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WEIGHT FORMULAS FOR TERNARY MELAS CODES 

GERARD VAN DER GEER, RENE SCHOOF, AND MARCEL VAN DER VLUGT 

ABSTRACT. In this paper we derive a formula for the frequencies of the weights 
in ternary Melas codes and we illustrate this formula by computing a table of 
examples. 

1. INTRODUCTION 

Let q = pm, where p is a prime, and let a be a generator of the multi- 
plicative group F* . Consider the cyclic code C over Fq of length q - 1 with 
generator polynomial (X - a) (X - a-1). The dual code C' is cyclic with zeros 
1, a2, a3, ..., acq-3, which are zeros of the polynomials 

q-2 

Z (aa' + ba')X' E Fq[X]/(Xq - 1) with a, b E Fq. 
i=o 

This implies that the code 

D = {(ax + b/x)xeF a, b E Fq} 

satisfies D = C'. The classical Melas code M(q) is defined as the restriction 
to Fp of the code C (see [5, 4]). By Delsarte's theorem [4, p. 208] we have 

Tr(C') = (CIFP)', 

where Tr is the trace map from Fq to Fp. If we substitute C1 = D and 
CIF, = M(q) in Delsarte's theorem, we find 

{(Tr(ax + b/x))xeF*: a, b e Fq} = M(q)L. 
To ensure infectivity of the trace map, we require 2m + 1 < q. Then the dual 
code M(q)L has dimension 2m. 

In [6, 1] we determined the weight distribution of M(q)L for p = 2 and 3. 
Then, by the MacWilliams identities and the Eichler-Selberg trace formula we 
derived a formula for the number Ai of code words of weight i in M(q) 
involving traces of Hecke operators on certain spaces of cusp forms [6, Theorem 
4.2; 1, Theorem 2.3]. Especially for p = 3, this was done in a rather concise 
way, only announcing results and further illustrations. In this paper we will 
work out the case p = 3 and illustrate the result by computing some weight 
formulas for ternary Melas codes. 
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An outline of this paper is as follows. In ?2 we derive an expression for 
traces of Hecke operators on Sk(Fl (3)) . In ?3 we prove the weight distribution 
theorem for ternary Melas codes. Then, in the next sections, we compute traces 
of Hecke operators, first for even k, then for odd k. Finally, in ?6 we give a 
table of weight formulas for M(q). 

The references on coding theory can be found in the book of MacWilliams 
and Sloane [4]. For a systematic introduction to cusp forms and Hecke operators 
we refer to the books by S. Lang [2] and J.-P. Serre [8]. In [6, Theorem 2.2] the 
reader can find the precise form of the Eichler-Selberg trace formula, as we use 
it. Our notation in this paper links up with the notation in [6]. 

2. TRACES OF HECKE OPERATORS ON Sk(Fl (3)) 

For the space of cusp forms Sk (Fl (3)) we have 

Sk(IF (3)) = Sk(Fo(3), 1) ED Sk(FO(3), c), 

where 1 is the trivial character on (Z/3Z)* and co is the quadratic character 
on (Z/3Z)* . Both characters have conductor 3, and we extend them to Z/3Z 
by defining them 0 on the residue class of 0 modulo 3. Actually, 

Sk (F (3)) -f Sk(Fo(3), 1) for even k, 
S=k(Fo(3), w) for odd k. 

Now we can apply the Eichler-Selberg trace formula for Sk(Fo(3), x), express- 
ing traces of Hecke operators in class numbers of binary quadratic forms. 

Proposition 2.1. Let q = 3m with m > 1, and denote by Tr Tq the trace of the 
Hecke operator Tq acting on the space of cusp forms Sk(F1 (3)) . Then 

P -1 k-i 
H(t2-4q)- 1 for k > 3, 

Tr Tq k~-1 k-i 
X -P - P H(t2-4q)-1+q fork=2. 

The summation variable t runs over {t E Z: t2 < 4q and t 1_ (mod 3)}. 
The symbols p and -p indicate the zeros of the polynomial X2 - tX + q, and 
H(t2 - 4q) is the Kronecker class number of t2 - 4q . 
Proof. We start from the Eichler-Selberg trace formula as stated in [6, Theorem 
2.2] and employ it for Sk(FO(3), X), where X = 1 for even k and X = w for 
odd k. In the notation of [6, Theorem 2.2], the contribution of Al is 0. As to 
the contribution of A2, we notice that ,u(t, f, n) = X(t). It follows that 

k-1 _ k-1 

A2 ~~Pk -H(t - 4q) 

t2<4q, t_ I (mod 3) 

by adding together terms with t 1 (mod 3) and t 2 (mod 3). Furthermore, 
A3 = -1 in all cases, and A4 = q for k = 2 and X = 1, while A4 = 0 in the 
other cases. Altogether, we get the above-mentioned formulas. El 

The numbers (pk- I pk-1)/(p- p) are symmetric expressions in p and p, 

so they can be written as polynomials Qk-2(t, q) in t = p + p and q = pp. 
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We have Q0(t, q) = 1 and Q1(t, q) = t. From pk+1 _k+1 = (p+ T)(pk_ -k) 
- p(pk -I- _ k1-I) we get the recurrence relation 

(1) Qk(t, q) = tQk-l(t, q) - qQk-2(t, q) for k > 2. 

The polynomial Qk is, as a polynomial in p and P, homogeneous of degree 
k. Therefore, it is also homogeneous of degree k as a polynomial in t and q, 
provided we assign a weight 1 to the variable t and a weight 2 to the variable 
q. Note that Qk is monic in t, and has integer coefficients and terms qrtk-2r, 
where 0 < r < [k/2]. It follows that we can write 

(2) t= A 1i,jQi-(t, q)q" 

j=0 
j even 

The Ai, j E Z satisfy 

<ij = 0 for j {0, 1, ...,i} or j odd, 

AM, = A1 ,0 = 1 

while the recurrence relation for Qk induces the recurrence relation 

(3) Ai+l,j =Ai~j-2 + i~j- 

Now we rewrite the expressions for Tr Tq on Sk (Fl (3)) in Proposition 2.1 as 

-ZQk-2(t, q)H(t2 - 4q) - 1 for odd k and even k > 4, 

(4) Tr Tq={ 
-I= H(t2 - 4q) - 1 + q for k = 2. 

From the formula for dimSk(Fo(N), X) in [6] we easily derive: 

dimSk(Fo(3), o) = [k/3] - 1 for odd k, 

(5) dim Sk (Fl (3)) = dimSk(FO(3), 1) = [k3 ] 
- I for even k > 4, 

k 0 for k = 2. 

Because dim S2(F1 (3)) = 0, one has 

Tr T2 = - H(t2 - 4q) - 1 + q = 0. 

3. THE WEIGHT DISTRIBUTION OF TERNARY MELAS CODES 

Let q = 3m with m > 2. In [1] we derived the weight distribution of the 
dual ternary Melas code M(q)l: 

The nonzero weights of M(q)l are Wt = 2(q - 1 + t)/3, where 
t E Z. t2 < 4q, and t =-1 (mod 3). For t 54 1 the frequency 
of wt is (q- 1)H(t2 -4q) ; the weight wI = 2q/3 has frequency 
(q- I){H(1 -4q)+2}. 

Using the MacWilliams identities and the Eichler-Selberg trace formula, we 
obtain an expression for the weight distribution of M(q). We will elaborate 
the result announced in [1, Theorem 2.3]. 
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Theorem 3.1. The number Ai of code words of weight i in the Melas code M(q) 
is given by 

q2Ai = a 1)2i+ 2(q -1) ,(-I) (2/3 sq3- 2i- 

- (q - 1) Z Wi, j(q)(I + 1j+2(q)), 
j=O 

where the polynomials Wi,j(q) are defined for 0 < j < i by 

Wm,0=1, W1,O=O, WI,I=-2, 
(i + l)Wi+1,j = -iWij - 2qWij+1 - 2Wi,j-1 - 2(q - i)Wi-, 

(otherwise, the W jj are 0). 
By zk(q) we denote for k > 3 the trace of the Hecke operator Tq on 

Sk( (3(3)). For convenience we let T2 (q) = - q . 

Proof. This proof is a modification of the proof of the analogous theorem 
in [6]. For 0 < i < q - 1, let Pi(X) be the ith Krawtchouk polynomial 

(6) Pi(X; q- , 3) = (- )S (X)( X)2i-s. 
s=O 

These polynomials satisfy the recurrence relation 

(i + 1)Pi+1(X) = (2q - 2 - i - 3X)Pi(X) - 2(q - i)PiI1(X). 

We define fi(X) = Pi(2(q - 1 + X)/3); then 

fo(X) = Po(2(q - 1 + X)/3) = 1, fi (X) = PI (2(q - 1 + X)/3) =-2X 

and the recurrence relation becomes 

(7) (i + 1)1i+1(X) = (-i - 2X)fi(X) - 2(q - i)fiJ1(X). 

It follows that fi (X) has degree i, and we write 

(8) ji(X) = ZE li (k)Xk. 
k=O 

Now 7o(O) = 1, i1(O) = O. 7I(1) = -2, and from (7) we derive 

(9) (i + 1)7i+1(k) = -imci(k) - 27ci(k - 1) - 2(q - i)7i- I (k) 

We define 7ci(k) = 0 for cases other than 0 < k < i. When we apply the 
MacWilliams identities to M(q)L and M(q), we get 

q2Ai = I frequency(wt)Pi(2(q - 1 + t)/3) + Pi(O), 

where t runs over {t E Z: t2 < 4q and t =1 (mod 3)}. Using the weight 
distribution of M(q)' and the polynomials 1i introduced above, we find 

q A1 = - H(t2-4q)fi(t) + 2fi(1) + ) 
q -1 I ZH - 
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From definition (6) we see that Pf(O) = (qy 1)2i and 

f,(l) = Pi ( ) = Z( 1) ( 2q/3) ( q/3 - 1) 2Is 
s=0 

From (8) we obtain 

S H(t2 - 4q)fi(t) = 5 ri(j) 5 tjH(t2 - 4q). 
t j=0 t 

By formula (2) this becomes 

i 1 
ri(i) E j, kq Q (t, q)H(t2 - 4q). 

1=0 k=O t 
k even 

Using (4) combined with the fact that, according to (5), Tr Tq = 0 on S2(J i (3)), 
and remembering our convention that T2(q) = -q, we get 

i i 
(10) E 7i(r ) S Aj kqk/2(_ -Tj-k+2(q)). 

j=0 k=O 
k even 

We define WijV(q) = 7k even i(k + j)4k+jkqk/2 * By changing the horizon- 
tal summation in (10) into a diagonal summation, the expression (10) becomes 

5 Wi,,(q)(-l -Tj+2(q)) 
1=0 

Putting all this together, we get the announced formula for q2Ai. 
As to the polynomials Wij(q), we easily see that WO,o = 1, Wi,o = 0, 

and W1,I = -2. The recurrence relation for Wij follows by writing out the 
definition of (i + 1)Wi+1,, and using the recurrence relations (9) and (3) for 
(i + l)mi+I(k + j) and Ak+j,k . ? 

We conclude this section by noticing that to obtain more explicit expressions 
for Ai, we have to compute the traces of the Hecke operators Tk(q). This is 
the subject of the next two sections. 

4. THE COMPUTATION OF Tk(q) FOR k EVEN, k > 4 

As always, we take q = 3m with m > 2. By convention, we have that 
T2(q) = -q, while for k > 3 the trace of the Hecke operator Tq acting on 
the space Sk(F 1(3)) is indicated by Tk(q) . For even k, the space Sk(rF (3)) = 
Sk(Fo(3), 1) and the theory of newforms of Atkin and Lehner [2] provides us 
with a decomposition 

Sk(Fo(3), 1) = Sk(0(3))new ED Sk(Fo(3) ),Id 

which is respected by the Hecke operators. The old part is spanned by the forms 
f(z) and f(3z), where f(z) runs over a basis of simultaneous eigenforms of 
Sk(Fo(1)) = Sk(SL2(Z)) . 
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Proposition 4.1. On Sk(FO(3))old we have 

Tr T1 = 2 dim Sk (SL2 (Z) ), 
Tr T3 = Tr(T3 on Sk (SL2 (Z))), 

Tr T3m = Tr(T3m on Sk (SL2 (Z))) 
- 3k-1 Tr(T3m-2 on Sk(SL2(Z))) for m > 2. 

Proof. The subspace Sk (JjO0(3))old is a direct sum of 2-dimensional complex vec- 
tor spaces with basis {f(z), f(3z)}, where f(z) is a simultaneous eigenform 
for all Tn in Sk(SL2(Z)). The operator T1 is the identity map, so 

TrT1 = dimSk(Fo(3))old = 2dimSk(SL2(Z)). 

Let f(z) = E'm? ame27timz ; then by applying the formula for Tn on Sk(JFo(3), 1) 
(see [6]) we have 

T3(f(z)) = a3me 27rimz 

m>l 

while on Sk(SL2(Z)) we have 

T3(f(z)) = ,{f(z) = a3me2iimz + 3k-1 Z ame3(2timz 
m>l m>l 

For T3 acting on the 2-dimensional summand (f(z)) E (f(3z)), we obtain 

T3(f(z)) = Af(z) - 3k-1f(3z) and T3(f(3z)) = f(z)- 

Then on (f(z)) ED (f(3z)) the operator T3 has eigenvalues a and fi with 
a + fi = A and a/I = 3k-1 . The eigenvalues of T3 acting on Sk(Fo(3))old 
are precisely the a and fi for all possible eigenvalues A of T3 acting on 
Sk(SL2(Z)) . We conclude that 

Tr T3 = 
E (a + /1) = R = Tr(T3 on Sk(SL2(Z))). 

From the product formula Tn * Tm = dIm ,n dk-l Tmn/d2 we derive 

(11) T3m = T3T3m_1-3k-lT3m-2 form>2 

on Sk (SL2 (Z) ). Thus, the eigenvalue A3m of T3m on Sk (SL2 (Z)) corresponding 
to A is 

i * 3m-1 - 3k-1 * A3m-2. 

While A = a + fi and 3k-1 = a/I, it follows by induction that the eigenvalue 
of T3m on Sk(SL2(Z)) corresponding to A = a + f is EZm aifrm-i. 

Furthermore, it holds that T3m = (T3)m on Sk(Fo(3), 1), so T3m has eigen- 
values atm and g8m on (f(z)) (e (f(3z)) . Adding up the relation 

m m-2 

a m + gm = i 
agm-i _ ag/ E aigm-2-i 

i=O i=O 

for all pieces of Sk(Fo(3))old, we obtain the stated result for T3m , m > 2. El 

Remark 4.2. From the dimension formula [6, Corollary 2.3] we conclude 

dimS2(SL2(Z)) = 0, 

(12) d*ILZ k/ 12] fork 2 (mod 12), 
dim Sk (SL2 (Z)) 

= 
[k/12] - for k 2 (mod 12), k ?4. 

Next we derive a formula for Tr Tq on Sk (Fo (3))new. 
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Proposition 4.3. On Sk (F0 (3))new we have 

( dimSk(Fo(3))new . qk/2-1 for m even, 

TrT - J qk/2i1 form odd, k 2, 6 (modl2), 
Trq - qk/2-1 form odd, k 0, 8 (modl2), 

0 for m odd, k _4, 10 (mod 12). 
Proof. First we consider T3. The eigenvalues of T3 acting on Sk(JO(3))new 
are +3k/2-1 (see [3, Theorem 3]). In order to find the multiplicities of the 
eigenvalues, we compute 

Tr T3 on Sk(FO(3))new = Tr T3 on Sk(FO(3), 1) - Tr T3 on Sk(FO(3))old 

= TrT3 onSk(Fo(3), 1)-TrT3 onSk(SL2(Z)). 

By the Eichler-Selberg formula we find 

Tr T3 on Sk (Fo(3), 1) 

(13) _ fk-i - k-i k-i - k-i 

-13) = _ _1 hw(-11)+P2 _2 h(-8) + I 
PI-Pi P2 P2 J 

where Pi, PT are the zeros of X2 - X + 3 and P2, P2 are the zeros of 
X2 - 2X + 3. Applying the same formula for Tr T3 on Sk(SL2(Z)), we find 
(13) and the extra terms 

( P3-p3 -) 2 ( p4 -p4 ) (-12) + hw(-3)) 
P3-P3 2 

\ P4 - 4 / 
where p3, p3 are the zeros of X2 - 3X+ 3 and pf4, p4 are the zeros of X2 + 3. 
For A < -4, the hw(A) are class numbers and hw(-3) = 1/3. 

Note that in the case of SL2 (Z), the character involved is the principal char- 
acter, which is 1 on all of Z and has conductor 1. 

Substituting the zeros of X2 - 3X + 3 and X2 + 3, we get 

Tr T3 on Sk(FO(3))new - 2.3k/2-2(sin(k - 1)ir/6 + sin(k - 1)7r/2) 

( 0 for k-4, 10 (mod 12), 

(14) = 3k/2- fork 2 , 6 (mod 12), 
_ 3k/2- 1 for k _ 0, 8 (mod 12). 

Denoting the multiplicities of the eigenvalues 3k/2-1 and -3k/2-1 by A and 
B, respectively, we now know A - B, while A + B = dim Sk (Fo (3))new. Because 
T3m = (T3)m on Sk(Fo(3), 1), the eigenvalues of T3m on Sk(FO(3))new are 
(3k/2-1)m and (-3k/2-1)m, while their multiplicities are known as well. From 
(14) we easily confirm the required result. 5l 

The dimension of Sk(FO(3))new for even k > 4 can be computed explicitly. 
From the decomposition 

Sk (Fo(3), 1) = Sk (1o(3))new ? Sk (FO(3))old 

we see that dimSk(Fo(3))new = dimSk(Fl(3)) - 2dimSk(SL2(Z)). Combining 
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(5) and (12), one finds 

{ -l forkO0 (modl2), 

(15) dimSk(o(3))new =2[k/12] for k 1 0 (mod 12), 
0 forkl4 (modl2), 

Conclusion. To calculate Tk(q) for k even, k > 4, and q = 3m, m > 2, we 
put Propositions 4.1 and 4.3 and formula (15) for dimSk(Jo(3))new together. 
The only quantity left over to compute is the trace of Tq on Sk(SL2(Z)). In 
the next proposition we include a small list of traces of Hecke operators Tk(q) 
for even k. 

Proposition 4.4. The trace Tk(q) of the Hecke operator Tq, where q = 3m with 
m > 1, acting on Sk(Fl (3)), is for even k satisfying 4 < k < 22 given by the 
following table: 

k Tk(q) on Sk(ro(3))old Tk(q) on Sk(FO(3))new 

m odd m even 

4 0 0 0 

6 0 q2 q2 

8 0 -q3 q3 

10 0 0 2q4 

12 tl2, m + -q5 q 

14 0 q6 3q6 

16 ti6, m 0 2q7 

1 8 tls, m q8 3q8 

20 t2O, m -q9 3q9 

22 t22, m 0 4q 10 

For k = 12, 16, 18, 10, 22, the tk m are respectively given by tkO = 2, tkl = 

252, -3348, -4284, 50652, -128844 and 

tkm = tk, 1 tkm-1 - 3kltk, m- for m > 2. 

Proof. For k = 4, 6, 8, 10, 14, the spaces Sk(SL2(Z)) are zero, therefore 
Tr Tq on Sk(Fo(3))old is zero, and our formulas follow easily. 

For k = 12, 16, 18, 20, 22, the spaces Sk(SL2(Z)) are one-dimensional. If 
A is the eigenvalue of T3 on Sk(SL2(Z)), we have A = a + ,B and 3k-I = a/,B, 
where a and If are the corresponding eigenvalues of T3 on Sk(FO(3))old (see 
the proof of Proposition 4.1). Now tm = Tr T3m on Sk(Fo(3))old satisfies the 
recurrence relation 

tm = am + fm = itm-1 -3k Itm-2 for m > 2, 
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while t1 = A and to = 2. We calculate A = Tr T3 on Sk(SL2(Z)) by the trace 
formula. The result is 

3 

A =- rt Qk-2 (t , 3)-1 I 
t=O 

with ro = 32 r= = 1, and r3 = -. Combining these observations with 
Proposition 4.3, we obtain our formulas. El 

Note that for k = 12, the eigenvalue of Tq on S12(SL2(Z)) is z(q), where 
z is the Ramanujan z-function. Then tm = z(q) - 311z(q/9) for q = 3m with 
m > 2 and t1 = 252. 

5. THE COMPUTATION OF tk(q) FOR ODD k > 3 

By (5), we have for odd k that 

dimSk(Fl(3)) = dimSk(Fo(3), w) = [k/3] - 1. 

Since the action of the character co on (Z/3Z)* differs from the action of the 
principal character, the space of cusp forms Sk(Fo(3), w) consists entirely of 
newforms. Therefore, the eigenvalues A of T3 acting on Sk(Fo(3), )) have 
absolute values 3(k-1)/2 (see [3, Theorem 3]). This implies that the monic 
polynomial Fk(X) with roots A/13(k-1)/2 is reciprocal. So, to determine Fk(X), 
which has degree [k/3] - 1, we only have to know the first [([k/3] - 1)/2] + 1 
coefficients, provided they are not 0. 

Since Tq = (T3)m on Sk(Fo(3), w), we have Tr Tq = A ,m, and from the 
Newton identities for power sums we can derive some elementary symmetric 
functions of the eigenvalues A from Tr T3, Tr T9, etc. We only need a few 
Tr Tq to fix Fk(X), bearing in mind that Fk(X) is reciprocal. From Fk(X) we 
obtain the characteristic polynomial of T3 and from that the eigenvalues A of 
T3. Then we can compute zk(q) = A)~m for odd k > 3 and q = 3m with 
m > 2. 

Proposition 5.1. The trace zk(q) of the Hecke operator Tq with q = 3m and 
m > 2, acting on Sk(Fo(3), w), is for k = 3,5,7,9, 11, 13, 15, and 17 
given by the following table: 

r3(q) = z5(q) = 0, 
7(q) = (-1),mq, 

,q(q) = q4 . Trace(a4m), 

z l (q) = qS * Trace(am), 

rl3(q) = q. * {1 + Trace(am)}, 

z15(q) = q7* Trace(am), 

z17(q) = q8* Trace(am). 
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The ai are algebraic numbers of absolute value 1 given by 

5 + 2-1 a l= - + 4/5 -25 + 2V/=6 
a = 9 , all= , 27 

61 - 16vT+ 4v-2002 - 122,'9T 
ai5 - 243 

-19 + 28+2 2-6583-1980 
a17 = 243 

In this table, the Trace of an algebraic number is the sum of all its conjugates. 
Proof. Since dim Sk(Fo(3), w) = 0 for k = 3, 5, we have that r3(q) = T5(q)= 
0. For the other values of k we compute the eigenvalues of T3 acting on 
Sk(Fl (3)) = Sk(FO(3), w) in the way indicated above. The trace formula (4) 
gives us that for weight k: 

TrT3 = -Qk-2(0, 3)H(-I)I)- Qk-2(-2, 3)H(-8) - I 
= Qk-2(1 3)- Qk-2(-2, 3) -1, 

TrT9 = - 1 - E Qk-2(t, 9)H(t2 - 36). 
t_ I (mod 3) 

t2<36 

Using the recurrence relations for the polynomial Qk-2 and a small table of 
class numbers from [7], we get the entries of the table below: 

k Tr T3 Tr T9 Fk (X) 

7 -27 729 X + 1 

9 90 -5022 X2 -_14X+ I 

11 -54 -115182 X2 + 2X + 1 

13 -621 1291059 (X - 1)(X2 + 50X + 1) 

15 2196 -1624860 X4 _ 244X3 + 1474 X2 _ 244X= 

17 -2052 18618660 X4 +746X3_122X2 +76X+1 
243 72_9 243 

The eigenvalues A of T3 on Sk(Fo(3), o) are 3(k-1)/2 - a, where a runs over 
the zeros of Fk(X) and 

Tk(q) = q(k-1)/2 S atm 

la: Fk(a)=0} 

which provides us with our formulas for k = 7, 9, 11, 13, 15, 17. El 

Note that by computing the trace of more T3m for m > 3 we can easily 
extend Proposition 5.1. Adding Tr T27, for instance, will get us to k = 23. 

6. WEIGHT FORMULAS FOR M(q) 

When we combine Theorem 3.1 with Propositions 4.4 and 5.1, we get ex- 
plicit formulas for the frequencies Ai of words of weight i in M(q). To ob- 
tain these formulas, we used the symbolic manipulation language MACSYMA. 



WEIGHT FORMULAS FOR TERNARY MELAS CODES 791 

We conclude by giving a table of weight formulas. In this table, Ramanujan's 
T-function is denoted by T and the numbers tk denote Trace(am) as in Propo- 
sition 5. 1. 

TABLE 6.1 

Frequencies Ai of small weights i in the Melas codes M(q) 

A1 = A3 = 0, 
A2 = q- 1, 

A4 = (q - l)(q - 3)/2, 

A5 = 4(q - l)(q2 + ((-l)m - 14)q + 36)/15, 

A6 = (q - 1)(8q3 -165q2 + (1240- 68(-l)m)q - 2655)/90, 

A7 = 2(q - 1)(4q4 - 108q3 + (4t9 - 18(-l)m + 1215)q2 

+ (399(_l )m - 6744)q + 12884)/315, 

A8 = (q - 1)(16q5 - 560q4 + 8225q3 - (224tg - 880(-l )m + 66255)q2 

- (16296(-l)m - 298263)q - 517825)/2520, 

Ag = (q - 1)(16q6 - 704q5 + 13216q4 

- (160tg - 16t11 - 216(-l)m + 138656)q3 

+ (3816tg - 13776(-l)m + 895209)q2 
- (3470238- 187593(-l)m)q + 5597820)/11340, 

A10 = (q - 1)(32q7 -1728q6 + 40512q5 - 540519q4 

+ (6240tg - 720t11 - 6120(-l)m + 4529826)q3 

+ (-110280tg + 360000(-l )m - 24851277)q2 
+ (85643448 - 4448871 (-l )m)q - 129806479 

- 32(T(q) - 177147T(q/9))/q2)/1 13400, 
All = (q - 1)(32q8 - 2080q7 + 59520q6 - 985920q5 

+ (2288tg + 32t13 - 560t11 - 440(-l)m + 10453958)q4 

+ (-136840tg + 16720t, 1 + 110220(-l )m - 74203966)q3 

+ (1705506tg - 5122359(-l)m + 358627785)q2 

+ (57077625(-l)m - 112429735)q + 1617492524 

+ 880(T(q) - 177147T(q/9))/q2)/623700, 

A12 = (q - 1)(64q9 - 4928q8 + 168960q 7- 3400320q6 

+ 44564751q5 - (2112t13 - 33440t1 I + 115808tg 

+ 398775397 + 16720(-l)m)q4 - (664400t, I 
- 5020400tg + 2939640(-l)m - 2486674179)q3 

- (52961436tg - 145879734(-l)m + 10845159710)q2 
+ (31412188148 - 1550485266(-1)m)q -43190708055 

+ (T(q) - 177147T(q/9))(1408q4 - 46992q3)/q5)/7484400. 
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