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NUMERICAL ANALYSIS 
OF THE DETERMINISTIC PARTICLE METHOD 

APPLIED TO THE WIGNER EQUATION 

ANTON ARNOLD AND FRANCIS NIER 

ABSTRACT. The Wigner equation of quantum mechanics has the form of a ki- 
netic equation with a pseudodifferential operator in a Fourier integral form 
which requires great care in the numerical approximation. This paper is con- 
cerned with the numerical analysis of the weighted particle method, introduced 
by S. Mas-Gallic and P. A. Raviart, applied to this equation. In particular, we 
will prove convergence of the method in a physically relevant case, where the 
Wigner equation models the quantum tunneling of electrons through a potential 
barrier. 

1. INTRODUCTION 

In the past few years, there has been a renewal of interest in the Wigner-or 
quantum Liouville-equation. This equation, first proposed by Wigner in [2], 
provides a kinetic model which takes into account quantum effects in transport 
phenomena. Such an application of this equation was suggested by solid state 
physicists [3, 4] in order to describe the behavior of electrons in ultraintegrated 
electronic devices. The typical example is the resonant tunneling diode whose 
performance is based on quantum tunneling through a potential barrier. 

The simulations which rely on the Wigner model aim to determine the 
current-voltage characteristic of these devices as well as their behavior away 
from equilibrium. In this framework, the usual numerical methods are finite 
difference schemes [3, 4] and spectral methods [5]. 

Here we shall investigate a weighted particle method which has been used for 
a few years for integro-differential equations arising from the classical kinetic 
theory. In particular, the numerical analysis of this method was carried out in 
the context of the linearized Boltzmann equation [6, 7] and of the semicon- 
ductor Boltzmann equation [8], where the integral operator models collisions 
of physical particles. However, the corresponding results do not carry over to 
the Wigner equation because of the particular form of the Fourier integral op- 
erator which describes quantum effects due to a potential barrier. Moreover, 
the usual mathematical analysis of this equation [9, 18] relies on semigroup 
theory in Hilbert spaces, especially L2(I1Rn), which is the natural framework of 
quantum mechanics. But this context cannot be used in the numerical analysis 
of the particle method, which needs LP and Wm P estimates with p = 1 or 
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p = 0o [10, 1 1]. As we will see, the wm, p estimates, and therefore the order 
of convergence, are related to the regularity of the potential V(x), which will 
model the potential barrier. 

The numerical application of the proposed method to the Wigner equation 
will be the topic of a subsequent paper [19]. 

The outline of this paper is as follows. Section 2 introduces the Wigner equa- 
tion and the particle method, ?3 provides a priori estimates in Wm P spaces of 
the exact solution, and the convergence analysis is done in ?4. The paper ends 
with a convergence proof of the particle method in a physically relevant case 
where the potential is not smooth. This last result, given in ?5, is obtained by 
weak compactness arguments which are not standard in the analysis of particle 
methods. 

2. THE WIGNER EQUATION AND THE PARTICLE METHOD 

The Wigner equation models the motion of electrons in an external electro- 
static potential, which we shall decompose in order to describe quantum tun- 
neling effects: the electrons are accelerated by a uniform electric field E and 
partially tunnel through a potential barrier given by the real-valued function 
V(x), X E R d (d = 1, 2, or 3). The Wigner equation governs the evolution 
of a (quasi)-distribution function w(x, v, t), where x E R d, V E Rd, and 
t e 1R+ are respectively the position, velocity, and time coordinates: 

(2.1) {atw + vaxw + Ew = 0(x, aO)w, 

The operator O(x, a,) is a pseudodifferential operator related to the potential 
V. It is defined by 

O(x, a')w= 1 [V X + aV)-V -aV)]w, 

or in an equivalent integral form 

(Ow)(x, v) 

(2.2a) = (27r) j i [v (x-2 - V (x + D)] '(x , ,)ei di, 

(2.2b) w'4(x, q) = (27r)-dI2 j w(x, 4)e" e do. 
Ed 

The term Eavw can be included in the pseudodifferential operator by adding 
-E * x to the potential V(x) . Without restricting the generality of the model, 
we will first assume that the function V belongs to L2(IRd) n LI(Rd). Then a 
semigroup analysis provided in [9] states that the operator -vax-EOv+0(x, av) 
generates a strongly continuous unitary group in L2(1Rd x Rd). Thus, if the 
initial data wI belongs to L2(lR2d), there exists a unique mild solution w of 
equation (2.1) which satisfies 

(2.3) ffw(t)ffL2(R2d) = 1fWIIIL2(R2d)- 

Since w(t) E L2(11 2d) for any t e R+ , the right-hand side of equation (2.1) ap- 
pears as a convolution product of two L2-functions with respect to the velocity 
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variable: 

(Ow)(x, V, t) = O(x, v) *v w(x, v, t) 

= j o(x, v - v')w(x, v', t) dv'. 
VI 

The function (0 is the inverse Fourier transform (with respect to the velocity 
variable) of the function [V(x - 2 ) - V(x + 2 )] and is defined by 

1 [v 
p(x, v) = (2)h J V X - - V x + eivd 

(2.4) 2 ( /2 

= 2 (-) Im[e lv x V(2v )]. 

Then the Wigner equation can be written as 

(2.5) { atw + vaxw + EOvw = (0 *v w, 

w(t = 0) = w1. 

The right-hand side of this equation is local in position and nonlocal in velocity, 
like the collision operator of the Boltzmann type equations [6, 7, 8]. This 
suggests to set up a similar particle method as the one developed for these 
equations. 

This numerical method relies on the definition of a discrete set of particles 
at positions (xi(t), vi(t)), i E 22d, with constant phase space control volumes 
Ai and time-depending weights wi(t). These particles must not be considered 
as physical particles but as purely mathematical quantities. Then the solution 
w is approximated in measure by a linear combination of delta functions: 

(2.6) w(x, v, t) t w(x, V, t) = E Ajwj(t)5(x - xi(t)) 0 5(v - vi(t)). 

Moreover, for a continuous Wigner function w, the weights wi (t) will turn 
out to be an approximation for w(xi(t), vi(t), t) . 

The particles are moved along the characteristics of the left-hand side of 
(2.5): 

(2.7) d vi, d E. 

In order to determine the time evolution of the weights, we first notice that the 
exact solution w of equation (2.5) satisfies 

dt 77w(xi(t) , vi(t) , t) = (?o *v w)(xs(t) , vi(t) , t) = (6w)(xi(t) , vi(t) , t). 

Now we have to find an approximation of the right-hand integral operator, 
which is local in x. A simple argument shows that it does not make sense 
to directly apply 0 to the particle approximation tb: When the particles are 
initially placed on a regular mesh in R2d, then (2.7) easily shows that just 
one particle will be located at a certain x-position, for almost every t E R+I. 
6tb, evaluated at the position of this particle, (xi(t), vi(t)), will therefore be 
zero for almost every t. Therefore, the kernel of the integral operator 0, 
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5(x - x')(o(x', v - v'), has to be smoothed in the x-direction. As in [12], we 
first replace 0 by 0', which is also nonlocal in the x-direction: 

(2.8) (0ew)(x, v) = j| | e(x-x')(o(x', v -v')w(x', v') dx' dv'. 

There, the delta function is approximated by the cutoff function C , which is 
defined by 

with 4 E LI (IRd) and fRd 4(x) dx = 1. Applying a quadrature approximation 
to 01, we now obtain the time evolution of the weights: 

(2.9a) dwi = 1 (xi - x_)(9(xj 5 Vi - 1j)Wj 

(2.9b) wi(t ZO) = w(xi(t = x ), v (t = - )). 

Note, that the right-hand side of (2.9a) is a discretization of the integral (2.8) 
with quadrature points at the positions of particles, (xi (t), vi(t)), i E Z2d, and 
w (xi (t), vi (t), t) is approximated by wi (t) . 

This discretization is consistent when the integrand in (2.8) is regular enough. 
The proof requires certain regularity assumptions on 4', fo and a priori estimates 
on the exact solution w of the Wigner equation. 

We remark that the Wigner equation is charge-conserving, i.e., 

w(t)dxdv= J wdxdv. 
22d 22d 

This property carries over to the particle discretization, when the particles are 
initially distributed on a regular grid with equal phase space control volumes 
Ai = h2d, i E Z2d, where h denotes the mesh spacing. Since 4'- is even (see 
Hypothesis 1) and (o(x, -v) = -(o(x, v), the scheme can be made conserva- 
tive: 

dwi = Zj 4(xi - xj)k (xj 5 vi - vj)wj 

(2.10) - AjZ4(xj - xi) o (xi, vj - vi)w 

= Zi'Aj (xi - xj)[o(xj, vi - vj)wj + ((xi, vj - vi)wi]. 

Since the convergence analysis for this scheme is the same as for (2.9), and for 
reasons of simplicity, we shall only study the scheme (2.9). 

The cutoff function can be chosen quite freely, and we shall assume 

Hypothesis 1. The cutoff function 4 is an even compactly supported function 
such that 

j 4(x) dx = 1. 
d 

Moreover, it satisfies for a fixed positive integer r: 

4'E Wr,(d) 
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and for all multi-indices a, 1 < lal < r - 1, 

j xC(x) dx = 0. 

Note that the function (0 is determined from the potential V. We will 
first impose rather strong assumptions on V in order to develop a convergence 
analysis. 

Hypothesis 2. The function V belongs to L2 (Rd) n LO (Rd) and satisfies 

(2.11) jI vaI Iflv(v)I dv < +oo V(a, /3), la + f/I < m, 
TV 

where m is a fixed integer and V denotes the Fourier transform of V. More- 
over, there exist positive constants Cl and c1 such that 

(2.12) IV(v)I < C1 
-(1 + IV I)d+e1, 

These assumptions concern both the regularity and the decay of the function 
V (expressed in terms of its Fourier transform V). The decay of the potential, 
which gives the regularity of V, is no crucial condition in our context, since 
V shall describe a compactly supported potential barrier. But difficulties arise 
from the decay of the Fourier transform V, which corresponds to the regularity 
of V. 

Especially for a discontinuous barrier of the form 

I() if X E[-2 2]'11 
else , 

estimates (2.11) and (2.12) no longer hold. The particle method for such a 
potential will be analyzed in ? 5 by mollifying the function V. But as a first 
step, we shall investigate the convergence of the particle method for a smooth 
potential V which satisfies Hypothesis 2. 

3. A PRIORI ESTIMATES OF THE EXACT SOLUTION 

As in the previous section, we shall assume in the sequel that the potential 
V belongs to L2((Rd) n LOO1(Rd) and the initial data w1 to L2(R2d). This 
ensures existence and uniqueness of a mild solution in L2 (R2d) and entails 
the equivalence of equations (2.1) and (2.5). As we already mentioned, we 
need integrability and regularity of the exact solution w in order to justify 
the quadrature approximation of the integral operator. All the estimates that 
we need will be expressed in terms of the usual norms of the spaces LP (R2d) 
and Wm P(R2d), 1 < p < 0o, m E N, denoted by 11 IILP(R2d) and 11 IIwmIP (R2d) 
respectively. We introduce the notation 

IIIfII 1Y,P := sup IIXaVfl axfIILp(R2d) 
faor+JlJN+Jya+d1<# 

for ,uE No and I < p < oo . 
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Proposition 3.1. Let i be an integer such that 0 < ,u < m (m given in Hypoth- 
esis 2) and p a real number, 1 < p < oo . 

Then, for any initial data w1 E L2(IR2d) such that 

(3.1) 1WIwsl#'aP < 0Co, 

the mild L2 (R2d )-solution w of equation (2.1) satisfies 

(3.2) IIlw(t)IIYUP ? C0t)1(1 + IvI'8)V(v)1L1(Rd)IIlwIIII,#,p. 
Here and in the proof of this proposition, C(t) denotes (not necessarily 

equal) functions of C([O, oc)) that may depend on ,I and p. 
The proof of this proposition is done in two steps. First, we introduce the 

strongly continuous group of operators (Gt)tER generated by the drift term 
-va. - EOv of equation (2.5). It can be defined via a time-dependent change 
of variables, 

(3.3) (Gtu)(x, v) = u(X(x, v, t), V(x, v, t)), 
related to the characteristics of the operator -vax - Eav 

Et2 
X(x, v, t) =x-vt+ 2' V(x, v, t) =v-Et. 

This group is a strongly continuous unitary group on any LP(IR2d), 1 < p < 
0o (see [17]). For p = 0o, however, Gtu is not strongly continuous, but it still 
satisfies JjGtuILOO-(R2d) = IuIIL- (R2d) which is sufficient for the following proofs. 
Moreover, Gt satisfies: 

Lemma 3.1. If a function u satisfies I I I u I III,, p < 0o, then 

(3.4) glGtullj,a,p < C(t)jjjujjj,a,p 
holds for any t E R and l < p < oo. 

Secondly, the right-hand side of equation (2.5) is handled as a linear pertur- 
bation for which similar estimates hold. 

Lemma 3.2. With the same assumptions as in Lemma 3.1, we have 

(3.5) 111? *v u11,4,P < CHO(1 + IvI'8)V(v)11L1(Rd)jIIujI,#,p. 

By setting u(t) = Gtw(t), equation (2.5) is transformed to 
{ = G t(p *v Gtu), 

u(0) = WI. 

Then, estimates (3.4) and (3.5) and Gronwall's lemma lead to 

IIu(t)IIOp ? c(t)II(1 + IVI'1)V(V)IIL1(Rd)IIIWIIIju,p. 

The proof of Proposition 3.1 ends by applying again estimate (3.4) with 
w = Gtu. 

Proof of Lemma 3.1. Let u be a function which satisfies estimate (3.1). The 
function defined by f (t) = Gtu is the (distributional) solution of the transport 
equation 

{f + vxf+Eavf=0, 
frt = )= U. 
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By applying the operator xa x VOO, we get 

f at(XaVfOaxYaf) + VOX(XaVflXYOVOf) + EOV(XaVfXYlV&f) = g(t) 

l(XaVOaxYNa1f)(t = 0) = XaVflaxYvJU. 

The right-hand side g(t) is a sum of terms of the form (xa'vl' axyOavj f)(t), 
with Ia'I + IfiI + Iy'I + 1k'1 < ,I, and its LP norm is bounded by 

11g(t)IlL~P(R2d) < CIIl f(t) I I #,p- 

Thus, for any t E R, the function (Xavia'xYOa1f) (t) is given by 

t 

(XavfOaxyOa1f)(t) = Gt(XaVflxyaVJU) + J Gt-,g(s) ds. 

The inequalities 
t 

I(x U aI IfO )(t) IILP(R2d) |l ? avfOjOu (R2d) + Ij Ig(S) IILP(R2d) ds 

?<~x VlxagaxouvILP(R2d) + c I hI f(s) I I ,p ds 

follow from the conservativity of the LP norm under the transformation Gt . 
Then, Gronwall's lemma applied to 

hIIf(t)0IIIP ? iiiuiiii,p + C Ih hIf(s) I I,p ds 

ends the proof. C1 

ProofofLemma 3.2. Let u be a function satisfying estimate (3.1). Let a, ,6, y, 
and 5 be d-dimensional multi-indices such that jal + flu + IYI + 161 < ,I. We 
first compute the derivative 

axyv" (? *v u) = axyO(o *V av U 

Since the two functions depend on the x-variable, we use the Leibniz formula 
y! [(o11*(ooU)] 

axy a"(? *V u) = Y !Y2! [(aXY' ? ) *V (aXY2aV)] 

Y1 +Y2=Y 1!2 

When we multiply by v0 we apply again Leibniz's formula: 

(3.6) x vaflOya(p *v u) = Z 1! ! - [(VO, axy, f ) *V (x VA2aXY2VuA. 

fll +fl2=fl fu!l!1!2 (f1~ 0 ~(af2~OU] 
Yi +Y2=Y 

Differentiating equality (2.4) with respect to x gives 

(2 d/22ix 
(v, axyf 1O)(x , v) = 2 () vfli Im[(2iv)Yle2iv xV(2v)] 

and shows that V flOatxy belongs to C(Rd1, LI(Rd)) with 

(3.7) hh(vflxYO9)(x, V)IILI(R,) < CHO(1 + IVh')V(V)LI(Rd) Vx ER 
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Therefore, all the convolution products appearing in the sum (3.6) are defined 
and we have for almost every x E Rd 

J(Vfl0aX,') *V (XaV,12aX2aV11U)(X, V) IlLp(Rd) 

? C|(1 + IVI8)V(V)IIL1(Rd)II(XaVfl20o2o U)(X, V)ILP(Rd). 

Taking the LP norm with respect to x of both sides gives 

(vflI aXYI) *V (XaVf2lY2Oa21U) ILP(R2d) 

< C||(1 + IvI'|)V(V)IIL1(Rd) VI2o2 I UILP(R2d) 

< C1(1 + IVI'U)V(V))IL1(Rd)UIIuIII,4,p. 
By inserting these estimates in (3.6), we get existence of a constant C > 0 such 
that 

lXa0o (p *v 1LP(R2d) < CII(1 + IVI'U)V(V)11Ll(Rd)IIjuIII#,p 

is valid for any (a, JJ, y, 5) with IaI + 1,1 + IyI + 161 < Iu. 01 
Remark 3.1. We finish this section by noting that inequality (3.5) also holds for 
a = ft = 0, and it then shows that the operator w -* *v w is a continuous 
linear operator in W', 'P (R2d) . From this, standard semigroup theory [ 1 3] leads 
to existence and uniqueness of a solution of (2.5) in W#, P (R2d) when the initial 
data w1 belongs to this space, without using the usual L2-theory of the Wigner 
equation. 

4. CONVERGENCE OF THE PARTICLE METHOD FOR A SMOOTH POTENTIAL 

This section provides the convergence analysis for the method (2.7), (2.8). 
We assume here that Hypothesis 1 is satisfied with r = m and that the potential 
V has the regularity given by Hypothesis 2 with m > 2d. The equations for 
the particle movement are easily solved: 

(4.0) x1(t) = x1(0) + v1(0)t + 2 vi(t) = vi(O) + Et. 

Since these particles are initially distributed along a regular mesh (with mesh 
spacing h), they remain on a regular mesh deduced from the initial one by a 
linear mapping. 

Given a particle approximation (2.6) of the solution w, with wi(t) 
w(xi(t), vi(t), t), one can easily construct a smooth approximation of w: 

(4.1a) Wh(X, V, t) = E h2dw,(t)4g(x - x(t))g8(v -V(t)) 
iEZ2d 

where the delta functions of (2.6) have been regularized by the cutoff 4Ce. 
The crucial point of the convergence analysis is the error estimate of the 

approximation w(xj(t), vi(t), t) wi(t), which is given by the following the- 
orem. 

Theorem 4.1. Let the initial data w, belong to L2(R2d) n Wm' ?O(IR2d) and 
satisfy IIIWI Im, 00 < o0. Then, for any T > 0, there exists a positive constant 
C(T, m, V, 4) so that 

sup Iw(xi(t), vi(t), t) - wj(t)I 
iEZ2d 

(4. l b) h hm\ < C(T, m, V, 4)IIIwIjIIm,00 gm + gm 

holds for any t, t E [O, T]. 
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Here, e denotes the scaling parameter of the cutoff function 4 and h the 
grid spacing of the regular particle mesh. From this result, standard particle 
method analysis [10] leads to the error estimate 

sup I w(t) win(t)IIL?(R2d) = ? (i +e 
tE[O, T]IM weILRd)=0 g 

As usual for particle methods, the theorem will be proved in two steps: 
- consistency of the quadrature approximation involved in (2.9a), 
- stability of the differential system (2.9). 

4.1. Consistency. The quadrature formula (2.9a) relies on two approximations: 
the regularization of the operator 0 and the approximation of the integral (2.8) 
by a discrete sum. First, the regularization consists in replacing Ow by 

Qew = C' *x (ao *v w). 

Since the cutoff function 4'- satisfies Hypothesis 1, the following result [10] 
holds. 

Lemma 4.1. If u E Wm P(cRd), 1 < p < oo, then we have 

IIU - 4' * UIILP(Rd) < Cgm IIUIIWmP(Rd). 

Proposition 3.1 and Lemma 3.1 show that w and Ow belong to the space 
Wm, co (R2d) , which is included in Wm, ? (IRd4, L?? (Rd)) . Therefore, the previ- 
ous lemma implies the estimate 

(4.2) HOw - QeW llLoo(R ,Loo(R?)) < CC lOw llWIWm oo(RdLo())d 

and hence, by Remark 3.1, the following lemma. 

Lemma 4.2. Under the assumptions of Theorem 4.1 we have 

HOW - 0OWllL-(R2d) < C(t)Ml WIllWmm0oo(R2d), 

with C E C([O, oo)). 

Next, we investigate the error related to the discretization of the integral by 
applying a standard result [10, 14]: 

Lemma 4.3. Let (xi, vi), i E Z2d, be a mesh in R2d with control volumes w1j, 
i eE Z2d, and mesh spacing h (w1i = O(h2d)). Then, there exists a constant 
C > 0, independent of h, such that for any function g E Wm, 1 (R2d), m > 2d, 
we have 

(4.3) J~g(x, v)dxdv -Eawg(x1, vi) < Chmllgllwm I(R2d) 

So it only remains to prove that the integrand in (2.8), 

(4.4) g(x, v) = 4'(xo - x) p(x, vo - v)w(x, v, to), (xo, vo, to) fixed, 

belongs to Wm,1 (R2d). 
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Lemma 4.4. For any T > 0, there exists a constant C(T, m, V, 4) so that 

45 (xo - X)O(X, vo - V)W(x, V, tO)H|WmI(R2d) 

< C(T, m, V, C)|jjWIljjmoo 
I 

holds for any c > 0 and for any (xO, vo, to) E R2d x [0, T]. 
Proof. Let (xo, vo, to) belong to R2d x [0, T] and c be a positive real number. 
We consider the function g defined by (4.4) and we compute its derivatives 

&xagvflg, IaI+l/J < m . First, we differentiate with respect to v and use equality 
(2.4) for (o: 

Qfg(x, v) = C I (Xoj-1X) (- 1)4' f()1)lQ (x(, Vo-V)QOf2W (X, v, to) 

fl +fl2=fl ! 

- Z fil~f2!fi3! 4-(xo - x)2 (2)/ 
IA +fl2+fl3=fl 

9!29!7 

Im[(-2ix)fl 
e2ix (vo-v) (-2)fl2 2 3V(2(vo - v))]Qf4w(x, v, to). 

Secondly, differentiating with respect to x gives 

Xa Vflg(x, v) 

a- +2+a3+a4=Z { al j!a2! 9a3!4!hl ! f2!3! (-13)'1&14'e (Xo-x) 

IA +fl2+fl3=fl 
a2<fl1 

x 2 (-) 
I3-m 

L(-2i)jpl (/1-2)! x(fl1-2)[2i(vo - v)]a3e2ix (vo-v) 

x (-2) fl2V(2(vo-v))] o244w(x, vto) 

The L1 norm of this derivative is estimated by 

I I&O~aQO'flgH11L1(R2d) < C(a, f3) E [H&X14xa (X)I LI(Rd) lVa3Q4l2 V(V)IILI(Rd) 

a1 +a2+a3+a4=a 
IA +fl2+fl3=fl 

a2 <fl1 

X IIX fl-a2&X4QO3W(X, v, to)IL-(R2d)]. 

Then Proposition 3.1 leads to 

HIgIIwm1I(R2d) < C(m, t)IICe(X)HIWm,1(Rd) 

x 0 sup ||Uc0Q V(V) IILI(R2d)] 2 WIMo 
Llal+lfll<m J 

with C(m, *) E C([O, oo)). 
Finally, estimate (4.5) is obtained with 

IIKHIIWm1I(Rd) ? HmKHCWmI(Rd). * 

The following proposition is an immediate consequence of the previous lem- 
mas and concludes the consistency analysis. 
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Proposition 4.1. Under the assumptions of Theorem 4.1 and for any T > 0, 
there exists a constant C(T, m, V, 4) so that 

Ow(xo, vo, to) - E h2d4'e(Xo - xj))((xj , Vo - vj)w(xj, vj, to) 
(4.6) jEZ2d 

< C(T, m, V, C4)IWIHjj jmO0 (gm + h) 

holdsfor any (xo, vo, to) E R2 x [0, T]. 
Proof. Writing 

Ow(xo, vo, to) - E h2de(xo -_xj)((xj, vo - vj)w(xj, v1, to) 
jEZ2d 

< IOw(xo, vo, to) - Oew(xO, vO, to)l 

+ Oew(Xo, vo, to) - E h2d Se (xo - ) (o(xj, Vo - vj)w (xj, vj, to) 
jEZ2d 

and applying Lemma 4.2 to the first term, and Lemmas 4.3 and 4.4 to the second 
term, yields the result. 5 
4.2. Stability. The weighted particle method reduces to a system of infinitely 
many differential equations 

(4.7) dwi 
= Z h2d4'e(X -xj))(o (xj, vi - Vj)wj, i EZ2d 

]EZ2d 

while the exact solution satisfies 

(4.8) dy[W(Xi(t), Vi(t), t)] = (Ow)(Xi(t) Vi(t) t), i E Z2d 

We set 
ei(t) = w(xi(t), vi(t), t)- wi(t), i E Z2d. 

The ej satisfy 

d 
te = E h2d 4' (Xi 

_ Xj) (o (Xj vi - vj)ej 
jEZ2d 

(4.9) + (6w)(Xi, vi, t) 

- Ad h2d Oe (Xi - ) v( (xj, p v1- vj)w(xj, vj, t)j 

We aim at establishing a uniform (in i and t) estimate of the error e1, 
as stated in Theorem 4.1. We already know from the consistency result in 
Proposition 4.1 that the last term in (4.9) is of order O(em + hm/em) . The last 
ingredient is then the stability of the differential system (4.9) or (4.7), which is 
based on the next lemma. 
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Lemma 4.5. Let t belong to [0, T] and L = L(t) be an operator on lP(Z2d), 
1 < p < oo, defined by 

(L(t)u)i = E h2d'E (x1(t) - xj(t))p((xj(t), v(t) - vj(t))uj, i e z2d 

jEZ2d 

for any U = (Ui)iEz2d, U E lP(Z2d). 

Under Hypotheses 1 and 2, L is a continuous linear operator in lP(Z2d), 
uniformly bounded with respect to t E [0, T], e < 1, h < 1, 1 < p < oo. 
Proof. We will directly prove the lemma for p = 1 and p = oo. Then, the 
Riesz-Thorin interpolation theorem [20] yields the general result. 

First let u belong to lo" (Z2d) . For any i E Z2d, we have 

(Lu)jI < E h2dl,(X, - xj)I 1(o(xj, V, - vj)I IUj 
jEZ2d 

(4.10) 7rd/ jE 2d | X X) 
IEZd 

< M Ld [jd x ) (2(vi - vj))l] IlulOO(Z2d) 

UEZ2d cg(x,-Xj)7z?O 

with M = 2(2/,r)d/2 SUPXERd 4(X)|. 
Equalities (4.0) easily show that the distance between two particles remains 

uniformly bounded from below: 

Vt E [0, T], h < min {Ixi(t) - xj(t)l + Ivi(t) -vj(t)I}. 
i, EZ2d 

Then, for any i E Z2d and any k E N, the number NM (t) of particles in the 
domain 

Q~(t) = IX E R 7k O} x {v E Rd~k - 1 < Ivi-vI < k} 

is bounded by 
ed 

Ni (t) <C22d? 

where C2 is a constant independent of i E Z2d, k E N, and t E [0, T]. Since 
V satisfies 

Cl 
IV(V)I :5 (1+ el+8 > 01 , V) (1 + IV )d+ei, 

we thus have for any i E Z2d: 

Z |V(2(vi - vj))I < C1C2 ( d (2k -)d+) 
(4.11) jE2d k=l 

< C3h2d 

We insert this estimate in (4.10) and obtain 

I(Lu)jI < MC31uJUiIJ(Z2d) Vi E Z2d, t E [0, T]. 
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For u E II (Z2d) we analogously obtain 

IlLulll,(z2d) = i: |(Lu)ij 
i~z2d 

(4.12) < M Sd E E IV(2(vi-vj))Ilujl 
ijZ2d Ez2d: 4e(x,-X1 )O J 

Since IV(-v) = lV(v)l, we can reorder this sum and apply (4.11): 

(4.13) IILu|ll(Z2d) < Mh d E Ij Ul IV(2(vi-vj)) 
ijE2d IEZ2d : (X,-X )7/0 

< MC31juI1ii(Z2d), t E [0, T]. Ii 

This lemma yields 

Proposition 4.2. The differential equations (4.7) and (4.9) admit unique solu- 
tions in loo(22d) 

Moreover, the proof of Theorem 4.1 ends by applying Gronwall's lemma to 
the differential system (4.9). 

4.3. LP-convergence. First we want to derive the lP-convergence of the particle 
approximation wi . Since each particle has the phase space control volume h2d, 
we have to consider the following h-dependent norms: 

(T4.h1e4) 4. llelP (z2d) ( h1 <P <00. 

Theorem 4.2. Let the initial data w, belong to L2(IR2d) n Wmi'OO(R2d) and 
satisfy (3.1) with , = m and p = oo. Then, for any T > 0 and any 62 > 0, 
there exists a positive constant Cp, 82 such that 

/m hM\ 1-(l+C2)IP 

(4.15) Ile(t) IIP(z2d) < Cp, 2 (M + hr) , 1 <p < 00, 

holds for any t e [O, T]. 
Proof. The error of the particle method, defined by 

ei(t) = w(xi(t), vi(t), t)- wi(t), i E Z2d 

already satisfies llelIl/o(z2d) -* 0 when h/e, e O 0. Therefore, it is sufficient 
to prove uniform boundedness of llelllhP(Z2d), 1 < p < oo, and to apply the 
following estimate: 

(4.16) I~~lel 
'( 

< IleId) 
- 

1 Iell1 ( 4. 1 6) |h| ell | /P (z~d ) < l eIZ lcoo (Z2d) I Ie l++e2 (Z2d) 

From Proposition 3.1 we readily conclude 

C 
(4.17) lw(x1(t)' ,vi(t) , t)l 1 + lX,(t)12d + lV,(t)12d 
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with C independent of i E Z2d and t E [0, T]. Since the particles are always 
positioned on a regular grid, uniformly covering the phase space R2d (see (4.0)), 
(4.17) represents a decay estimate, which implies 

(4.18) I|w(xi(t) , Vi(t) , t)IIlP(Z2d) < Cp 1 < p < 00, 

with Cp independent of h < 1, t E [0, T]. 
Since Lemma 4.5 implies the lh-stability of the differential equation (4.7), 

we conclude that (Wi)iEz2d, and thus e, are bounded in lhP(Z2d), 1 < p < 00, 

uniformly with respect to t E [0, T], e < 1, h < 1 . n 
We remark that a convergence result for the Ih, (Z2d)-norm can be obtained 

if stricter conditions on w, are imposed. 
From this theorem we can now obtain LP(R2d)-convergence of wh, defined 

in (4.la): 

Theorem 4.3. Under the assumptions of Theorem 4.2 andfor any c2 > 0, there 
exists a positive constant Cp, 62 such that 

sup IIw(t) - WE (t)I|v(a2d 
tE[O, T] 

(4.19) hm I-(1+92)IP 
Cp,62 (em+m)1< p < Oo. 

Proof. The result for p = 0o has already been obtained in ?4.2. For 1 < p < o, 
we estimate 

(4.20) h|w(t) - wE (t)IILP(R2d) 

< IIw(t) - _I(t)w(t)IIU(R2d) + II7Eh(t)W(t) - WEj(t)IILp(2d), 

where the smoothed particle approximation of w (t) is defined by 

(4.21) I7[h(t)W(t) = h2 w(xi(t), vi(t), t)4 '(x - xi(t)); 4(v - vi(t)). 
if 2d 

Standard particle method analysis [10] shows that the first term of the right- 
hand side of (4.20) is O(cm + hm/cm). Since 4 is compactly supported and 
I (x)I < M/ed, we estimate the second term as follows: 

p 

A E h2[W(xi, vi, t) - wi(t)] '(x - xi); '(v - vi) dx dv 
2diEz2d 

(4.22) ~ J 
M 

h 
e2d E W(Xj , Vi, t) -Wi(t)|| dx dv 

(4.22) ]2d [C Ix-x?C 
L V,-V |<Cg 

[ h2d 
< A h2d M - d Iw(xi, vi, t) -wi(t)I 

jEZ2d / x,-x| C(e+h) 

In this last expression the sum over i is finite, including at most N = 
C(1 + C2d/h2d) particles, with C independent of j, C, h, and t. Using the 
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estimate (EfN Iai a)P < Np-,1 EN IaiIP, we obtain 

Iflh (t)w (t) - Wh (t) I(l2d) 

(4.23) C E () E h2dIW (Xi , Vi, t)- 

jEZ2d jx -x, j <C(e+h) 
v,-vj I<C(e+h) 

Since each term Iw(xi, vi, t) - wi(t)IP, i E Z2d, can only appear N times in 
this expression, we finally get 

(4.24) IJ7I h(t)W(t) - Wh(t)p <2d ? CMP 1 + I ) el/P 

5. CONVERGENCE ANALYSIS FOR A RECTANGULAR POTENTIAL BARRIER 

In this section, we shall analyze the one-dimensional particle method for the 
potential V, given by 

(5.1) V( ) 2 fxE(- 2) (5.1) V~~~x)={0 else. 
Its Fourier transform is 

V(v ) = 1 sin(v/2) 

Then, Hypothesis 2 and, consequently, the above convergence analysis, no 
longer hold. In order to solve this problem, we propose two different meth- 
ods. The first consists in slightly modifying the original equation by taking a 
mollified potential Va = V * la. Then we prove that the exact solution wa 
of the Wigner equation with the potential Va converges in L2 (R2) to the so- 
lution w obtained with V, when a -* 0. The particle method (2.7), (2.9) 
is applied to the regularized equation, for which Theorem 4.3 ensures conver- 
gence in L2(R2). Then the combination of these two approximations yields 
convergence in L2 (R2) as a -+ 0, e -+ 0, h/e -+ 0. The second way to treat 
the rectangular potential relies on a modified particle method which preserves 
the discrete 12-norm of the particle solution. It will be directly applied to the 
Wigner equation for the nonsmooth potential V. 

In both cases, we will assume that the initial data w, belongs to L2 (R2), 
which implies existence and uniqueness of a solution w(t) E C(R, L2 (R2)). 
The time-variable will be confined to a fixed interval [0, T] and we notice that 
the set {w(t), t E [0, T]} is a compact subset of L2(R2), as the continuous 
image of [0, T]. This compactness leads to L2-strong convergence results for 
the two methods that we propose. In particular, we will refer to the following 
lemma: 

Lemma 5.1. Let E denote a Banach space. If the sequence (Sn)nEN of bounded 
linear operators converges to S in the strong operator topology, then it converges 
to S, uniformly in any compact subset of E. 

For the sake of completeness, we give the proof of this result. 

Proof of Lemma 5.1. By the Banach-Steinhaus theorem we get that IISnII is 
uniformly bounded with respect to n, and that S is a bounded operator with 
11.S11 < lim inf. 1I1. II11 
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Let K be a compact subset of E and let us assume that the sequence S, does 
not converge uniformly on K. Then, there exists a positive constant c0 > 0 
and two sequences (Snk)kEN and (Xk)kEN, Xk E K, so that 

ISfkXk-kSXk > 80 Vk E N. 

Thanks to the compactness of K, we can assume the sequence (Xk)kEN to 
converge to a limit x, x E K. By writing 

SfkXk - SXk = SnkXk - SfkX + SnkX - SX + SX - SXk, 

we get 
80 < ISnkXk - SXk1 < 2M||xk - xH + IISnkX - Sx1, 

where M denotes sup, IIS, I I. 
Obviously this inequality contradicts the assumptions which imply the right- 

hand side to converge to 0. D 

5.1. Error estimate for regularizing the potential. In this subsection, the initial 
data wI is supposed to belong to L2(DR2) n Wm, O(R2), with m > 2, and to 
satisfy Iw,111m,oo < 00. 

We choose the mollifier 
1 X\ 

1 (X)= am (-), XER, 
a \a 

where 1m is recursively defined by 

Ik = 10* k-1, 0 < k < 

and 

{1 if x E [2S2 17()0 else. 

Then the Fourier transform of the regularized potential V = a* V is equal 
to 

Va = \,-7 a VI 

or explicitly 

1 [sin (av!/2)lm+1 si~v2 
(5.2) Va(v) - (v/2) Vv e R. 

If7 _ av2_ v/2) 

This equality shows that the potential Va satisfies Hypothesis 2. Therefore, 
the previous convergence analysis of the particle method holds for the corre- 
sponding Wigner equation, 

(5{3) atwat + VaxWa + E&vw = (d *v Wa, 
wa(t = 0) = WI, 

where the function (Oa is given by (2.4): 

(Oa(X, v) = Im [e2ivx (sin(av) ) +1 sin v 

The next proposition states that the solution wa of equation (5.3) is a good 
approximation of the solution of equation (2.1) when a is small. 
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Proposition 5.1. Let T be a positive real number; then we have 

(5.4) sup IIW(t) - W (t)L2(R2) -+ 0 when a -* 0. 
tE[O, T] 

Proof. Taking the difference between (2.1) and (5.3) gives 

{ &t(W - Wa) + va&(w - wa) + E&,(w - wa) 

= ((0 - (oa) *v w + (a *v (w -W), 

W (- Wa)(t = O) = O. 

As a consequence, (w - wa) is the solution of 
it 

(w - w a)(t) = j Gt-s[(Oa *v (w - wa)(s) + ((0 - _(9) *V w(s)] ds, 

where Gt is the semigroup defined by (3.3). 
This implies 

it 

(5.5) II(W _ 
W)(t)|IL2(R2) < ] [||? *V (w _ Wa)(S) IL2(R2) 

+ 11(o - _(a) *V W(s)HIL2(R2)]ds. 

The second term of the integrand is bounded by 

sup II((o 
_ ,a) *V W(S)HIL2(R2). 

sE[O, T] 

For the first term, we write the convolution product (0a *v u, with u E L2 (R 2), 
in its Fourier integral form: 

(l *v u= 2 Jj I [Ve (x - V- V (x+ )] u(x, 4)ei(v d) di, 

which gives the estimates 

?~ *v UIIL2(R2) < [v (x- - V (x + I)] i(x, L() 

< 211 Vt|L??(R) 11 ̂IIL2(R2) - 

Since the norm 11 VaIILOO(R) is bounded by I VIILOO(R), estimate (5.5) implies 

- (WWa)(t) IIL2(R2) < T sup ||(( - (?a) *v W (S) IIL2(R2) 
sE[O, T] 

it 

+ j21VIILOO(R)H(w -W_ )(S)|IL2(R2) ds Vt E [0, T]. 

By Gronwall's lemma, we get existence of a constant C(T), only depending on 
T, so that 

II (WWa)(t) IIL2(R2) < C(T) sup II((o _ ,a) *v W(S) IIL2(R2) 
sE[O, T] 

holds for any t E [O, T]. 
It only remains to prove that the right-hand side of this estimate goes to 0 

when a -* 0. According to Lemma 5.1, and because {w(s), s E [0, T]} is a 
compact subset of L2 (R2), this follows when it can be proven that the operator 
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(,a*,)) converges to ((0 *,) = 0 in the strong operator topology. Let u belong 
to L2(R2). Then we have 

[((O -9) *v u](x, v) 

= 2 J!. [( Va - V) (x - 2 - (V- V) (x + 2)] u(x, d)ei(v-)' d jdi 

and 

11(?Oe?9)*VUHIL2(R2) < |V _- V) (x- - (V- V) (x+ 2)] u(x, C)|| 

Since the function C1m which determines the mollifier la is compactly sup- 
ported, we easily get 

|(Va ) - -) '2 (Va 
_ 

V) (x + 2 0 when a -* 0 

almost everywhere in 1[x' .4 
With 

| [(va1 - V) (X - 2)-(V - V) (x + 2)] u(x, I) < 4jV||Lo(R)|i(X, 1)j, 

Lebesgue's theorem shows 

-M (0) *V U11L2(R2) -- 0 when a -, 0, 

for any fixed u E L2 (R2). D 

Remark 5.1. In this proof we have never used the particular form of the poten- 
tial V. Thus, Proposition 5.1 holds for any potential V in L??(R). 

The solution wa of the regularized equation (5.3) can be approximated by 
the particle method. Because of the regularity of the potential Va, Theorem 
4.1 applies in this case and provides an error estimate in L??(R2). Combined 
with the result of Proposition 5.1, it implies that this procedure furnishes an 
approximation Wae converging to w as (a, h/e, e) -- 0. 

5.2. A particle method preserving the discrete 12-norm. Formally, we obtain 
such a particle method by replacing (2.9a) by 

(5.6) dwi = j C, Rj(xi- xj)P (Pxi , Vi - V) + ( (xj , vi- Vj) wj i EZE2. 
dt 2 

1EZ2 

This gives 

Ai 
dw 

Wi aiij C' (xi-xj) (O(xi, vi1- ) + (O(xj, vi- vj) 

iEZ2 i, jEZ2 

Because C8 is even and (9(x, -v) = -(o(x, v), the right-hand side is antisym- 
metric with respect to (i, j), and therefore 

So, this scheme preserves the discrete 12-norm provided all these expressions 
make sense, but it is no longer charge-conserving (cf. (2.10)). Indeed, we want 
to apply this method directly to the case of the rectangular potential barrier, 



NUMERICAL ANALYSIS OF THE WIGNER EQUATION 663 

without any mollifying. Here the convergence analysis is based on weak com- 
pactness methods following the ideas of [15]. It relies on a weak formulation of 
a regularized Wigner equation with the right-hand side Gew, as defined in (2.8). 
The weak convergence result will then be improved to obtain strong convergence 
towards the classical solution of the Wigner equation [15, 16]. 

Here, the existence of a solution for the differential system (5.6) is question- 
able, because the stability analysis of ?4.2 (relying on Hypothesis 2) no longer 
holds. We will overcome this problem by considering only a finite number of 
particles. This number of particles is related to the discretization parameter h 
in the following way: We introduce the domain Dh = [-Xh, Xh] X [- Vh, Vh] 
in R2 such that 

Xh- oo and Vhs oo when h O, 

and we define the set Ih of indices by 

Is = {(1, k) E Z2 (lh, kh) E Dh}- 

By denoting i = (1, k) and Ki = [(I - I)h, (I + I)h] x [(k - 4)h, (k + 2)h], 
the differential system for the weights wi(t), i E Ih, reads 

dwt = EhE(X, _ Xj) 9 (Xi S Vi - Vj) + 9(xj, Vi - Vj )j 

(5-7) j EIh 

(.Wi7() = ) { wI(x, v) 12 dx dv. 

First, we will analyze the approximation property of the solution of (5.7) 
for a fixed e and h -, 0. As we have seen above, the solution of this system 
preserves its 12-norm: 

E h2wt(t)2 - Zh2w (0)2 =JwI(x, V)2 dx dv. 
iEIh iEIh Dh 

Next we also introduce the function Xi(x, v, t) = Gt[ 1K (x, v)], which satisfies 

atXi + v~xXi + E0vXi = 0, 

IX( {) 1 if(xv)K1Ki 
X1(x v, ) = 0 else. 

Then we construct the time-dependent function wh(t) E L2(R2) by interpola- 
tion: 

(5.8) Wh(X, v, t) = w,(t)X1(x, v, t). 
iEIh 

Its L2-norm is given by 

11wh(t) 1L2(R2)= h2W(t)2, 
iEIh 

and because of the conservativity property of (5.7), we get 

|W h(t) 1IL2(R2) = IIWIlIL2(Dh) ? IIWIH|L2(R2). 
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Considering wh E L2((O, T) x R2) gives 

IIW IIL2((O, T)xR2) = \/IIWIIIL2(Dh) < ViIIIWIIIL2(R2). 

As a consequence, we can extract a subsequence, still denoted by wh, such that 
wh -_ w? in L2((O, T) x R2) weakly as h -- 0. 

Lemma 5.2. The function w? E L2((0, T) x 1R2) is a weak solution of the equa- 

tion 

(5.9) { 4tw? + vOxwo + E&Vwo = 6w?O 

where the operator 08 is defined by 

O'U = 2[6eU + O(C' *X U)] = [C *X (OU) + 6(Ce *X U)] VU E L2(R2). 

Here "weak solution" means an element of 21([0, T) x R2) which satisfies 

f| f /W(-t Yv - I x V/ - EIv v/) dx dv dt + | I(t = 0) dx dv 

(5.10) ?OJ2 2E 

=-| j|jwo(0V/)dxdvdt Vy/ E([O, T)xR2). 
22 

Proof. Let V/ belong to 90([, T) x R2). For any i E Ih, we set 

Vi(t) = VJ(Xi(t), Vi(t), t), t E [0, T), 

and we have 
d y/j d t (t) = [(ot + vOx + E&v)V](xi(t), vi(t), t) Vi E Ih, Vt E [0, T). 

As we did for wh in (5.8), we now define the interpolation functions Vh, Wh, 

and fh: 

V h(X, V) = E Vi(O)Xi(x, V, 0), 
iEIh 

ph(X, v, t) = E d/i (t)Xi(x v, t) 
iEIh / 

fh(x, v, t) = fi(t)Xi(x, v, t), 
iEIh 

where the functions f (t) are given by 

f (t) = ,h2C(x1 - j x_,) f (xi vj - vi) + (xj, vj - vi) 
iEIh 

We multiply equation (5.7) by h2 VI(t) and sum up: 

Eh2dwi 
4 

he(X _XjI (XiV -Vj)+p(xj, V-Vj) 
Ls t 2 W.I 

iEIh iIEIh 

- Z h2wj 
2 C, (X, 

?9 (xi 5 Vi - Vj) + 
( 

(Xj , Vi-vj)] 

jEIh iEIh 

I2Ej = h wjf 

jEIh 
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Integrating with respect to t gives 

fT Fdhwt V/ iw() ~0 lo [ia, \\W(t) (- dt ) (t)1 dt +jEh2W,(O)V(O) 

= fT Ki~ ]~wj~th (t) dt, 

and by introducing Vh, ph, and f , we obtain 

XXwh(X~ v t)(-Th(x v, t)) dxdv dt 
22 

+j Wh(X, v, O)yA(X, v)dxdv 

= j j AWh(X v, t)fh(x, v, t)dxdvdt. 22 
Since the test function qv belongs to X([0, T) x 1R2), we easily get 

yh -I(t= 0) in L2(2), 
Tph (at+vo,+Eov)y inL2((O,T)xlR2), ash -0. 

Moreover, we already know that 

Wh(t= 0) _*WI in L2(1R2), 

wh __W in L2(1R2 x (0, T)) weak. 

Then equation (5.10) is obtained by taking the limit of the previous equality as 
h -+ 0, as soon as we have proved strong convergence: 

fh >(-e6 ) inL2(R2x(0, T)), ash -->0. 

Hereafter, F will denote the function defined by 

F(x, v, x', v') = CI(xl - x). (x', v'-v) + qp(x, v'-v) 2 

(x, v, x', v') E 1R4, where we recall 

(o(x, v) = 1Im [e2ivxi]. 

Because of the regularity of id (Hypothesis 1), F is a continuous function, 
and there are constants C and D such that 

(5.11) F(x, V, xC, ) < l 

and 

(5.12) F(x, v, x', v') = 0 if Ix-x'I > D. 
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Since V belongs to 0([O, T) x R2) and F is continuous, the sum 

E: h 2F(x, vI xi, vi)V(xi, vi, t) 
iEIh 

converges to 

F(x, v, x', v')yi(x', v', t) dx'dv' = -(6ey,)(x, v, t) 
2 

as h -+ O, for any fixed (x, v, t) E R2X(0, T). Wefix (x, v, t) ER2x(0, T) 
and assume that h is small enough in order to ensure EjEIh X1(x, v, t) = 1. 

Then, we have 

fh(x, v, t) - E h2F(x, v, xi, vi) i(xi, vi, t) 
iEIh 

- Z, Xj(x, v, t) [Zh2(F(xj, v1, xi, vi) 
jEIh [iEIh 

-F(x, v, xi, vi))] Vg(xi, vi, t) 

and the right-hand side can be estimated by 

[h2 V (Xi, vI, xt) x sup (F(x",v", x', v')-F(x, v, x', v')). 
Li EIh (X ', Vi' ? E SUP p ( t) jx"-xj<h 

jv"-vj<h 

The first factor is bounded by a constant and the second converges to 0 as 
h -* 0, because F is uniformly continuous on the compact set {(x", v") E 
R21 Ix" - xI < 1 and Iv" - vI < 1} x supp yi(t) . This proves that for any 
(x, v, t) E R2 x (0, T), fh(x, v, t) converges to (-6Ey)(x, v, t) as h -O0. 
Moreover, the decay properties of F, (5.11) and (5.12), and the compactness 
of supp yI(t) provide two constants C' and D' (independent of h) such that 

(x, v, t) E 2 x (0 T){ f(x,v,t) 1v and Q+ I(x, v,It)? < 
f(XI vI t) = (0?8yV)(x, vI t) = if jxj > D'. 

Then, by applying Lebesgue's theorem to the function fh + 0- V12, we obtain 
the convergence 

fh, _OeV/ inL2(R2 x (O T)). D 

The above convergence result can now be improved. 

Proposition 5.2. There exists a unique solution we in C([O, T), L2(R2)) of 
equation (5.9), and the whole sequence wh converges strongly to we in 
L 2(R2x (0, T)), as h -+ 0. 
Proof. From the estimate 

1 4I *x UHlL2(R2) < ||U||L2(R2) 
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and the boundedness of the operator 0 in L2(RI2), we conclude that 08 is 
bounded. Since this operator satisfies 

J u(Oeu) dx dv = 0 Vu E L (R 
12 

there exists a unique mild solution of equation (5.9), we E C([O, T), L2(R2)), 
with 

IIWe(t)IIL2(R2) = IIWIIHL2(R2) Vt E [0, T). 

We denote e = w0 - we, where w0 is the function introduced in Lemma 
5.2 as the limit of a subsequence of (wh). This function, belonging to 
L2(R2 x (0, T)), is a weak solution of 

of te + v&xe + E&e = 0Ge, 

le(t = 0) = 0. 

Therefore, we have 

Ate + vxe + E&e E L2(R2 x (0, T)), 

and for almost every t E (0, T) 

J (Ote + v&xe + E&e)e dx dv = 0. 
D2 

Using the unitary group Gt, we see that this is equivalent to 

dt d 
tG.l ..te(t)HIL2(DR2) = 0,S 

which leads to 

Ile(t)IIL2(R2) = HIG-te(t) 1L2(R2) = 0 for almost every t E (0, T). 

Thus, we have IIelIL2((o T)x R2) = 0 and w0 = We. The uniqueness of the limit 
wO implies that the whole sequence (wh) converges to w0 = we, 

Wh '__e in L2(R2 x (0, T)) weak. 

Moreover, the convergence of the norm 

|Wh |IL2(R2x(o, T)) = VI/IWh(t = O) IIL2(R2) 

to 
/TIIWIIHL2(R2) = IIWeIHL2(R2X(OT)) 

implies 
Wh We in L2(R2 x (0, T)) strong. E 

The cutoff function 4'e, as an approximation of the delta function, satisfies 

IUH - C *X UHIL2(R2) - O for -O, u E L2(R 2). 

As a consequence, it is easily proved that 0e converges to 0 in the strong 
operator topology. Therefore, we can apply the same analysis as in ?5.1 and 
state the final result in 



668 ANTON ARNOLD AND FRANCIS NIER 

Theorem 5.1. For any fixed c, the sequence wh defined by (5.8) satisfies 

wh - we in L2 (R 2x(O, T)) 

and further, as e -+ 0, we have 

SUp |w(t) - W(t)HIL2(R2) -* 0. 
tE[O, T] 
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