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CONVERGENCE OF NONCONFORMING FINITE 
ELEMENT APPROXIMATIONS TO FIRST-ORDER 

LINEAR HYPERBOLIC EQUATIONS 

NOEL J. WALKINGTON 

ABSTRACT. Finite element approximations of the first-order hyperbolic equa- 
tion U* Vu + au = f are considered on curved domains Q C R2. When part 
of the boundary of Q is characteristic, the boundary of numerical domain, 
Oh, may become either an inflow or outflow boundary, so it is necessary to 
select an algorithm that will accommodate this ambiguity. 

This problem was motivated by a problem in acoustics, where an equation 
similar to the one above is coupled to three elliptic equations. In the last sec- 
tion, the acoustics problem is briefly recalled and our results for the first-order 
equation are used to demonstrate convergence of finite element approximations 
of the acoustics problem. 

1. INTRODUCTION 

In this paper we address some technical issues associated with approximating 
a first-order spatially hyperbolic equation. This problem was motivated by a 
problem in linear acoustics which gave rise to a system of coupled equations, 
one of whose principal parts was first-order in space. The acoustics problem 
was naturally posed in a domain, Q C R , where a fluid entered one part of 
the boundary (the inflow) and exited through another portion of the boundary 
(the outflow). The remainder of the boundary was tangential to the mean flow, 
and the streamlines of this mean flow were the characteristics of a first-order 
equation of the form 

U*Vu+au=f, 

where f represents the coupling terms and U is a known (mean flow) velocity 
field. 

The numerical approximation of the solution of such problems requires tri- 
angulation of the domain Q, the union of the triangles giving a domain Qh 
which approximates Q. One problem encountered with this approach is that 
portions of the boundary of nh may no longer be characteristic where the cor- 
responding portions of Q? are. This may result in triangles having one side 
which contains both inflow and outflow regions of the mean flow, and if the 
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FIGURE 1 
Triangulation of a curved domain 

first-order equation is to be well posed on such a domain, boundary conditions 
must be applied on each inflow boundary. A gross example of this is shown 
in Figure 1, where a duct with curved sides is triangulated with three elements. 
The two dotted lines represent streamlines of the mean flow. Clearly the base 
of the middle triangle becomes both an inflow and outflow boundary (assuming 
the mean flow extends smoothly outside Q), as do the tops of the left and right 
triangles. 

In order to circumvent the problem with inflow and outflow boundaries, we 
will approximate the given mean flow with one that has streamlines parallel to 
the appropriate portions of the numerical boundary fh. The approximation 
we use arises naturally from the finite element procedure used to construct fh . 

In order to compare the approximate solution on Kh with the exact solution 
on Q, we show that there is a map from Kh to Q, and when the approximate 
solutions are composed with this map, they converge to the exact solution. 

Various algorithms have been proposed for the solution of first-order hyper- 
bolic equations; however, it has always been assumed that the domain was ex- 
actly triangulated. Also, it is sometimes assumed that the side of any triangle is 
never characteristic. These assumptions are incompatible for certain fluid flow 
problems, since the domain is bounded by streamlines which are the character- 
istics of the vorticity transport equation. It is known that simplistic Galerkin 
approximations of hyperbolic equations do not produce good algorithms, so 
most algorithms use some form of modified Galerkin approximation. The dis- 
continuous Galerkin method [8, 7] is one such successful modification. This 
algorithm approximates the solution using discontinuous test and trial func- 
tions. A continuous variant of this technique has been developed [4] where the 
trial functions are continuous, but the test functions are discontinuous and con- 
structed from lower-degree polynomials. Another approach, motivated from 
upwind difference techniques, is to perturb the standard Galerkin method by 
'adjusting' the test functions. Typically, the test space is modified so that it 
contains some of the derivatives of the trial functions. For example, Winther 
[12] constructs a scheme where the derivatives of the trial space form the test 
space. Similarly, streamwise diffusion algorithms [6, 1 0] include various deriva- 
tives in the test functions, which essentially correspond to an artificial viscosity 
in the streamwise direction. The modified method of characteristics introduced 
in [3] uses a Galerkin procedure for the spatial variables and uses characteristic 
directions to construct difference quotients for the temporal discretization. 
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When constructing algorithms for the solution of hyperbolic problems, it 
is highly desirable to take advantage of the hyperbolic nature, constructing the 
solution step by step with a marching process that eventually exhausts the whole 
domain. However, if the hyperbolic equation is coupled to an elliptic equation 
(or is part of a convection-diffusion equation), this process will not work, and 
all quantities will have to be solved for simultaneously. While the algorithm 
introduced in ?2 can be used as a marching procedure, it was motivated by 
the desire to make the bookkeeping associated with the hyperbolic equation 
identical to that of the elliptic equations to which it is coupled (i.e., standard 
finite element assembly techniques). The algorithm considered below could be 
thought of either as a limiting case of a streamwise diffusion algorithm, or as 
approximating the second-order equation obtained by taking the streamwise 
derivative of the given first-order hyperbolic equation. The solution of a first- 
order hyperbolic equation may be discontinuous across the characteristics, and 
since the streamlines of the mean flow (i.e., characteristics) are known a priori, 
finite elements are aligned with them. This enables the construction of trial 
functions which admit discontinuities across a finite number of streamlines. 
Since practical acoustics problems typically involve rough data, it is expected 
that discontinuous approximations will perform better on coarse meshes than 
their continuous counterparts. 

In the following, Q c 23 is a simply connected Lipschitz domain. Wm, P(Q) 
denotes the Sobolev space of functions with m derivatives p-integrable, with 
the Sobolev norm denoted fl 1mpj, and the seminorm denoted I Imp,. 
Hm(Q) is the Hilbert space Wm. 2(Q) . 1k(T) is the linear space of polynomi- 
als of degree less than or equal to k defined on T, and Ck (Q) is the Banach 
space of functions with k continuous bounded derivatives on Q. Constants 
will be denoted generically by C or c, typically C denoting an upper bound, 
and c denoting a lower bound. All constants will be independent of the mesh 
parameter h which corresponds to the maximum diameter of the triangles used 
to triangulate Q. I I I will be used to denote the Euclidean norm of vectors in 
R2 and the norm of a linear transformation (matrix) from R2 to itself, and a 
dot, *, denotes the inner product on 11R2. 

In the next section we isolate the hyperbolic equation that arose in the acous- 
tics problem by ignoring the coupling terms, and consider numerical approx- 
imation of the solution. In ?3 the full acoustics problem is recalled, and the 
techniques of ?2 are utilized to study the convergence of numerical solutions. 

2. MODEL PROBLEM 

We consider the following model problem similar to the hyperbolic equation 
that arose in a plane acoustics problem [1 1]: 

(1) U.Vu+au=f inQ, ujr' = O, 

where Q c R 2 is a bounded simply connected Lipschitz domain with boundary 
O Q = F1 U F U F2 . It will be assumed that the components of F are parallel to 
the streamlines of U, while F1 and F2 are inflow and outflow boundaries of 
U respectively (see Figure 2). Equation (1) describes convection of a quantity 
u by the velocity field U, and is ubiquitous in mathematical modeling of trans- 
port phenomena (in [11], u corresponds to vorticity, and is transported along 
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FIGURE 2 

Duct and streamlines 

streamlines of the flow by a classical theorem of Helmholtz). The streamlines 
of the flow U are the characteristics of (1), so if Q is partitioned into sub- 
domains by a collection of streamlines, the solution can be constructed as the 
amalgamation of the solutions on each subdomain. Since the numerical scheme 
to be described below preserves this property, we assume that F1 consists of 
exactly one component. 

It is natural to introduce the streamwise coordinate system, (x(s, t), y(s, t)) 
= X(s, t) defined by oX/Os = U, X(O, t) = x(t) on F1 , where F1 is param- 
eterized by its arc length t. Clearly, equation (1) reduces to 

(2) a- + au =f in Q = X-1(Q). 

In order to have a well-defined coordinate system, we will henceforth assume 
that U is Lipschitz and IUI > co > 0 throughout Q. An elementary argument 
outlined in the Appendix shows that X is a homeomorphism. In the sequel, it 
will be assumed that X is a Ck diffeomorphism with Jacobian bounded away 
from zero whenever U E Ck(?Q). In the Appendix, it is shown that if the 
angle between the mean flow U and the tangent to F1 is bounded away from 
zero, a.e., then this assumption holds.1 It is also shown that the nontangential 
restriction can be relaxed, allowing U to be tangential to F1 at isolated points. 

It is natural to seek a solution of equation (1), u, whose streamwise derivative 
U. Vu is in L2(Q). Accordingly, we define the Hilbert space U to be the com- 
pletion of the set {u E C1 (Q) I uIv1 = 0} in the norm IIUIIL2(Q) + IIU * VUIIL2(Q) . 
A Poincare inequality of the form IIUIIL2(Q) ? CII-uII L2(^) trivially holds 

in Q = X- (Q). Pulling this estimate back through X shows that UII L2(Q) ? 
CIIU*VUIIL2(Q), so we may take the norm on U to be Iullu = IIU VuIIL2(Q). 
The following weak form of equation (1) was introduced in [11]: 

(3) u E U, j{UVu+ au}(U.Vv)= j f(U-Vv) Vv E U. 

An elementary calculation shows that CO (Q) C {U Vu I u E U}, so that 
solutions of (3) are distributional solutions of (1) when written as 

V (Uu) - (V U)u + au = f. 

IIn this situation, the initial condition for X(O, t) is specified on a smooth approximation to 
F, , so that F, may no longer correspond to s = 0. 
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In the Appendix, equation (1) is solved by integrating along the characteristics. 
However, when coupled to elliptic equations, this procedure is not suitable from 
a numerical point of view. It is for this reason that we consider the above weak 
problem. In [11], it was necessary to assume that a was small, and in this 
situation the traditional Lax-Milgram theorem shows (3) is well posed. The 
next theorem shows that this restriction is not necessary in general. 

Theorem 1. Suppose that the map X constructed above is a C1 diffeomorphism 
with Jacobian bounded away from zero. Let the coefficient a E L??(Q), and 
f E U'; then Problem (3) is well posed. 
Proof. Define the bilinear form on U by 

a(u, v) = j {U. Vu + au}(U. Vv). 

The form a is clearly continuous, so the theorem will follow provided a is 
coercive, i.e., 

SUP V c u - > llu, supa(u, v) > 0 for v $& 0. 
V$'O llVHlU 

Fix u E U; since L2(Q) C {U Vv I v E U}, we may choose U Vv = f = 
U E Vu + au to get a(u, v) = Ilf 1122(Q) = llfllL2(Q)HJvJu . The existence result 
for equation (1) given in the Appendix shows that llullu < ClfIL2(U), so that 
a(u, v) > (!/C)IIuIIuIIvIIu, and the first coercivity condition holds. 

For v E U, v $& 0 fixed, select u E U as the solution to U * Vu+ au = Us Vv 
to show that a(u, v) = HIVI12 > 0. En 
2.1. Regularity. Integration of equation (2) gives 

u(s, t) = u(O , t) + ,/ fEt) - ceEt)u(E,, t)} dE, in fQ = X-'l(U), 

where f = f o X and a = a o X. Gronwall's inequality may be used to justify 
formal calculations of the form 

au au fSf Of a & au 
at (s v t) = 

at (? t) + a { O + at (4 Ou(4, 0+&(4, t) at ( t) } 5 

which shows that both u and 0u/Os are in Hk(Q) provided f E Hk(Q) 
and & E Wk, ?(Q). This will imply that both u and U*Vu are in Hk(Q) 
provided f E Hk(Q), a e Wk,( oQ(fl) , u(O, t) E Hk(FI) and U E Ck(Q) with 
Ul > co >0. 

2.2. Finite element approximations. Since the mean flow U is known a priori, 
it is possible to generate the streamlines and position the finite element nodes 
on them. If the element boundaries were perfectly aligned with the streamlines, 
it would be possible to let the basis functions be discontinuous across them. 
In practice, the element boundaries will be polynomial approximations to the 
streamlines, so discontinuous basis functions will give rise to a nonconform- 
ing approximation. A second complication is the requirement that a Poincard 
inequality hold for the discrete space with constant independent of the mesh 
size h. This is achieved by approximating the velocity field U by one whose 
streamlines are parallel to the element boundaries. 
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FIGURE 3b 
Aligning elements with streamlines 

In the sequel, we will limit the discussion to linear or quadratic isoparametric 
elements (k = 1 or k = 2 below). The arguments presented will apply equally 
well to either triangular or quadrilateral elements; however, we will use the ter- 
minology appropriate to triangular elements. We adopt the following notation, 
taken from Ciarlet [2, Chapters 3-4]: ih is the approximation to Q given by 
the union of all the finite elements; a generic isoparametric mapping from the 
parent element T to a typical finite element T is denoted by F: T -, T; if 
u is defined on a finite element T, then ii is defined on the parent element 
T by ut, q) = u o F(4, 6); Fx = 9F/Oa denotes the partial derivative of F 
with respect to 4 etc. 

We will consider finite element meshes, 9h, constructed so that one boundary 
of each element approximates a streamline, with elements aligned along stream 
tubes as indicated in Figure 3. Moreover, we will choose the element mappings 
so that the side of the parent element lying on the 4-axis maps to the side of the 
finite element on the streamline, as shown in Figure 3. Following [2, p. 124], we 
define a finite family of meshes to be regular if the ratio of the element diameter 
to the diameter of the largest inscribed sphere for each element is bounded, and, 
for quadratic elements, the midside nodes are located within a distance Ch2 
from the midside locations predicted by the affine map determined by the corner 
nodes. The following lemma is taken from [2, p. 237]. 

Lemma 2. Let {5j}h>o be a regular family of meshes; then there are constants 
c and C, independent of h, such that 

1. ch2 < JF < Ch2 (JF is the Jacobian of DF), 
2. ch < IF4I, IF&I, and IDFI < Ch, 
3. ID2FI < Ch2 
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We approximate U on each element by U = (IUI/IF~I)F: and introduce the 
space 

Uh={u:Qh -I UIT =UoF-1, UE39k(T), VTESh, 

uI]r =0, u continuous in each approximation stream tube}. 

Note that this construction yields U tangential to the approximate stream tube 
boundaries. Weak problem (3) is then approximated as 

(4) Uh e Uh, LU *VUh + JahI(U*VVh) = U *VVh) VVh E Uh. 
Qh 

Of course, it is assumed that a and f are extended suitably to Oh (see Theo- 
rem (12)). The nonstandard feature of this problem is that even when Qh = Q. 

I Ilu and 11 * Iuh do not agree on U n Uh . 
The solution of (4) can be accomplished in a step-by-step fashion along the 

approximate streamtubes, beginning with the triangle at the inflow boundary. 
To see this, it suffices to show that given a test function Vh E Uh, it is possible 
to construct another test function Wh such that for any triangle T, U . VVh I T = 
U . VWh IT, and U . VWh = 0 elsewhere. In this situation the problem decouples 
into subproblems on each triangle. In order to demonstrate this property of the 
test functions, consider the parent element T of the element T in question. 
Given the values of Vh on the left hand (inflow) boundary, they can be extended 
to the whole triangle so that they are constant with respect to 4. This function 
will be a polynomial of degree < k when Vh E Uh. Subtracting this function 
from Vh gives another test function Wh which vanishes on the inflow boundary 
and satisfies O9Wh!O = Oth/ON on T. The function Wh can be extended to 
zero on all triangles in the streamtube preceding T, and can be extended so 
that aWh/ON = 0 on all triangles after T. Since U*VVh = (IUI/IFj1)Ov9/OI, 
the result follows. 

In order to limit the amount of technical detail, we will assume that all 
integrals are computed exactly, and that FL and F2 are exactly interpolated by 
the finite element mesh. The techniques in Ciarlet [2, Chapter 4] are applicable 
if either of these assumptions is violated. The next lemma shows that, like the 
space U, the space Uh enjoys a Poincard inequality, with constant independent 
of h. 

Lemma 3. Let {5,}h>o be a regular family of meshes aligned with the stream- 
lines of U as described above. If U > co > 0 throughout Q, then there is a 
constant C independent of mesh such that IIuIIL2(nh) < CIIU -.VuIIL2(Q,) . 

Proof. We begin by considering the L2 norm of u on a finite element T. Let 
4i (Q) and 42(1) be the linear functions describing the two sides of the parent 
element T that do not lie on the 4-axis (see Figure 3); then 

U2(g, C) = U2(g1 (11), 1) + ' a U2(%Z 1) dz. 

Recalling that the Jacobian satisfies ch2 < JF@(, '1) < Ch2, we may multiply 
the above identity by Ch2 to obtain 

(5) IIuII2(T) < C [h2IIUIIL2(C ) + 2IIUIIL2(T) 
9 
a T]' 
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where 
= 10 U2(41 (r), r) drU, 

and we have assumed that T has a base of unit length and is of unit height. A 
similar calculation show that 

h2(u L2 (c2) L2 (C)) ?- cIU|L2(T) 

If we let G denote a typical streamtube, summing over all the elements in G, 
and recalling that ujF1 = 0, gives 

h2 1UH%1 ?2 
2 Z: 11U1L2(T) O9U h~llL(CI) c E 1lIL()| 4IL2(T) TCGL() 

where C1 is any of the interelement boundaries within a streamtube. Letting 
NG denote the number of elements with the streamtube G, we obtain 

IUI12(G Z IuH12 2C a 
III(2 (G) = N2 (T. < -(NG + 1) E IIUIIL2(T) 

TCG TCG a L2 (T) 

The definition of U reveals Ou/O = (IF I/ U )U * Vu, so that 

11U11L2(G) < 
2 

C(NG + 1) max(IIFEIL-(T))|U. VUIIL2(G). C0C TCG 

The theorem now follows from the estimates NG < C/h and JF4j < Ch. E 

Equation (5) in the above proof reveals the following local Poincard estimate. 

Corollary 4. Suppose u E Uh vanishes on the inflow boundary of a triangle; then 

||U||L2(T) < Ch||U * VuIIL2(T), 

where C is independent of h and T. 

In order to show that the approximate problem has a solution, it suffices to 
show that it can be constructed in a step-by-step fashion. However, in order to 
establish error estimates, it is convenient to use the Lax-Milgram theorem. 

Theorem 5. Let {8,}h>o be a regularfamily of meshes aligned with the stream- 
lines of U E C1 (Q) as described above. If U > co > 0 throughout Q, 
a E L??(Q), then there exists ho > 0 such that if h < ho, the approximate 
weak problem (4) satisfies the hypotheses of the Generalized Lax-Milgram The- 
orem with coercivity constant independent of h. 
Proof. As with the continuous problem, we consider the bilinear form ah: 

Uh x Uh -- I given by 

ah(u, v) =j{U Vu+ au}(U Vv). 

In order to establish the first coercivity condition, we consider u E Uh fixed, 
and use the Riesz Theorem to select v E Uh as the solution to 

(6) J(U. Vv)(U * Vw) = j {U. Vu + au}(U. Vw) VW E Uh. 
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Putting w = v in the above shows that ah(u, v) = tVtuh* . It remains to show 
that there is a constant C > 0 independent of h such that tlulluh < Cllvlluh, 
which implies a(u, v) > (1/C)IlulluhIIvttuh. Putting w = u into the above 
expression for v yields 

Ilulluh < llvlluh + tlaltL-(Q)ttUttL2(Qh) 

so that it suffices to show that 

(7) ttUttL2(nh) < C(/lvlluh + hllulluh). 

To establish this inequality, we use a discrete Gronwall type inequality, whose 
construction is rather detailed. 

We begin by recalling that equation (6) decouples into separate equations 
over each element. Letting T be the parent element, each equation takes the 
form 

J, ( +U0 +au) lA WJ = J -TW VWE29(wJk,4() UT Ottl a ' "~I _ j~j2 Dv Vw9AT 

where k , (T) is the set of 4-derivatives of functions in 'pk(T). jUl, IF~l 
and J are all Lipschitz, so replacing them by their averages jUt, IFa I, and J, 
over T, on the left-hand side introduces an error of size h, 

J ul aU +auA lul w7 
JT I FdS (9, } Fdt f Jtul Jul 

< f Ut2 Ow J + Ch (IIYU VUIIL2(T) + tItUItL2(T)) IItWII2(j). 

Letting 41 (Q) parameterize the left-hand side of the parent element, note that 
1 - e-Coh( -4,(t)) < Coh for Co > 0 to be chosen later. Then 

feCoh( 1Q) ( Ju tu + au w_ wJ fr IF~ IO( I F~t 

<j F1T2 awJ+ Ch (ItIJVUIIL2(T) + ItUItL2(T)) IIWIIt2(j) 

Bounding the first term on the right using the Cauchy-Schwarz inequality and 
rearranging the constant factors on the left gives 

Jeo(1 ) ~ + I~~aut w < C(hu, V)TttWttL2(i-j JT (ad IU T) 

where C(hu, V)T = C (tU * VVtIL2(T) + h(IJU VUIIL2(T) + ItUtIL2(T))) Next, se- 
lect w as the projection of u onto 5k, (T), 

Je-Coh(4-(1(1)) W z = -Co(- z V z E ~,(T). 
T T 

Observe that 

1e W a = ]eCoh(4-4I(1)) U a = 1 eCoh(4 (?I))a 
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and |WH||2(j) < C5|U0|LI(T), so that 

] e Coh(4 il(r1)) (2i4u + uw < C(hu, v)+ 2 h U2() 

Since JFXl < Ch, it follows that 

Je-Coh(~-()) (O2 - Cohu2) < IC(hu, V), 

where Co is of the form C(1 + HaHLOO(Q)). The left-hand side is now an exact 
derivative, which may be integrated to give 

e Coh L2(C2) - IUI2(CO) 
< AC(hu, v)T, 

where C1 and C2 are the left- and right-hand sides of the parent element. With 
G denoting a stream tube, this difference relation shows that 

LUL2(C) ? hie ohNG Z C(hu, v4 
TCG 

where Ci is any of the interelement edges within G, NG is the number of 
elements in G, and we have used the boundary condition ulF1 = 0. Recalling 
the definition of C(hu, V)T, and noting that NG < C/h, gives 

IIII2( h (11U VVIIL2(G) + h2IIU. VUII22(G)), 

where the Poincare inequality IIUIIL2(G) < CIIU VUIIL2(G) was used. Finally, the 
inequality (5) shows that 

IIUII22(T) < Ch2(I|UII 2(C1) + 11U UIIL2(T)). 

Summing over all the elements in G and using the above inequality to bound 
the boundary terms yields 

IIUII12(G) < C( 2U VIIL2(G) + h2IIU* UIIL2(G)), 

which establishes (7). 
To establish the second coercivity condition, fix v E Uh, and suppose ah(u, v) 

- 0 for all u E Uh; we show that if h is sufficiently small, U Vv vanishes, 
so that v = 0 . If v is not zero, select a streamtube where U Vv does not 
vanish, and let T be the last triangle for which U. Vv $ 0. Then select u to 
be zero on all the triangles preceding T, U. Vu = U Vv on T, an arbitrary 
extension after T, and zero on all other streamtubes. It follows that 

0 = a(u, v) = IT vul2 + au(U Vu). 
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Construction of a conforming element 

Since u vanishes on the inflow boundary of T, Corollary 4 implies IIUIIL2(T) < 

ChIIU*'VUIIL2(T), so that 

IT I VuI2 = J au(U. Vu) < CI1aIIL-(Q)h J U VuI2. 

Clearly, IIU VUIIL2(T) = IIU VVIIL2(T) = 0 if h < l/CIIaIILa(Q). ? 

In order to prove that the solutions of the approximate weak problem con- 
verge to the solution of the exact weak problem, it is convenient to introduce 
a second mapping from the parent element to Q, chosen so that the side on 
the 4-axis maps to a streamline of U. This map is chosen to be of the form 
F = X o F, where F is the isoparametric mapping that interpolates the values 
of the streamwise coordinates (s, t) of the finite element nodes. The different 
maps are shown in Figure 4. 

Lemma 6. Let {1}h>o be a regular family of meshes, and suppose U E C2 
IUI > co > 0. Then there are constants c and C, independent of h, such that 

1. ch2 < J? < Ch2 (JT is the Jacobian of DF), 

2. ch < IJFI, IF&, and IDFI < Ch, 
3. ID2FI < Ch2. 

Proof. The hypothesis on U guarantees that X is a C2 diffeomorphism, so 
it follows that the (s, t) meshes generated from {Sg} under X-1 will also be 
regular. Lemma 1 is then applicable to the maps F. Since F = X o F, the 
lemma follows. O 

Since F is a polynomial map agreeing with F at the finite element nodes, 
the Bramble-Hilbert lemma [1] can be applied to give: 
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Lemma 7. Let F, F: T -* R2 be the maps from the parent element defined 
above and U E Ck+1 (Q). Then 

IIF-F| 1 ooT <-(T Ilk+1, oo _T' 

where I I, I p G indicates the seminorm for the Sobolev space Wm P (G), and k 
is the degree of the finite element interpolation polynomials. 

Corollary 8. Let {Sh} be a regular family, and suppose U E Ck+ (Q); then 
there is a constant, C, independent of h such that 

|IF-Fli 1 T < Chk+1. 

When k = 1, the corollary follows immediately from the previous two lem- 
mas. Expansion of D3F = D3(X o F) and using the fact that D3F = 0 proves 
the result for k = 2. 

The space Uh was chosen in order to get U Vuh = (IUI/IF~I) 0 /&i , where 
uh = uoF1. The map F was chosen so that U. Vu = (IUI/IF j)&0 /&, where 
u = uo F1. Given a function u: T-* R , we can generate u = fi o F E Uh, 
and u = ui o F E U; moreover, clIillu < llulluu ? CI uIlu. Thus, given an 
approximate solution uh E Uh, we can define p(Uh) = Uh E U by Uh 0 F-1 = 
uh o F 1 . This mechanism provides a means of comparing the approximate 
solutions uh with the exact solution u, as shown by the following Strang-type 
lemma. 

Lemma 9. Given two Hilbert spaces U and Uh, and a linear continuous map p: 
Uh -* U, let a and ah be continuous bilinearforms on U and Uh, respectively, 
with a coercive on p(Uh), with coercivity constant independent of h. If f E U', 
fh E U', and u, Uh satisfy a(u,) = f(.) and ah(uh, )= fh), respectively, 
then there is a constant C such that 

Iu - uhIIU?C [ inf Iu - vhIIU + SUP a (uh 5wh) -ah (uh wh) 
(8) [VhEUh WhEUh |1WhIIU 

+ SUP f(Wh) -fh(Wh) 1 

Wh EUh I1whIIU j 
where we have used the identifications IIwhIIU I_ IpWhIIU, f(wh) f(pwh), and 
a(uh, Wh) a(PUh, PWh) 

Proof. Let Vh E Uh; then 

a(uh - Vh, Wh) = a(u - Vh, Wh) + a(Uh, Wh) - ah(Uh, Wh) - f(wh) + fh(Wh). 

It follows that 

clluh -vhIIU?_ CIHU- vhIIu + sup a(uh, 5wh) -ah (uh 5wh) 
Wh E Uh 11Wh11U 

+ sup f(Wh) - fh(Wh) 
WhEUh I1Wh11U 

An application of the triangle inequality, 11u - Uh IIu ? U u - Vh II u + II uh - Vh II u, 
completes the proof. O 
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Remark. The proof of Theorem 5, showing that approximate weak problem (4) 
has a coercivity constant c > 0 independent of h, can be repeated verbatim 
to show that the restriction of weak problem (3) to p(Uh) also has a coercivity 
constant c > 0 independent of h. 

The following lemma is a modification of the Bramble-Hilbert lemma useful 
for the model problem where the solution may have more derivatives in one 
direction than another. 

Lemma 10. Let 3 k(4) 0 Ypk-I (q) denote the set of polynomials formed from 
linear combinations of monomials of the form Xm tn with 0 < m < k and 
0 < n < k - 1, and let V denote the seminorm IUIV = ID U/42IHk(T. If 
LI: V -* V is continuous and vanishes on Yk(4) 09 Yk-I(q), then there is a 
constant C > 0 such that 

1171vv < C |- 
Hk'(T) 

Corollary 11. Suppose that u and U.Vu are in Hk(Q), U E Ck(Q), and 
p: Uh U is the map defined by pUh 1 Uh o F 1-. Then 

inf IIu - pVhIIU < Ch'- 
Vh Uh 

Proof. When k > 2, u is continuous, so we can define (on each element) a 

projection of u onto 3Yk(T) by Hlu = u at each of the nodes. When k = 1, 
we define the flu E Y5' (4) 0 5o (q) - i (4) as the projection onto 35' (4) of 
the average value of u in the n-direction. In either instance, we get (I - II) 
vanishing on Ykk(4) 0 3Yk-1() , so that 

J -11u ~1<?II(I-fl')uIIv < Cau 
L2(T) - | Hk(T) 

Upon observing that Ou/DO = (lFPl/lUl)(U. Vu), the result follows from the 
usual scaling arguments. O 

Remark. For triangular elements it is not possible to construct nonzero basis 
functions that are constant in the n-direction and continuous in each stream- 
tube, so the above proof for k = 1, as stated, is valid only for isoparametric 
rectangular elements. However, if linear triangles are used, they can be put in 
pairs to form quadrilaterals, and the proof follows. 

Theorem 12. Let u E U be the solution to weak problem (3) and suppose u 
and U * Vu E Hk(Q2). Assume that a and f are Lipschitz, and have Lipschitz 
extensions to Uh>o ih U Q, and let Uh E Uh be the corresponding solution to the 
approximate weak problem (4). Define p: Uh -* U by (pUh) oF-1 = Uh ?F- 

and suppose that {1,}h>O is a regular family, and U E Ck+l (Q); then 

||U - pUhllU < Chk. 
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Proof. We show that each of the terms on the right-hand side of (8) is suitably 
small. Corollary 11 shows that the projection error of Uh into U is less than 
Chk, so it suffices to consider the consistency errors. This will follow from 
Corollary 8, which essentially states that F o F1 is close to the identity map. 
The estimates follow from direct calculations on the parent elements T. 

We first estimate the principal term of the bilinear form: 

j(U Vuh)(U* VWh) - (U * Vuh)(U* VWh) 
Q Q~~~~~~~~~~~h 

EI|22I lIF- I F f F12 

-z ffIF-I IUoFI (Jk"2 IFIJ IUoFI J 
J|F4J |U o F1 

2 
VF Di U io F J 

X ~oF-J 2 _=IUoFI-5J,-~ IFII F IFI I F 

< C(h)IIuhIIUhIIWhIIU, 

where C(h) is the supremum of the difference appearing in the curly brackets. 
Since C(h) is the difference of a number and its reciprocal, it suffices to show 
that either one of them is close to unity. We show that each of the ratios 
involving U, Fx and the Jacobians differs from one by at most Chk. 

Estimates on the first two quotients follow immediately from Corollary 8: 

11-IF4I = IFI - Fl I < JD(F - F)II <_ Ch Ch 

1- l -l I 1 IUoF-UoFl < 1 IIUILpllIF-FI < Chk+l. 
IUoFI IUoFI IUoFI 

An explicit calculation of the Jacobians on an element T reveals 

IJF - JTI < CIF -FI I Tmax(IDFJI1 0 T IDFI1,) ? Ch0 2. 

Since each Jacobian is bounded below by ch2, it follows that 

1- J < Chk and 1 - J < Chk. 

We next consider the consistency error associated with the right-hand side f: 
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f(U *VWh)-j f(U V)wh 
Q Q~~~~~~~~h 

= 
E 

~~JUf o F) M ag J~ foFU o FI Ot J ^Tf(f I) Jj, (f oF)I JF 

1(f JF) - J of F FF) J) ( ?F)F 

x IUoFIo 1jF JU o I Otb F 

<ChkIIwhIIu.I 

The last line follows since f is assumed Lipschitz and IF - F1 < Chk+l, and 
the second term in square brackets is small, since each of the ratios appearing 
is within Chk of being unity. 

The bilinear term involving a is similarly small, the only difference being 
that the L2(Qh) norm of Uh appears, and this is bounded using Lemma 3. 0 

Corollary 13. Let ue E H1 (R2) be an extension of the exact solution u. Under 
the hypotheses of the previous theorem, IIue - UhlIL2(Q,) < Chk. 

Proof. By the triangle inequality, 

hue- UhlIL2(Qh) ? u- -p '(U)IIL2(Qh) + IIP'(U) - UhIIL2(Qh)' 

Recall that p (u)(x) = u o Fa F -I (x); a change of variables then shows that 

IIP '(U) -Uh112(Qh) =] Iu - P(uh)12f < hIu - p(uh)21L2(2h < Ch2k. 

Since p-1(ue) = p-I(u) on Qh, it follows that for x E Qh 

(9) ue(x) -u(F o F-1 (x)) = j Vue(x + t(F o F-- (x) -x)) * (Fo F-1 (x) -x). 

Defining H(x) = F o F 1 (x) - x, we see from Lemmas 4, 6, and Corollary 8 
that IH(x)l < Chk+l and IDHI < Chk. It follows that, if h is sufficiently 
small, IDHI < 1, so that x + tH(x) is a diffeomorphism. Squaring both sides 
of (9), and integrating yields 

Iue(x) - u(Fo F(x))12 < Ch2(k+')j IVue(x + tH(x))12dtdx. 
Qh Qh? 

Interchanging the order of integration, and introducing a change of variables 
y = x + tH(x), shows that 

lue - p '(U)1L2(Qh) < Chk+l IueIIHI(R2). 0 



686 N. J. WALKINGTON 

Remark. (i) If u and Uh were extended to zero on R2, then Ilu- Uh IL2() 
would involve terms of the form I I u I I L2(Q\Qh) and lUle |L2 (Qh \Q) . The sets K2\ h 
and Kh \ Q2 will have measure bounded by Chk+l (we are assuming that F, 
and F2 are triangulated exactly so that the remaining boundary, being tangent to 
the flow, is as smooth as U). The Sobolev embedding theorem in R2 implies 
IIUIIL2(E) ? C(p)IIUIIH1(Q)IEI(I I/p)/2, for E c Q, 1 < p < o0. It follows 
that IIUeIIL2(Qh\Q) IIUHIL2(Q\Qh) < C(e)h(k+l)/2-8. For linear elements this is 
essentially as small as -lie - UhIIL2(Qh), however, for quadratic elements this is 
half a power of h smaller than IlUe - Uh1IL2(Qh) . 

(ii) The rates of convergence given in Theorem 12 are preserved for solu- 
tions which have a finite number of jump discontinuities, provided interelement 
nodes are positioned where the jumps meet 17 . 

3. APPLICATION TO AN ACOUSTICS PROBLEM 

In [11] the following weak problem was considered: find (q$, A, h, a) E 
X = H1l (Q) x Ho'(Q) x Hrl (Q) x U such that 

( )a[(0 - Obo, I/, h - ho, a - ao), (ql, 4, g, b)] = F(q1, 4, g, b) 
(10) t1 ,gb - V (q, ~, g, b) E X.9 

Here, HI1 (Q) is the subset of HI (Q) which have zero trace on 171, and the 
sesquilinear form a: X x A' C is given by 

a[(O, A/, h, a), (q, X, g, b)] 

=iA { (Ru+Up) *. V- p? + VW V - 

?VhV?+(owU+RAu).curl-+(ika+U.Va+u.VA)U.Vb 

where the overbar indicates complex conjugate, and for a scalar function g, 
curl g = (Og/Dy, -Og/0x). The linear functional F: A' --* C is defined by 

F(q, X, g, b) = (11 + 12J)- 
r2 

In the above, k is a constant, and R, U, C, and A are all specified functions 
on Q, and 11 and 12 are specified functions on F2. The functions q$o, ho, 
and ao define boundary values on F,, and are assumed to vanish on F2. The 
auxiliary quantities u, co, and p are calculated from (q$, A, h, a) according 
to 

u= V0b+curlyi, p =R(h- ik0b-U*u), co = Ra + Ap 

It was shown in [11] that this problem is well posed under suitable assump- 
tions on the data provided the frequency k and vorticity A were sufficiently 
small. In this situation, the coercivity constants depend upon Poincare constants 
only. This implies that the discrete problems will be well posed provided the 
approximating subspaces satisfy Poincare inequalities with constants bounded 
independently of h. 

Using the ideas from the previous section, we can show that approximate 
solutions calculated on meshes aligned with the streamlines of U will converge 
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at optimal rates to the exact solution. We first construct a finite element space of 
functions Xh using the mesh h with standard finite element basis functions for 
the first three components, and Uh for the last component. As with the model 
problem, there is a map p: Xh - X formed by composition with F o F-1 . 
Weak problem (1) is then approximated in the natural fashion, except that we 
replace U by U. 

Theorem 14. Let q, qi, h E Hk+l (Q) and a, U. Va E Hk(Q) be the solution 
of the acoustics problem (10) given in [1 1]. Assume that all the coefficients R, 
C, VA, etc. have Lipschitz extensions to Uh>o Kh UQ, and {STj}h>O is a regular 
family of meshes aligned with the streamlines of U E Ck+1 (Q) as described in the 
previous section. If (0, qi, h, a)h E h denotes the solution of the approximate 
weak problem, then 

p(q$, Xi, h, a)h - (& i, h, a)IIA, < Ch'. 
Proof. The proof of this theorem uses Lemma 9 in the same way as was done 
for Theorem 12. The first term on the right of equation (8) is of order Chk 
by virtue of standard interpolation results and Corollary 11, and the second 
term involving a and ah will be small, since F o F-1 is almost the identity. 
In order to show this, recall that since a is bilinear, we only have to consider 
products of pairs of functions, products of pairs of derivatives, or the product 
of a function and a derivative, all possibly multiplied by a Lipschitz coefficient. 
We give a typical calculation for a term of the latter type. One can generically 
write such a term as Uh (a * VVh) where a is the Lipschitz coefficient. We use 
the notation V to denote the gradient on the parent element T and use the 
change of variables formula 

1~1 1 1^1 
V = [DF] V, V =- [adj F] V, 

JF 

to calculate terms in ah, and for terms in a we use F in place of F: 

J(PUh)C *V(pVh) U-Jhh(( * VVh) 
Q Q~~~~~~~~~~h 

=Z~i |{(a o F) [adj F -(a o F) [adj F] }V' 

= | { JF2 (a o F - a o F) ( )[adj Fl-] 
T JF~~~~~~~~~~~~ 

F 

+ JF (a o F)( [adj F] - [adjF]I)}, Vb 
JF) 

<ZE C||IIuh IL2(T){h I| VV IIL2(T) + h 1l I' 
T 

< Z Ch k IuhIIL2(T)IIVVhIIL2(T), 
T 

where we have used the notation T = F(T) and T = F(T). The last line 
follows from the inequality IIVV IIL2(T) ? CIIVVhIIL2(y) ? 
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APPENDIX 

A. STREAMWISE COORDINATES 

In this Appendix, we discuss the technical details that justify the assumption 
that there is a well-defined streamwise coordinate system (s, t) when Q is a 
Lipschitz simply connected domain and U E Cl (Q) is a nonvanishing velocity 
field. 

Given a point x(t) E Q, we can solve the differential equation 

(A.1) ox (5 t) = U(X(s, t)), X(O, t) = x(t). 

The assumptions on U and Q allow a Cl extension of U to a neighborhood 
of Q. Since U is Lipschitz on Q, maximal solutions of (1) exist in Q, i.e., 
integral curves of (1) exist and remain in Q for s in some maximal interval. If 
the maximal interval were of infinite length, the Poincare-Bendixson Theorem 
[5, p. 151] would imply the existence of a periodic orbit in Q bounded by a 
Jordan curve. However, a nonvanishing vector field defined on the interior of, 
and tangent to, a Jordan curve must have a zero [5, pp. 147-149], contradicting 
the assumption U is never zero in Q. This argument shows that each maximal 
trajectory of (A. 1) must begin and end on &Q. 

Definition 15. The inflow boundary F, corresponding to U is the union of the 
points on &Q where the backward integral curves of (A.1) emanate from Q. 
Similarly, the outflow boundary is defined to be the point where the forward 
integral curves emanate from Q. 

The reason for considering maximal solutions in Q as opposed to Q is to 
allow for the possibility that a streamline may be tangential to the boundary 
at a point. This also allows portions of the boundary to consist of streamlines 
which may also enter the interior. 

The uniqueness theorem for ordinary differential equations shows that every 
point on Q is on a unique streamline of the flow U, and these curves may 
be indexed by the points on F1. We wish to construct a coordinate system 
aligned with the streamlines. It is easy to construct examples where F1 has 
an infinite number of components (e.g., consider a boundary curve given by 
y = x2 sin(1/x) and U parallel to x). This would be a rare circumstance 
for a physical flow, and would result in numerous additional problems from a 
numerical standpoint, so it is assumed that F1 has a finite number of nondegen- 
erate components. When F1 has a finite number of components, equation (1) 
can be considered separately on each component, so we need only consider the 
construction of a coordinate system when one component is involved. 

When F1 has only one component, it is homeomorphic to an interval, so 
can be parameterized by arc length t. Letting t = 0 at the first point of the 
interval, we construct the mapping (x, y) = X(s, t) by letting (x, y) be the 
point in Q at position s on the integral curve of (1) emanating from the point 
corresponding to t on IF . By construction, X will be injective, and since the 
solution of (A. 1) depends continuously upon the initial data, X is continuous. 
The theorem on the invariance of domains guarantees that this map is then a 
homeomorphism. 
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FIGURE 5 
Parameterizing the streamlines 

If Fl is smooth, then X is smooth, so X will be a diffeomorphism pro- 
vided the Jacobian never vanishes. With J denoting the Jacobian of X, the 
construction of the inflow boundary guarantees that J > 0. A classical result 
from continuum mechanics [9] states that along the integral curves of (A. 1), J 
satisfies 

ai 
= (V * U)J, 

so that J(s, t) > exp(-Cs)J(O, t), where V * U > -C. It follows that if 
J is bounded away from zero on F1, then J is bounded away from zero 
throughout Q. The inverse function theorem then guarantees that X will be a 
Ck diffeomorphism whenever U e Ck(Q) and IF is Ck. If U is tangential 
to F1 at an isolated point, then J(O, t) = 0. In this situation, the construction 
of the transverse variable t can be modified as indicated in Figure 5. The 
idea is to extend U to a neighborhood of the offending point, construct an 
arc perpendicular to U through this point, and let this arc parameterize the 
streamlines. An appropriate parameterization of the arc will result in global 
Ck dependence of X upon t, and by construction, J is bounded away from 
zero near the point in question. 

If F1 is only Lipschitz, and the angle between U and the tangent is bounded 
away from zero, a.e., F1 can be approximated by a smooth curve as follows. 
Extend U to a neighborhood of Q, and extend F1 at each end with extensions 
nontangential to U. If x(.) is the arc length parameterization of F1 , a calcula- 
tion shows that mollifying x(.) will yield a C?? approximation xe(.) such that 
the angle between the tangent and U is bounded away from zero (provided c 
is suitably small). This approximating curve can then be used to specify the 
initial condition for X on each streamline. Note that with the above modifica- 
tions, the boundary IF may no longer correspond to s = 0, but this is of no 
consequence. 

A. 1. Solution of the hyperbolic equation. In this section, we wish to show that 
(1) has a solution in the space U introduced in ?2, when the right-hand side f E 
L2(Q). We assume that the inflow boundary F1 has only one component, and 
that the map (x, y) = X(s, t) is a C1 diffeomorphism, and that the Jacobian 
is bounded away from zero. By transforming to the (s, t) variables, it is clear 
that the Poincare inequality, ItUt L2(Q) ? Cjj(U- V)UtUL2(n), holds for elements 
ue U. 
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Lemma 16. Let U E C1 (Q) be a nonvanishing vector field, and suppose that the 
mapping to the streamwise coordinates is a C1 diffeomorphism with Jacobian 
bounded away from zero. Let a E L? (Q); then equation (U V)u + au = f has 
a solution u E U satisfying IIuIIu < CI1 lIfL2(Q). 

Proof. Since C1 (Q) is dense in L2(Q) it suffices to consider f E C1 (Q). 
Transforming to the streamwise coordinates leads to the equation 

a +au= 

subject to u = 0 on F1 . Clearly, this is a linear ordinary differential equation 
for each fixed value of t, which can be solved by Picard's theorem. Multiplying 
this equation by u gives 

iIuI2 + aIuI2 = fu, 

so that 

u2(s, t)l2 < C(I aLO(Q), diam(Q)) If IV( t) dX 

(Q= X-(Q)) . It follows that IIuHL2(^Q) < CII fL2(I ) . The equation itself then 
implies that 

11aO || 2 ^ 
< 

IIIIL2(Q) 1I IILo(Q)IIUIIL2(^) 1111 C Ilf l2 

Transforming these estimates back to Q completes the proof. 5 
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