 
[1, r]; assume further that a < <1 < r. Then the following bounds hold for 
0 < tn < T: 

(5.22) tn-i1~tpnII < CKhI?O 4, 

(5.23) IIPnII < CKh?tn 4 

(5.24) K~nII < CKhtn 2- 4 

(5.25) 11~nll < CKh~tn 4, 

1 4-a 

(5.26) IInII < CKktn24, 

(5.27) JIGhnH ? CK(hn 4 n 4 
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and 
n 

kZ(tjiIpjH2 + tPIH ItpjHII'2 + ty- II1HPjI2 + tjI1 jH2 + jII' 
j=1 

(5.28) + tj2 11 g1j2 + tj-1 'I G 112) 

tn < T, we have 

(5.29) ||0t~ni ? ~~n--4 
j 4-a 

(5.30) HlteflH ? CKktn 2-4. 

Proof. To begin with, (5.5) implies 

tPnH ? k ||Pt||dz< CKhfJ T z dn < CKhftn k, 

for n > 2, since t < 2t En. This proves (5.22). The bound (5.23) is proved 
in the same way as (5.7). Next we note that n = (Rh - I)G(un - uo) = n, and 
hence (5.25) is the same as (5.8). For the proof of (5.24), we have by (3.10) 
and (5.2) 

<5CKhflJj Yt-6 dz < CKht7 ?2 4CKh~ t 4, 

for n >I2. For n = 1, we have instead IIniII = k IIlII < CKhflt7I by 
(5.25). In order to prove (5.26), we use Taylor's formula to get 

iicnii = | - (Ttn-)GUtt dz| ? IlGuttli 

< CK1 T-4 dT< CKktn~ < CKktn 2 4 i 

for n 52,andfor n= 

1 ~~~k 1t fk 4- 

I ] k Gutn dz < CKT] Tl4 dz < CKk- 4 = CKktG 2 4 

In a similar way we get 

whih<i (.9 a nd 4 d < Ct h t < h 

n t - 1_ 

for n > 2~1. Frn 1 1 we hav instealld < CKOCtfln 2by.... 
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where we have used the fact that IIGuttt(t)II - u11tt(t)112 CKt-2 4 , cf. the 
end of the proof of Theorem 4.1. This proves (5.30). For the estimation of 
Gh8n we write 

IIGh^8nhI < JIG' 11 + II(Gh - G)nII 
Here, 

nn 

JIG 
- 

11 = k 1 Gej = k J (T-tjl)G2utt dT 

<k IIG2ut 1I dT < CKk T - dT < CKktn-74 

since a > 1, and 
n ni 

II(Gh-G)8nrII = kZ(Rh-I )GEj <Chfl kZGoj 
1=1 j=1 

< ChO ( kEG2Otuj + kG2 ut(tj) ) 

< ChO3 (jt IIG2utIlfl dT + k E IIG2ut(tj)llfl 

(ftn a 
n 

6 ? CKhfl T I ~4 dT+ k Et 4 < CKh tn ~ 
]=1 / 

and (5.27) is proved. Finally, (5.28) is an immediate consequence of the previ- 
ous bounds. o 

Lemma 5.5. Let r = 2 or 3, let u satisfy (5.1) and (5.2) for some a E [1, r], 
and let Un be the solution of (5.20). Then 

r-ax _ 4+1-a 

(5.31) IUn - U(tN)III < CK(hr-ltn 4 + ktn 4 ) 0< tn < TF 1 = 0, 1. 

Moreover, for the "chemical potential" wn = Aun - Pfn and its approximation 
Wn = Ah Un-Phfnf, we have 

I _r _1_4-at 

(5.32) jj Vn - W(tn)jj < CK(hrtn 2 4 + ktn 2 4 0 < tn < T. 
Proof. Let f, be as in Lemma 5.4. In order to prove the case I = 0 of (5.31), 
we start out by taking the inner product of (5.21) with Ttea. Using the fact 
that Gh is selfadjoint positive semidefinite on L2, we get 

11 Ghiten 112 + (en Oiten) = (Pn , iten) + (Cn , Ghiten) + (8n s, Ghiten) 

< (Pn S iten) + IISjj2 + |jen jj + 21 I Gh2 ten || 
which shows 

IIGhjlten 112 + 2(en J iten) < 2(Pn & iten) + 21ICn 112 + 2jj8n 112. 

Using the identity 

(5.33-a) jt(anbn) = (itan)bn + an-i (jtbn) 

(5.33-b) = (Otan)bn + an(jtbn) -k(tan)(jtbn), 
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we obtain 

I Ghitenl 112 + tlIen 112 + kllten 112 
< 2Ot(pn , en) - 2(jpn , en) + 2k(tptn , Oten) 

+ 2IICnII2 + 2I9n 12 < 2jt(pn , en) - 2(jtPn, en) 

+ kllatpn 12 + kIlaten 12 + 2IICnlI2 + 2II 112. 

Cancelling the term kIljten 112, multiplying by t2_ and using (5.33-a) yields 

t2_ 1 || Ghiten 112 + jt(t2 Ilen 112) 

< 2tn- 1 len 112 + 2jt[t2(Pn , en)] 

- 4tn-1 (Pn en) - 2t2 i(tpn , en) + ti |jktpn,112 + 2tn2_1Cn II2 + 2tn2_11eII2 

< C(jt[tn2(pn , en)] + tnllpn 112 + t_ 1 IItpn112 + t2|1Cn 112 + tn2 1en112 + tnlIen 112). 

Multiplying by k and summing with respect to n, we obtain after a simple 
kick-back argument 

n 
k E tj2_ 1 GhjtejII2 + tn IenII2 

j=l 

n 
< Ctn21p1II2 + CkZ(tjllpj112 + tj3 II~"tpi2 + tIICjII2 + tj2lljIIe2 + tjllej12). 

j=1 

Invoking the bounds for Pn , Cn and en in Lemmas 5.1 and 5.4, we conclude 
that 

n 

k tj I II Ghjtej 112 + tn2 Ien 112 
j=1 

(5.34) ~~< CK2 (h2fltb + k2tbY l Etile1112). 

We now have to estimate k En I tj IIej 112, and we therefore multiply (5.21) by 
en to get 

(G 2ten , en) + IlenII2 = (Pn, en) + (Cn, Gheen) + (6n, Ghen) 
< I 

!lPn 112 + 
2 lIen 12 + (IlCnIl + llgnl)IlGhenll | 

whence, by (5.33-b), 

OtIIGhenII2 + k11GhOten|12 + len 112 < Pn112 + 2(11Cnll + lI8nll)llGhenII 

Multiplication by tn and using (5.33-a) now yields 

it(tn+ IIIGhen 112) + ktnflGhiten 12 + tn IIen 112 

< llGhen 1l2 + tnIlPnIII + 2tn(InCII + l8nll)llGhen ll 
<t 1nII2 ,t 1n 112 + 2t2 11.z12 11.P11 
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so that, since Gheo = 0 and in view of (5.28), 
n n 

k E tj11ej112 < Ck Z(tjllpuII2 + tIjICjII2 + t~jjejII2 + IIGhe 112) 

(5.35) '=1 
4=1 

<CK2(ht 2 + k2tn 2 ) + 2kE JIGhei2. 
j=1 

To derive an estimate of k E~nI IIGhej 12, we sum (5.21) with respect to n, 
taking Gheo = 0 into account, which yields 

Ghen + en = Pn+Ghtn+Gh~n, tn >0, 

where en = k EnLI ej, eo = 0, etc. Multiplication by en = iten gives 

IIGhen 112 + it II en112 + 2kIlIten 112 

= (Pnl, en) + (4n, Gheen) + (Ghtn l en) 

< I 
||In 112 + 2 |IGhen 112 + (I||Pn|II + IIGhn||II)IIen|II, 

which after some simple manipulation leads to 
n n 

k E IIGhe1 112 + Hen 112 < k Z(11C1112 + 2(IIPIII + IIGhG II)11ejII) 
j=1 J= 

n 
(5.36) < k E(11jII2 + 2t-1 IIipII2 + 2tj- 1IIGhj 112 + Itj IjeII2) 

j=1 

? CK2(h2ft2- +k2t 7m)+ kE t tII e 112 
j=1 

and, upon substitution into the right-hand side of (5.35), 

(5.37) k tjIIe11I2 < CK2(h2ft - +k2tbm). 
j=1 

Estimates (5.34) and (5.37) now yield 

(5.38) k E tj2~ IIG te 112 + t211e1 112 < CK2(h2flt 
- 

+ V 2- 42 a 

j=1 
and the case 1 = 0 of (5.31) follows. 

It is now convenient to estimate the difference between w (tn) and Wn . Ob- 
serve that 

w(tn) -Wn = -Gut(tn) + GhjtUn = Ghten -Cn -n 

The last two terms Cn and en are estimated as desired by (5.24) and (5.26). In 
order to estimate GhOten , we form the backward difference of (5.21): 

G*2e2en + Oten = 0tPn + Gh tCn + Ghnten fl > 2. 

Taking the inner product with Oten and using (5.33-b), we get 
1 tIIGhiten 112 + IkIIGhjten 112 + IlIten 112 

= (AtPn, Oten) + (jtCn, GhOten) + (tetn, GhOten). 
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Hence, by a simple kick-back argument, 

atIIGhOten lI2 ? IIjtpn 11 + 2(IIjtCnII + IIOtenl||)I|GhOtenl | 

Multiplying by t32, using (5.33) and the fact that at(t31) ? 3t2~ , now yields 

jt (t3_ IJIGhae 112) 

< 3t2_I1 JIGhe 112 + t32 11tpnI|2 + 2t 2(II6tCnII + IIOIefl||)||Ghaten I 

< C(t |IIGhIteI 112 + t3_ II1tp, |2 + t42IIlt 112 + t2_ 11tenII2). 

In a standard way we conclude 

t3- II Ghiten 112 
n 

< Ck Z(t_ III Ghitei 112 + tj3_1 10tpj 112 + tj42 I|jt~j 12 + tj4(2I|0tei 112), 
j=2 

and hence, by (5.38) and Lemma 5.5, 

tn _I 11Ghiteng < CK(h 4n- 2 +k tn-2 

for n > 2. For n = 1 we recall that Gheo = 0, so that in view of (5.36) and 
(5.37), 

a 4-a 

IIGhitelII = k 1IGhelI < CK(h t2 + kt2 

Taken together, these estimates prove (5.32). 
Finally, the estimate of the H1 norm of en is proved by interpolation be- 

tween the known bounds for the errors in Un and Wn just as in the proof of 
Lemma 5.2. El 

6. ERROR BOUNDS FOR THE SEMIDISCRETIZATION IN SPACE 

In this section we shall estimate the difference between the solution u of the 
nonlinear Cahn-Hilliard equation (2.5) and its semidiscrete approximation Uh 
defined in (3.3). We begin by settling the question of existence, uniqueness and 
stability for Uh . Recall the a priori bound 

(6.1) IIUh(t)IIl ? C(|IUohIIl), 0 < t < oo, 

that we obtained in (3.4). Since (3.3) is a finite-dimensional system of ordinary 
differential equations with differentiable nonlinearity, this bound immediately 
gives global existence: 

Lemma 6.1. The initial value problem (3.3) has a unique solution, which exists 
for all time. 

In our error analysis we shall use the following bounds for the nonlinearity 
q(u) . 
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Lemma 6.2. Let lvi i, lili R. Then 

(6.2) lk5'(v)zii < C(R) iiziii 

(6.3) 110(v) - q(w)jj < C(R) liv - wil, 

(6.4) 1lk(v)II < C(R), 

(6.5) IIGk2 [k'(v)z]ll < C(R) lIzII, 

(6.6) iJGh2[k(v) - q(w)]Il < C(R) liv - wil, 

(6.7) JiG2([+'(v) - 3'(W)]z)ll < C(R) liv - wil lizill. 
Proof. We only demonstrate (6.5) and (6.6); the remaining bounds are proved 
in a similar way. First note that, by Holder's and Sobolev's inequalities ( d < 3), 

(6.8) JIG 2fl = sup l(fI X)l < Cl1f11L615. 
X IEgh IXii 

Since by assumption (2.4), q is a cubic polynomial if d = 3, we thus have 

JIG2[0 (v)z]l| < C||+ (V)ZIIL6,5 < C||O (V)IIL311ZIIL2 

< C (1 + iVi2L6)ilZil < C (1 + IIVIl1)ilZIIl 
which is (6.5), and (6.6) readily follows. The modification needed when d < 2 
and 0 has arbitrary degree is obvious. E 

Remark. The local Lipschitz condition (6.6) was used by Thomde and Wahlbin 
[19] in the error analysis of finite element methods for semilinear parabolic 
problems of second order. 

We also need the following well-known generalization of Gronwall's lemma. 
We include a proof for the sake of completeness. 

Lemma 6.3. Let the function (ot, T) > 0 be continuous for 0 < T < t < T. If 
rt 

9(at, T) < A (t -T)-+ + +B (t- S) 1'+8 f(S, T) ds , 0 < T < t < T. 

for some constants A, B > 0, a, /3 > 0, then there is a constant C = 

C(B, T, a, f) such that 

((t, T) < CA (t - T)-'+, 0 < T < t < T. 
Proof. Iterating the given inequality N - 1 times, using the identity 

rt 

(6.9) j(t - s) 1+a(S - T)- - + ds = C(a, /1) (t - T) +a+fl a, (1 > 0, 

and estimating (t - T)fl by TV, we obtain 
rt 

zp(t, T) < ClA (t- T)1+a+C2j (tS)-Nlq(s, T)ds 0< T < t < T. 

where C1 = Cl(B, T, a, fi, N), C2 = C2(B, /1, N). We now choose the 
smallest N such that -1 + Nfl > 0, and estimate (t - S)-1+Nfl by T-1+Nfi . 
If -1 + a > 0, we obtain the desired conclusion by the standard version of 
Gronwall's lemma. Otherwise, we set ig(t, T) = (t - T)1-aq(t, T) to obtain 

jt 
yV(t, T) < CIA + C3 /S (-T) 1+aV(S, T) ds, 0 < T < to< T. 
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and the standard version of Gronwall's lemma yields yi(t, r) < CA for 0 < 
z < t < T which is the desired result. 5 

We now turn to the stability of Uh with respect to perturbations of the initial 
value. 

Lemma 6.4. Let uhi) i = 1, 2, be two solutions of (3.3) with initial values h 
u~i) and satisfying jju(1) (t)jji < R for 0 < t < T. i = 1, 2. Then for j = 

-1,0,1, j?I=0,1 we have 

Iuh )(t)-U u(t)I, < C(R, T)tY 4Lua -uo*I, 0 < t < T. 

Proof. The proof is more or less the same as that of Theorem 6.5 and we omit 
it. a 

We are now ready to formulate our main result. 

Theorem 6.5. Let r = 2 or 3, and assume that for some a E [1, r] we have 
uo E fta with 

(6.10) I1uoI1a < R1; I1u(t)I1i + I1uh(t) II < R2, 0 < t K T 

where u and uh are the solutions of (2.5) and (3.3), respectively. Then 

(6.11) IIUh(t) - u(t)I < CI1uoh - PhuoII + Chrt- 4 

(6.12) I|uh(t)-U(t)I1I < Ct IUOh-Phuolj + Chrlt4 j= 0, 1 

for 0< t< T, where C= C(R1, R2, T). 
Proof. It follows from Lemma 6.4 that we may assume that Uoh = Phuo; oth- 
erwise, the additional errors in (6.1 1) and (6.12) caused by such a perturbation 
of the discrete initial value are bounded by 

CI|uOh-PhuoII and Ct 4 1UOh-PhUOIj, j =-1, 0, 1 0 < t < T, 

respectively. Assuming thus that uOh = Phuo u we shall compare uh with the 
auxiliary function uh(t) E Sh defined by 

(6.13) U~fh, t + Ah2 = -AhPhO(U) , t > O. 
(6.13) 

h i 

Uh(O) = Phuo. 

Setting e = Uh - u and e = - u, we know from Lemma 5.2 and (6.10) that 

(6.14) Ile(t)1,<?C(R1, T)hr-4=1 , 0<at<T, 1=0, 1. 

By Duhamel's principle (3.5), we have 

e(t) = e(t) + (Uh(t) - ih(0) 

= e(t) - Eh (t - T)AhPh [(Uh ()) -(U(T))] d T 

= e(t) - j AIEh(t - )G[b(Uhh(T)) - q(U(T))]dT. 

By (6.14), the Lipschitz condition (6.6) and (6.10), we obtain 

Ile(t)II < C(RI1 T) hrt 4 + C(R2) /(t - T) 4 Ile(T)II dT , 
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and Gronwall's Lemma 6.3 shows 

Ile(t)II < C(RI, R2, T) hrt-4 , 0 < t < T. 

For the proof of (6.12), we use (6.3) instead: 
rt 3 

Ile(t) I| I < Ile(t) || I + C IIA 2Eh(t -T)Ph1[(UhQ(T)) - 0(u(T))]I d7T h 

C(RI, T)hr-lt- 4 + C(R2) (t- T)-3IJe(T)III dr, 

and (6.12) follows by Gronwall's lemma. El 

In order to apply the above result, we must verify assumption (6.10). In view 
of (2.8) and (6.1), we find that (6.10) holds, for example, if it can be proved 
that IIuOII I < C Iu IOII independently of h. Clearly, this holds if UOh = RhUo. 
Another possibility is to choose UOh = Phuo, provided that we have the inverse 
inequality 

(6.15) liXilI < Ch 1|xII VX E Sh. 

It is easy to see that (6.15) and (3.10) imply IIPhuOJIl < CIIuOIII. 
In view of (3.10) and (3.11), we have 

IRhuo - PhuoI} < IRuo- uol + luo - PhuoIj < ChflIuo|, 
for 1 < /1 < r and j = 0 if r = 2, j = -1, 0 if r = 3. (The negative 
norm bound for the error in Ph follows from (3.11) by a well-known duality 
argument.) The following corollaries are now evident. 

Corollary 6.6 (Smooth data). Let r = 2 or 3, and assume that Uo E Hr with 
UIr?< R. 

(1) If UOh = RhUo, then 

IIUh(t) - U(t)II C(R, T)hr 0 < t < T; 
(2) if UOh = PhuO and (6.15) holds, then 

IIUh(t) - u(t)111 C(R, T)hr-l, 0< t < T, 1 = 0, 1. 

Corollary 6.7 (Data in HI ). Let r = 2 or 3, and assume that Uo E H1 with 
IuoIi <R. 

(1) If UOh = RhUo, then 

IIUh(t) - U(t)III C(R, T)hr-lt-Y 4 0< t < T; 
(2) if UOh = Phuo and (6.15) holds, then 

r i r-1 
IIUh(t)-U(t)l < C(R, T)ht 4 0 t< T, 1=0, 1. 

The estimation of the error in the semidiscrete "chemical potential" Wh = 

Ahuh + Phq(uh) is more technical. We shall only present a result for the case 
of nonsmooth data: Uo E Jf . In the proof of this we shall need the following 
bound for Uh, t E 
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Lemma 6.8. Let II UOh III < R. Then 

(6.16) IIUh,t(t)II/ < C(R, T)t-r1 , 0 < t < T, / = 0, 1. 

Proof. Let Zh = Uh, t. Then by differentiation of (3.3), we have 

Zh,t + A2Z =A 
Zh hZh =-hPh 0 (Uh ) Zh, 

and after multiplication by t, 

Dt(tzh) + A2(tzh) = Zh - tAhPhk'(Uh)Zh 

=-AhUh- AhPh(uh)-tAhPhq'(Uh)Zh, 

where we have used (3.3) in the last step. Hence, 
t 

tZh(t) = Eh(t-s)(A2Uh(S) +AhPhq(uh(s)) ?sAhPh0'(Uh(s))Zh(s)) ds, 

so that, by the boundedness of Iuh III, (6.4) and (6.5), 
ft I 1 

tIIZh(t)II < C (t - s) 4( Iu(s)II1 + I G O(uh (s)) j + s|| Gh [0'(uh (s)) zh (s)] jj) ds 

? C(R)t4 + C(R) j(t - S) SI|Zh(S)II ds. 

Now Gronwall's Lemma 6.3 yields tIjZh(t)hi < C(R, T)t' for 0 < t < T which 
proves the case / = 0 of the lemma. The proof for the case 1 = 1 can be based 
on the first identity in (6.17). We proceed in the same way, using the known 
bound for IIzhII and the bound (6.2) for IqY'(uh)zh I. I 

Theorem 6.9. Let r = 2 or 3 and let uo E HA with luohI < R, and UOh = PhUo. 

Then for the "chemical potential" w = Au + Pq(u) and its approximation Wh = 

AhUh + Ph q(Uh) we have 

hIWh(t)-w(t)hI < C(R, T)h-tFY,24 0 < t < T. 

Proof. Again, we use the auxiliary function iuh defined in (6.13). Let e = 

Uh-U, Zh = Uh-Uh, and Wh = Ahah + Ph(u) =O-Ghh,.t * Since Wh-W = 

(Wh - Wh) + (Nh - W), where by Lemma 5.2 

(6.18) II'dlh(t) - w(t)j < C = ChrtIrtl O t< 

it remains to estimate Wh - h= -Gh(Uht - Uh,t) = -GhZh,t. The function 

Zh satisfies 

(6.19) Zh,t + A2Zh = AhPhf, f = $(u) -(Uh). 

Differentiating this equation we get 

Zh,tt + A2Zh,t = AhPhft. 

Multiplying by t and using (6.19) yields 

Dt(tzh,t) + A2(tzh,t) = Zh,t + tAhPhf =-A2zh + AhPhf + tAhPhft- 

Hence, by Duhamel's principle, 

tGhZh,t(t) =- AhEh (t -S) Zh (s) ds + A2Eh (t _ S) Gf2 (s) ds 
+oj~h~t - s)Phft~s~sds i~ + 

t 

+ / h E(t -s)Phft (s)s ds=- I, + I2 + I3- 
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Here, by the error bounds in Lemma 5.2 and Theorem 6.5, we have 
t tr I 

hIuI ? C] (t-s)- Izh(s) Ids < Chr (t-S)2S- 4 ds < Ch rt-1 . 

Similarly, by (6.6), 
rt 

11I211 < Cj(t - s)- Ile(s) 11 ds < Chrtl5. 

For I3 , we write ft = -W[q$(Uh) - q'(U)]Uh, t - q'(u)et , so that 

rt I 
I3 =-j A2Eh(t-s)G2(k'(Uh (S)) -4 '(U(s))IUh, t (s))s ds 

rt 
-j[Eh(t - s)Ph - E(t - s)] [//(u(s))et(s)]s ds 

t 
- j E(t - s)[k'(u(s))et(s)]s ds I4 + I5 + I6. 

Here, by (6.7), Theorem 6.5 and Lemma 6.8, we have 
t 

11I411 < C, (t - s)lluh,t(s)llllle(s)llsds < Chrtl-. 

Further, by Corollary 5.3, (6.2) and the bounds for ut and Uht in Theorem 
4.1 and Lemma 6.8, we obtain 

rt 

gIII511 < Chr (t -s)-r 5Ilet(s)II S ds < Chrtl -r5. 

For I6 we argue as follows. Let X E L2 be arbitrary. Then 

(E(t - s)[q'(u(s))et(s)], X) = (Get(s), AP[k'(u(s))E(t - s)X]) 
< llGet(s)ll IIAP[b'(u(s))E(t - s)x]II. 

By a careful exploitation of Sobolev's inequality (d < 3) and the moment 
inequality 

(6.20) IvY ? CIvls-0IvIO ,B = (1 - 6)3 + Oy, 0 E [0, 1], 

we may show 
IIAP[k'(u)v]ll < C (1 + lullIuly)1v12, 

where 2 < y < 3 (cf. the proof of Lemma A. 1 in the supplement). Hence, by 
the regularity estimates for u(t) and E(t), we have 

IIA[k'(u(s))E(t - s)Xll < C (1 + Iu(s)l I Ju(s)Iy)IE(t -S)X2 

<C(t -S)-2s-4 4lx, 

and, since X is arbitrary, we conclude that 

IIE(t - s)[q'(u(s))et(s)]Ij < C (t - s)- I S-I 4lGet(s)II, 

where a = y- 1 E (3, 2). Therefore, 
1t 

III6 11 < C (t - s)- 2 s -41 Get (s) I I ds. 
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Here, Get = -(Gh - G)uh,t - (ON - w) + Ghzh,t, where by (3.10) and Lemma 
6.8 with l=r-2 (hence 1=0 or 1), 

II(Gh - G)uht(t)ll < ChrIIGUht(t)II < Chr'IIUh t(t)I1r-2 < Chrtu4 . 

Taking this together with (6.18) and the above bounds for Ij, j = 1, ..., 6, 
we now have 

tGhZh t(t) < Chrtl (t -s) 2s1 4 |GhZh t(s)jjds, 0 < t < T. 

or, with vo(t) = tGhzh, t(t), 

(0(t) ? Chrtlr 4 +Cj(t-s)- s-1f(s)ds, 0< t< T. 

Iterating this inequality once, recalling that a < 2, we obtain (cf. the proof of 
the Gronwall Lemma 6.3) 

rt 
v9(t) < Chrt1-1 4 C 9s2(s) ds, 0 < t < T 5 

and since 1 - (r + 1 )/4 > 0 the standard Gronwall lemma shows (0(t) < 

Chrtl-'4 for 0 < t ? T, which implies the desired bound for GhZht .E 

7. ERROR BOUNDS FOR THE COMPLETELY DISCRETE SCHEME 

The purpose of this section is to estimate the difference between the solution 
u of the Cahn-Hilliard equation (2.5) and its completely discrete approximation 
U, defined in (3.6). The argument is completely parallel to that of the previous 
section and we only present an outline indicating the modifications needed. We 
first recall that, if k < 4/,84, then we have the a priori bound (3.8). Using this 
bound, we conclude that (3.6) has a unique solution U, for all t, if k is small. 

In the proof of our main result we need a discrete version of the Gronwall 
Lemma 6.3: 

Lemma7.1. Let 0?<(,<R for 0<t?<T. If 

n 
n< Alt-1+a + A2t, 7+a2 +B k Z tn-flJl 0t < TT 

j=1 

for some constants A1, A2, B > 0 ai, a2, /8 > 0, then there are constants 
ko = ko(R, B, /B) and C = C(B, T, al, aI2, /1) such that, for k < ko, 

<n ? C(Alt7-1+ +A2t-l+a2), 0 < tn < T. 

Proof. The proof is completely analogous to the proof of Lemma 6.3. Iterating 
the given inequality, using 

n 
k E tn-1J+a+ tj-1+9 < C((x , l)tn-l+a+fl a5 ,B > O. 

j=l 
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which follows by comparison with the integral in (6.9), we get 
n 

(On < C1 (A, tnj+al + A2tn-l+a2) + C2k EtN7 t (Oj 
j=1 

< C1 (Alt-"1 + A2t I+02) 

n-I 

+ C2 k E tn- +, (pj + C2 kNfR, 0 < tn < T, 
j=l 

where C1 and C2 are the same as before, and -1 + N,/ > 0. If k is small, 
then we may cancel the last term on the right and the proof is completed by 
means of the standard discrete Gronwall lemma. In this connection, if a I > a2, 
say, and -I + a2 < 0, we first set Vn = tIha2 ofn to get 

n-I 

Y/n < C3 (Al ta1 -a2 + A2) + C4 k , tjl. +a2 Yj 0 < tn < T. 
j=l 

which leads to n < C(Ata', - 2 +A2) for 0< tn < T. 5 

We can now state our main result. For simplicity of presentation we assume 
that UOh = Ph uo. The modifications needed for other choices of discrete initial 
data are exactly the same as in the previous section. 

Theorem 7.2. Let r = 2 or 3, and assume that for some a E [1, r] we have 
uO E fa and UOh = Phuo with 

IIuoIIa < R1; IIu(tn)III + IlUnilI1 < R2, 0 < tn < T, 
where u and Un are the solutions of (2.5) and (3.6), respectively. Then there 
are ko = ko(R2) and C = C(R1, R2, T) such that, for k < ko, 

r-a _4+1-a 

IIUn-U(tn)III<C(hr-ltn 4+ktn 4 0 <tn<T 1/0= 1. 

Proof. We define Un E Sh by 

it Un + Ah Un = -APh$(u (tn)) tn > 0 

Uo = PhUo. 

With en = [Un - Un] + [Un - U(tn)] Zn + en, we know from Lemma 5.5 that 
_ 4+1-a 

(7.1) lIenIIl < C(RI I T)(hr-lt 4" +ktn 4 ), O< tn < T, 1=0, 1. 

We first demonstrate the case 1 = 0. By the variation of constants formula 
(3.9) we have 

n 
en = en - ZEkhj P[Uj )-A(U(tA))] 

j=l 

Using the fact that 

||A2 ns|<Ct4IIV II tn>?, fl>0, 

and the Lipschitz condition (6.6), we obtain 

r-a _ R4-a e 3 

leII< C(RI S T) (ht 4 +ktn4) + C(R2) k~ 4-j Ilej II, O < tn < T.I 
j=l 
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and the desired bound follows by the discrete Gronwall Lemma 7.1. Similarly, 
for the case 1 = 1 we use the discrete analogue of the proof of (6.12). However, 
this does not work when a = 1, owing to the strength of the singularity of the 

4+1-a 

term ktn 4 in (7.1). Instead, we argue as follows when a = 1: From the 
equation for Zn and (5.33) it follows that 

at(tnZn) + Ah(tnZn) = Zn-1 -tnAhPh[q$(Un) -q$(u(tn))], tn > 0 

Using ZO = 0 and (6.3), we obtain by the variation of constants formula 

tn lZn1l < kE 1A IIEk[ j+ 1 IiZj- il + C(R2)kZ IIA EkhT+ |I t}I|e1I|i. 
j=2 j=1 

By a modification of the first part of this proof we have here (with a = 1) 

jjZjjj < QRI R2, T) (hr-lt 
4 + k 

tj4), 
<t<T. 

Together with (7.1), this shows 

tn IjenI1 i C(RI , R2, T) (hr1tn 4 + k) 
n 

+ QR2) kEtn 4y tjjjejjjj, < tn T, 
j=1 

and the desired result follows. El 

8. STABILITY OF ATTRACTORS 

Let u(t) = 8'(t)(uo) denote the solution of the Cahn-Hilliard equation (2.5). 
Then 8(t) is a nonlinear semigroup in H1 . Similarly, (3.3) and (3.6) define 
nonlinear semigroups 3h(t) and Tn in Sh c H1 by Uh(t) = Sh(t)(UOh) and 

=- k (uOh) We show below that 8(t) has a global attractor V . This 

means that V c Hf1 is a maximal compact invariant set which attracts every 
bounded subset of H1 . See Hale [9] for the definitions of these terms. We also 
show that 3h(t) and Thkn have global attractors Vh and Vhk , respectively, in 

Sh C H1 
We may think of 8h(t) and Thkn as perturbations of 8'(t), and the purpose 

of this section is to use our error bounds for solutions with initial data in H1 
to prove a stability property of the perturbed attractors Vh and Vhk . 

In fact, applying Theorems 6.5 and 7.2 with uO = uOh E Sh c H1, we 
immediately obtain 

Corollary 8.1. Let r = 2 or 3, R > 0, and let J c (0, oc) be a compact 
interval. Then, for small k, we have 

Jh (R, J) sup sup II3h(t) (v) -8'(t)(v) 11I < C(R, J)hr- I 
vESh tEJ 

jjvjj I <R 

3hk(R, J) _ sup SUpII32(v)-8(tn)(V)I|1 ? C(R, J)(hrl +k). 
vESh tfEJ 

livj lI <R 

(Note that the constant blows up as J approaches 0 or oc .) Since 3h (R, J) 
0, 3hk(R, J) -*0 as h, k -* for any R, J, it follows that 

(8.1) d(Vh V) -* 0, drshk -W) - 0 as n h, k - n, 
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see Temam [17, Theorem I.1.2]. Here, d(A, B) = SUPaEA infbEB Ia - bjji is the 
(unsymmetric) semidistance between the sets A, B. Thus (8.1) means that for 
any e > 0 there is h such that Vh lies in an e-neighborhood of X, or, in the 
terminology of [9], that ah is upper semicontinuous at h = 0. 

The idea of the proof of (8.1) is to compare a discrete trajectory Uh(t) on 
time intervals [NT, (N + 1) T], N = 1, 2, ... , to exact trajectories u(t) with 
u(NT) = Uh(NT) using Corollary 8.1. The length T of these intervals is 
determined as the time it takes for v to attract any initial value into a 2e- 
neighborhood of itself. Everything being uniform on bounded sets of H1, one 
may conclude that Uh (t) belongs to an e-neighborhood of v for h < ho = 
ho(e), t > T= T(e). 

The same idea of using a nonsmooth data error bound to obtain a result 
about the long-time behavior of discrete solutions can be found in Heywood 
and Rannacher [12]. See also Hale, Lin, and Raugel [10] and Kloeden and 
Lorenz [14] for related results on the upper semicontinuity of attractors. 

We conclude this section by demonstrating the existence of the attractors X, 
Vh , and ashk. This follows easily from a general result about asymptotically 
smooth gradient systems, see Hale [9, Theorem 3.8.5]. We verify the assump- 
tions of this theorem. 

First we note that J(t) is a Cl-semigroup in H1 . This means that for fixed 
t the mapping uo H- J,(t)(uo) is Frechet differentiable, which is easily proved 
using the techniques of the proof of Theorem 4.1 in the supplement. Next we 
note that the smoothing property of 5(t) obtained in Theorem 4.1 implies 
that J7(t) is completely continuous. This implies that 3(t) is asymptotically 
smooth and that all positive orbits y+(v) = {JT(t)v: t > 0} are precompact 
(see [9, Corollary 3.2.2, Lemma 3.2.1]). We also note that 7(t) is a gradient 
system, i.e., it is a Cl-semigroup with the additional properties: 

(1) each bounded positive orbit is precompact; 
(2) there is a Ljapunov functional for 89(t), i.e., there is a continuous 

mapping V: H1 -i- R such that 
(3) V is bounded below; 
(4) V(u) - oo as lul-- oo; 
(5) t ~-4 V(S'(t)v) is nondecreasing; 
(6) if v is such that V(Y(t)v) = V(v) for all t, then v is an equilibrium 

point of $(t). 

We have already verified (1). Moreover, we saw in ?2 that V(v) = I vI2 + 
fA q (v) dx is a Ljapunov functional for 8'(t) . 

Finally, we need to check that the set of equilibrium points F of 9(t) is 
bounded in HI . To see this, let v E F. Then Av + Pq(v) = 0, so that 

Iv12 + (q+(v), v) = 0. Using (3.7) and (2.4), we get 

lVi1 + coIIvi11P < C + Ifi2I|VI12 < C (1 + I|VII2 ) 

which shows that Iv I < C. 
We are now in a position to apply [9, Theorem 3.8.5]. We conclude that 

.T(t) has a global attractor a? . Moreover, the attractor is connected and equal 
to the unstable manifold of the set F. Similar arguments apply to 3h(t) and 
7k . In this case the complete continuity is automatic by finite dimensionality. 
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