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FINITE ELEMENT APPROXIMATION
TO INITIAL-BOUNDARY VALUE PROBLEMS
OF THE SEMICONDUCTOR DEVICE EQUATIONS
WITH MAGNETIC INFLUENCE

JIANG ZHU

ABSTRACT. We shall consider Zldmal’s approach to the nonstationary equations
of the semiconductor device theory under magnetic fields, with mixed boundary
conditions. Owing to the reduced smoothness of the electric potential  and
carrier densities #n and p caused by considering the mixed boundary condi-
tions, we must use a nonstandard analysis for this procedure. Existence as well
as uniqueness of the approximate solution is proved. The convergence rates ob-
tained in this paper are slower than those previously obtained for pure Dirichlet
or Neumann boundary conditions.

1. INTRODUCTION

We shall consider a system of three quasilinear partial differential equations
in a bounded polygonal domain Q € R?, which form a basic model of the
transient behavior of a semiconductor device in a magnetic field (cf. Allegretto,
Mun, Nathan, and Baltes [1], and Wang [30]):

@ -dv=2p-n+n),

(1) (0) 5% V- [ A, V(e ¥ n)] + Ra(n, p) =0,

(©) 29[~ 4,9 (e )] + Ry(n, p) = 0.

The unknowns are the electrostatic potential y and the electron and hole den-
sities n and p, while ¢ and ¢ are constants (g is the electron charge, ¢ is
the permittivity). The function N is the total electric active net impurity den-
sity or “doping”, and a is a positive constant; R,(n, p) and R,(n, p) are the
recombination rates. The matrices

@ ) i
_ (4 4 =; 1 (—1)5) i
(12) Az = (agl) agz)) 1+,82 ((—l)l—lﬂ 1 s i 1, 2,
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are positive definite nonsymmetric. The reason for the asymmetry of 4; (i =
1,2) is the presence of a magnetic field B = (0,0, ), where g = B(x)
is Lipschitz continuous. Indeed, if B = 0, then 4; (i =1, 2) are positive
definite symmetric. Since 4; (i = 1, 2) are positive definite and bounded,
there are two positive constants ap and M such that, for any u = (u;, u3),
U:(Ulav2)€R2’

(13) aOlulzs(Aiu’u)a I= 1725
(1.4) (A, v)| < Mlullv],  i=1,2,
with |u)2 = Y2 2.

We simplify the system, taking a = g/¢ = 1 and R,(n,p) = R,(n,p) =
R(n, p) (assumed Lipschitz continuous). These simplifications are not essen-
tial, neither for the construction of the approximate solution nor for the results
of this paper. We can write (1.1) in the form

(a) _A'//=P—nN,
on

(1.5) (b) 57 = V- [4i(Vr—nVy)]l+R(n, p) =0,

© 2~ 14V + pYW)I + R(1, p) = 0.

For simplicity, consider the PDE system (1.5) with homogeneous mixed
boundary conditions:

(1.6) {w,n,p}={0,0,0} ondQpxI,

(1.7) {g—f,Jn.u,J,,.u}={o,o,0} on dQy x I.
Here, the boundary 9Q of Q has been decomposed into the union 9QpUIQy ,
where 9Q) is of positive measure in 6Q, I =[0, T], v is the outward unit
normal vector on 8Q, J, = A\(Vn —nVy), and J, = A2(Vp +pVy).

In addition, we have the initial condition

(1.8) n=n%x), p=p°x) inQ.

Remark 1.1. For nonhomogeneous mixed boundary conditions with smooth
data, the problems can be homogenized by Banasiak and Roach’s trace theorem
in [2].

There is much work concerning the basic semiconductor device equations
with no magnetic fields. For stationary problems, Mock [23, 25] showed the ex-
istence and uniqueness of a solution subject to the mixed boundary conditions
(with R = 0). A very similar existence proof was given by Bank, Jerome, and
Rose [4], and effective numerical algorithms were also presented in their paper.
Later, Jerome [17] proved the existence for a more general stationary problem.
A singular perturbation analysis for the problems was given by Markowich [19,
20], Markowich and Ringhofer [21], and Selberherr and Ringhofer [27]. Finite
difference or finite element methods are discussed in Markowich [20] and in ref-
erences therein. Recently, Ringhofer and Schmeiser [26] analyzed an iterative
method and its convergence. For nonstationary problems, Mock [24] was the
first to prove a global existence and uniqueness result, and a more general type
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of the boundary conditions was discussed in Gajewski [13] and Gajewski and
Groger [14]. With regard to numerical treatments, Zldmal [33] has proposed two
fully discrete finite element schemes (one is nonlinear, the other is partly linear)
and discussed the existence (for both schemes) and uniqueness (for the second
scheme) of the approximations. Stability, uniqueness, and convergence (for the
first scheme) of the approximations have been investigated under stronger as-
sumptions in Zlamal [34]. The mixed finite element-characteristic procedure
for the one-dimensional Dirichlet problem was introduced by Douglas, Gamba,
and Squeff [7], and Gamba and Squeff [15], Douglas and Yuan [8], and Dou-
glas, Yuan, and Li [9, 10] have discussed, respectively, the finite difference-
characteristic finite difference procedure, the mixed finite element-characteristic
finite difference procedure, and the mixed finite element-characteristic finite el-
ement procedure for the two-dimensional Dirichlet problem and the Neumann
problem, and have given the convergence analyses under the assumption of a
smooth solution.

However, to our knowledge, there is not much work on problems in the pres-
ence of magnetic fields. A finite element analysis for stationary problems was
given by Allegretto, Mun, Nathan, and Baltes [1], but there was no theoretical
analysis of approximation in their paper. Recently, the author [32] presented
and analyzed the problem (1.1) by the finite difference-characteristic finite differ-
ence procedure, considering nonhomogeneous Dirichlet boundary conditions.

Unfortunately, it is well known (see, e.g., [2, 28]) that in general the solu-
tions of mixed boundary value problems for elliptic equations are not smooth,
no matter how smooth the data may be, and moreover, the loss of smoothness
occurs in the vicinity of dQpNdQy . Hence, the solutions of (1.5)-(1.8) are cer-
tainly not smooth. Similar to the idea of Ewing and Wheeler [12], we shall use
in this paper a nonstandard analysis for Zlamal’s approach. Since the resulting
functions are considerably less smooth than previously assumed, the conver-
gence rates obtained in this paper are slower than those previously obtained.
Recently, Markowich and Zlamal [22] have generalized Zldmal’s approach to
mixed boundary value problems of second-order elliptic equations.

The paper contains two additional sections. In §2, terminology is developed,
a variational form of the problem (1.5)-(1.8), basic regularity and boundedness
assumptions are presented, and the continuous-time Zlamal’s approach to (1.5)-
(1.8) is defined. In §3, existence, uniqueness, and a priori error estimates for
this approach are obtained. Throughout, the symbols C and J will denote,
respectively, a generic constant and a generic small positive constant.

2. PRELIMINARIES AND DESCRIPTION OF APPROXIMATIONS
Let (u,v) = [quvdx and lull> = (u, u) be the standard L? inner product
and norm. Let qu(Q) be the Sobolev space on Q with norm

1/q

a%u ||

oxe

2.1) s = | 3

laf<k

La(Q)

with the usual modification for ¢ = co. If U = (uy, up), write ||U ||qu in
place of (|fu . + Iluzl,)"/? . When ¢ =2, denote [[ully; = llullge = llulle-
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If k=0, |lullo=|u|. We also denote by H'*?(Q) (o is a real number with
0 < ¢ < 1) the noninteger Sobolev space on Q with norm (see, e.g., Girault
and Raviart [16])

lull 146 = lull o)

12
a oy 2
(2.2) {||u||l+ > [LE ‘l‘f‘ e 2 dxdy} ,

lal=1

where |x| denotes the Euclidean norm of R?. Let I =[0, T], and
(2.3) V={ve H(Q); v]ag, = 0}.

Multiplying (1.5) by a function v € V', integrating over Q, and using Green’s
theorem and (1.7), we have

(a)dy,v)=(p—-n+N,v), vevV,
on

(2.4) (b) (E’ ) viy;n,v)+ (R(n,p),v)=0, vev,

© (32.0) +nwip.v)+ R ) 0) =0, veV,
where

d(a//,v)=/QVt//-Vvdx,
(2.5) v(y;n,v)= /Al(Vn—th//)-Vvdx,
Q

n(y;p,v)= / A>(Vp +pVy)-Vodx.
Q

We are looking for {w,n,p}: I -V xVxV.
Let {w,n, p}, the solution of (1.5)-(1.8), satisfy the following regularity
assumptions:

@) 1W | oo 140y + 10Nl L2(pr140y + 1P| L2(p1140y < C
(2.6) (b) ||’1||L°°(L°°) +[IpllLoo ey < C,

(c) <C,

L2(L2)

at L2(L?) H

where 0 < ¢ < 1 and C are fixed constants, ||u||zx) = |Ullrez;x), 4 =2, 00,
and X is a Sobolev space on Q. In view of [1, 2, 4, 13, 14, 28], the above
assumptions are reasonable.

In this paper we restrict our attention to continuous-time Zlamal’s approach
(nonlinear scheme) to (1.5)-(1.8). We consider a family {7},} of triangulations
of Q. Let K denote an element of T},, hx = diam(K), and % = maxgey, hx .
As in Zlamal [34], we assume that the family {7)} satisfies the minimum angle
condition and is of acute type. Thus, if J is the Jacobian matrix of the linear
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mapping which maps a given triangle K on the reference triangle K, then

Ch? < |detJ| < C™'h? VK €| Th.

We shall use the above implicitly in some places.
With each partition from {7} we associate the finite-dimensional space
V, = {vy € C(Q); v, is a linear polynomial on each K € Tj,, v4lsq, = 0}.
We use the same idea as in Mock [25] and Zlamal [33, 34]: the quantities
Ju, Jp,and ||[Vy| are approximated by constants on each element K. Let
Wy, ny, Dy, and vy, belongto V), . The discrete analogs of the forms v(y ; n, v)
and n(y;p,v) are

l/h(l//h, ny, ’Uh Z Z vhr{/ AK JT IDKJTVfl Vv dx
(27) KeTyr=j,k,m

—/ nh,Ath//h-Vv’dx} ,
K

Tn(Whs Dhs V)= D, D vh,{/ AKX ' BXJTVp, - VU  dx
(2.8) KeT,r=j,k,m

+/ P AXVy, -Vv’dx} ,
K

where

_ ak (=1)'X _
AIK_((_l)i—le ak )5 i=1,2,

K= 171+ (8%)?), bX = pK/(1+(8%)?), pX = B(xK), and xX is the center
of gravity of the element K. Here, J is the Jacobian matrix of the mapping
which maps K on K insucha way that the node x” is mapped on the vertex
(0, 0) in the reference plane (see Zlamal [33]), vy, is the value v,(x"), v" is
the basis function associated with the node x”, and BX, DX are the matrices

= diag(B(Wn1 — Wh2) > B(Wn1 — Wi3))»

2.9
(29) K = diag(D(wn1 — Wh2) » D(Wn1 — Wn3))-

Here, B({) = {(e‘* — 1)~! and D({) = €‘B({) = B(-{), -0 < { < 0.
Furthermore, v, Wna, Wi3 are the local notations of the values of y; at the
vertices x/, xk, x™ such that w,, = ws,, r=Jj,k, m.

Remark 2.1. For AKX, i=1, 2, the inequalities (1.3) and (1.4) are still valid.
The L*(Q)- scalar product (-, -) will be approximated by (-, :), defined in
Zlamal [33] ((u, v), = X9, mjuv;, m; > 0, ¢ is the number of all nodes
not lying on 9Qp). Let f, denote the interpolate of a given function f.
Now we can introduce the continuous-time approximation of {y, n, p} as
follows: let {wy, ny, pp}: I — Vi x Vy x V), be defined by
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(@) d(wn, vy) = (oh — np + Np, V)i s vy €V,

on
(b) (a—th, ’Uh) + Un(Wi s Bns Op) + (R(p 5 Pr) s Op)n = 0, vy € Vs

(c) (— Up | + Tp(Whs Prs Us) + (R(ny, D), Vp)n =0, vy € Vi,

(d) nx(0) =nj,  px(0) = p}.

The main results of this paper are the existence, uniqueness, and a priori
error estimates for the approximation {;, n,, py}. These will be developed
in the next section.

3. EXISTENCE, UNIQUENESS, AND A PRIORI ERROR ESTIMATES

Similar to the idea introduced by Ewing and Wheeler [12] for miscible dis-
placement problems, we first define the L? projection {7, p} of {n, p} into
Vi x Vy by

(a)(n—fl,'l)h)=0, UhGI/h’ or
o (22-2% 4 =0, v eV
EY, 91’ h) =Y, h h>

3.1
( ) (C)(p—ﬁ,'vh)=0, UhEI/h’ or

op _op 1\ _
@ (Z-%L.u)=0. wen

We are led to use the L? projection of {n, p} into ¥, x ¥}, instead of the now
more standard H! projection, owing to smoothness restrictions on # and p.
Since we assume that 42 and %1} are only in L?(I; L?), we are not able to treat
terms like a%(n —n) and (%(p — p) in the usual fashion. Thus, we have used
{n, p} in (3.1b, d) to remove this problem. Using the theory of interpolation

spaces, we obtain (see, e.g., Ewing and Wheeler [12])

Lemma 3.1. There exists a positive constant C such that, for each t €I,

(@) lln—nl+hln—al, < Clnllsh™,  1<si<1+0,

() lp =l +Alp - ol < Clipls, 2, 1<s1<1+0,
(3.2) (©) |ln = nlle < Cllnflyeh™,  0<s52<1,

(@) lIp = Pllz~ < Clpllyzh™,  0<s <1,

(e) [lv —vr]l + Allv — ]| < C||v|ls,h Yv e H¥(Q), 1<s3<1+0.

Assuming that the family {V},} satisfies the following inverse inequalities (see
Ciarlet [5] and Thomée [29]), we also have

Lemma 3.2. There exists a positive constant C such that, for any v, € Vy,,
(@) vallze < CAY7Yjuyll,  2< g < oo,

(b) [IVvslle < CH4Y|Vyll,  2<g < oo,

(©) lluglly < Ch™Yuyll,

(d) [lvgllzee < Cllogh|'?||Vuy].

(3.3)
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Finally, we need (see Ciarlet [5])

Lemma 3.3. There exists a positive constant C such that, for all real q with
1<g<oo,

(a) ”/ﬁ”L‘i(;(\) < ChEZ/q”'U”Lq(K) Vv € Lq(K),
(®) 1Vl gy < Chy VU ey Yo € W (K),
where 0({) = v(x(0)), x(8) =3, k. m XV ({).

We shall prove the main results of this paper similarly as was done by the
author in [31]. By elementary, but tedious computations, we can write the form
v, as follows:

(3.4)

(3.5)  vp(Wns np, vp) = ar(Wns By, V) — @2(Wns By, V) — c(Whs By, Un)

ar(Wns nns vn) = Y @*{aK boic (M — 1) (Vi — Vai)

G36) KeT,
' + af bjm(nhj — Nam) (Vpnj — Vhm)
+ af by (e — ) (Vnk — vij)} s
1
@ (Yn; s Vh) = 5 > b5 b (Mpm — k) Vpm + Vne)
(3.7) KeT,
+ bjm(Mhj — Mhm)(Vhj + Vhm)
+ bij(Ruk — 1aj) (Vi + Unj)}
(3.8) c(Wns hns V) = 1t(Whs Bp, V) — C2(Wh's Rpy V) s
(3.9)
1
ct(Wns M, Uh) = 5 > a® (K Whm — i) (Rnm + 1) (Vnm — Vi)

KeT,
+ af (Whj — Wam)(Paj + Pim) (Vnj — Opm)
+ of (W — Whj) (Mak + 1pg) (O — vnj)}

1
2a(Vhs M, Un) = > b5 (Whm — Wnie) P + i) (Onm + Vi)
KeT,
(3.10) + (Whj — Whm)(Rnj + Ppm) (V) + Unm)
+ (Wi — Wnj)(Mhke — Ppj)(Unk + Ugj)}-

Here, of = Lcotf,, r=j, k, m, where 6, denotes the measure of the angle
r =3

of K lying at the vertex x", and b, = b;, = %(B('//hr = Wns) + B(Whs — Vi) -
From the acuteness and the minimum angle condition it follows immediately
that

(3.11) 0<a¥<cC, r=j,k,m, ¥vK € JT.
h
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It is furthermore known that (see Zlamal [34]) b, > 1. Therefore,
(3.12) ai(Wn; vn, vp) > a1(0; vy, vy) > ao|| Vol Vo, € V.

In a similar way we can derive

(3.13) Tn(Wn s Dh> Un) = a1(Whs Dh > V) + @(Whs P> Vn) — S(Wh's Ph> Up)
(3.14) c(Wns ph> vn) = C1(Wns Ph»> V) + 2(Wn's D s Un).

Theorem 3.1. The problem (2.10) has a unique local solution {yy,, ny, pp}, i.e.,
there exists a positive constant T* (defined by (3.28)) such that the problem
(2.10) is uniquely solvable for t € [0, T*].

Proof. (1) Existence. Let {nj,py} € V, x V, be fixed. Then there exists a
unique ; € V;, such that

(3.15) d(wy, vp) = (b — np + Nr, V)i, Uy € V.

Let v, = y;, in (3.15), and note that

(3.16) lvall < llvallp < Cllugll Yoy € V.
We obtain
(3.17) Vil < C{llnall + [lpall + 1}

We denote by P the mapping from ¥}, into itself, assigning u, = {n;, py}
to wy = {w,(ll) , w,(lz)} such that

gwl
(a) ( 8;’ p |+ an(wns wi, vp)
h

=a(Wn; hy, V) + (W5 ny, Vp) — (R(1y, Pr) s Vi
Uy € V;l’

2
5 ,vh> +ai(ws wy, vp)
h

—a(Wns Ph> Vi) +C(Whs Pr > n) — (R(1y, D) > V)i s
vy € Vy,

© w0 =n?,  w?0)=p.

It is easy to see that the problem (3.18) is uniquely solvable. We shall prove

the solvability of (2.10) by showing that P has a fixed point. Let v, = w,(l” in
(3.18a), integrate over 7 in [0, ¢], and note (3.12) and (3.16); the left-hand
side of the resulting equation is then bounded below by

t
(3.19) Hllw ()12 = 1w (0)12} + ao /0 IVw(7)|? d.
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Next, we consider bounds for the terms on the right-hand side. Since (see
Zlamal [34])

(3.20) X< 3 Ve (=00, 00),

where x() = L[B({) +B(=0)] = %C(ec+1)/(e5— 1), and x(0) = 1, it follows
from (3.7), (3.4), (3.17), and (3.3) that

t
’/ ay(wns my, wiV)de

1
<C {(1+§|'//hm—!//hk|)|nhm—nhk||w(1) +whk|+ } dz
0 KGT,,
<C / S (199l oy | Pl 105 e
KeT,
+ 1Vl iy 1051 2 )} A

< [ S 09wl Vmlouo o) =
KeT,

+ B IV ARl o 0l 2y } AT
(3.21)

t
<C /0 UV wrll V74l 1wV oo + A= Vgl lwsP |1} d

t
< C/O {h="1og h|"2(||nal| + loall + Dllmall [Vl

+ h=2|mall 1} d e
t 1 t
< COh) [ 0mlP + o4l + 1} d + a0 [ 1vu)) ()P
t 1 t
<€) [ U@l + 1hde+ 50 [ 19w} @) dz

vy (3.9), (3.3), and (3.17),

t
’/ (s, wi)de

1 1
/Z (K Yhm — Wikl + Ml Wi — wi| + -+ YT
KeT),

(3.22) <C /0 Il |Vl [V d T
t
< Ch! /0 Inall(lmall + 2l + DIVwiV | dz

t 1 t
W [A@f + 1y de+ 50 [ 19w @R e
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From (3.10), (3.4), (3.3), and (3.17), we get

t
1/0 (s my, wi)dt

= 4/ > 051 Whm — WaklInam + nicllwi) + wi)| + - Y dt

(1
<C / SONAZZ IS LA Ll
(3.23) KeT,
<cnt [ 5 Ivmmlaolmlhof o d
KeT,

< Ch~"|logh]!2 / IV wl 1l 19wl 7

< Ch /{lluh(r)||4+1}dt+ ao/ VW (o) dr.

Noting that R(n, p) is Lipschitz continuous, and using (3.16), we obtain

t
’ [ R, . 0 de

t
(3.24) <cC /0 (sl + 12l + 11wV de

t 1 t
<€ [P+ IoalP + 1} de+ 300 [ 190 @R v
Thus, by (3.18c) and the fact that
lwP(0)]| < Clln°]l,

we have
t
lwi ()12 < wi” ()12 + C(h) /0 {lun(0)||* + 1} dv
t
(3.25) < Clln°|1? + C(h) / {lup(D)ll* + 1} dr
0
t
<Ci(h)+ cl<h>/0 (lun(D)]1 + 1) d.
Similarly,
(3.26) P OIP < Ca(h) + Co(h) [ hn(a)1* + 1}
By (3.25) and (3.26),
t
(3.27) lwa (D)2 < C*(h) + C*(h) /0 {lun(o)I* + 1} d,
where C*(h) depends on 4, ||n°, and |p°|.
Let
(3.28) L S

1 +4(C*(h))?
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and

(3.29) @ = {un € Vy x Vi luall? < 2C*(h)}.

Then, by (3.27), for 0 < ¢t < T*, we can prove that P(¢) C €. By usual
arguments one can show that P is continuous. Therefore, the Brouwer Fixed
Point Theorem yields the existence of a fixed point of P.

(II) Unigueness. Let {wy, n,, py} and {@,, 7, Py} be solutions of (2.10)
for te [0, T*],and let ¥ =y, — W, Ai=n, —ny,,and p = p, — P, . Then

(3.30) IVl < C{linll + 11811}
and

on v +a(yy; 7, vy)

o1’ h A Wy n, Uy
(3.31) =a1(Wns A, vp) — ar(Wns Ap» Vp)

+ax(Wn; A, vp) — a2(Whs ny, V) + C(Whs g, Up)
—c(Wn; np, vy) — (R(np, pp) — R(Ap, Br) s Undn s Uy € V.

Let v, = 7 in (3.31); then, by (3.12),

N —

L\l + ol VAP < las (s 70, ) — s g, )
+ |a2(@n s A, 1) — ax(Wn; i, 1|
+1c(Wh; Ans ) — (Wi ny, R
+ [(R(np, pn) — R(Ap , D) > )l
=L+DL+L+1,.

We integrate (3.32) over 7 in I, = [0, ¢] for ¢t € I* = [0, T*] and note
that 72(0) = 0 and (3.16); then the left-hand side of the resulting equation is
bounded below by

Lo 2 L on 2
(3.33) IO +a0 [ 193z

On the right-hand side of the resulting equation, we have, by (3.6), (3.20), (3.3),
(3.30), and |||l Loo (s~ ; 12y < C(h), that

t t
/0]1 dTS/O > (0K bk — Bonicl|Bnm — Pl Fom — Pii| + -+~ }dT

KET,

(3.32)

t
= C/O > {10m = 0l m — Pl |im — Fie| + -+ - } dT

KeT,

t
(3.34) <C /0 IV 1Al V7] d T
t
< Ch! /0 V9| 174 1V 7] 7

t . . a t .
<c [P+ 157y de+ 3 [ 1valan
Noting (3.7), (3.20), (3.3), (3.30), and
(3.39) I98hll 1) + Il 2y < COR),
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we get
t t
/0 Ldt < /0 {laz( 5 y, #t) — a2(Wp 5 ny, 1)
+ |aa(Fy s ny, 1) — ax(wps ny, )|} de
t
<C [ (Uhm — Vel = el + el -]
0 ker,
+ [|7im — Aigel||Pam + g + -+ -]
+ | Fnm — Vnic|Pam — M|\ + P + -~ 1} dt
(3.36)

< C/Ot{IIVWhII IVA] 17l + R |7] V7]
+IV@IHIVal 7] =} dT
< cnt [ Qvw 19 1+ 1l 197
+ | log |2V || Inall IV 2]} d<
< cth [ AP +1pPyde+ 2 [ 19 ae
Breaking I3 into two parts, we have
Iy < |c(@n s A s B) — (s my s A)| + |c(ns m s ) — (W5 s 1)

= |c(@p; i1, A)| + [c(@; np, R)| = I3y + Inz.
From (3.8)=(3.10), (3.4), (3.3), and (3.35), we obtain

t t
JRE C [ 3 A0 = Dl + il =l -+
0 0 KGTh

(3.37)

+ [ Fhm — Onk||im + P> + -1} d

t
(3.38) <c /0 (Sl 9] [l + B [ wall 17l 172l o } T
t
< Clh) /0 IV gl 9] 172] 7

t t
< C(h)/ ||;z||2dr+@/ V7|12 d.
0 5 Jo
By noting (3.30), we get
t t
[ dr<c [ X 00m = ialinan + maelim = sl + ]
0 0 ke,

+ [ ¥m — k| |Pnm + Pl Pim + P + -+ 1} dT

t
(3.39) <cC /0 (SN IVAl Il + A (G 1] gl 2o } d2
t
< Ch) /0 IV 95 4] d

t t
<) [ QA+ a2 [ varde
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Noting that R(n, p) is Lipschitz continuous, and using (3.16), we easily see
that

t t
(3.40) / Lidt<C / {1712 + 1611} .
0 0

From (3.32)-(3.34) and (3.36)—(3.40), we have, for each ¢ € I*,

(3.41) 1A < C(h) /0 (1A + 1517} d.
Similarly,
(3.42) B2 < C(h) /0 (1112 + 1512} dx.

By (3.41) and (3.42),

1@ + 15N < C(h)/o {I7)1% + 115117} d.

Gronwall’s Lemma and (3.30) now complete the proof. O
Letey =y -y, en=n—ny=n—n+i—ny=n,+&,,and e, =p—p, =
p—P+DP—pyp=1np,+¢. Then we have

Theorem 3.2. With T* defined by (3.28), there exists a positive constant C
such that, for h sufficiently small
1€nllzoore: 12y + ISpll oo re ; 12y
+IVEnllLagr 12y + 1VEpllLose 12y < CA°.
Proof. Subtract (2.10a) from (2.4a) to obtain

(3.43)

dley,vp) =@ —n+N,vy) — oy —np+ Ni, v
=(ep—en+N—N;,v,)+ (pp — ny+ Nrp, vp)
— (o —np+ Np, vp)p, vy € Vj.

From Lemma 4.3 in Zlamal [34], (2.6), and (3.2), we have, for each v, € V},,

d(ey , vi) < {llenll + llepll + IN = NrliHlvall + Ch{llnall + llpall + I N7}Vl
< {llenll + llepll + IV = Nyl }vall
+ Ch{l + |lexll + llepll + IV = Nil[}I V|
< ANEnll +11Sp 1l + 117all + Ni7p [l + 1IN = NplI}Hlall
+ Ch{1+IGall + 1ol + 1all + 171l + IN = Np[HIV sl
< {licnll + licp Il + Z3vall + CA{T + licall + lIEp 1l + AHI V.

Thus, by (3.2¢),
IVeylI> =d(ey, e,) =d(ey,, w—wi)+d(e,, wr— wy)
< HIVeylI> + CUIV (v = wn)ll? + 1Ea]1% + 11611 + A2}
< HIve, |1 + C{IIEN? + 1E |17 + A2},
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Therefore,
(3.44) IVey > < C{lIEa + & 117 + A*}.

To estimate &, , subtract (2.10b) from (2.4b). Letting

(3.45) AX(n, v) = (4KVn, Vv),
(3.46) vE(y;n,v)=Af(n, v) - (naf vy, vv),

and noting (2.5), (3.1), (3.5), and a;(0; 7, v;) — ax(0; A, vy) = AK(n, vy)
(obtained by (2.7), (3.5)-(3.10), (3.45)), we have, for each v, € V},,

dé,
(—;T,Uh>h+an(wh;éh,vh)

_(on on Ko B .
—(al’vh)h (at9vh)+y (V/an9vh) V(W,n,’l);,)

+ay(wps B, vp) — (05 7, vp) — {a2(Whs nas V) — a2(05 71, vp)}
+ (nAXVy , Vy) — (npAf Vi, Vo)

+ (nyAf V', Vo) = c(Wi's g s Va)

— Af (1w, vi) + (R(ny, Pi) > vi)n — (R(n, D), vp).

(3.47)

Let v, =&, in (3.47), and note that

@03 &0, &) = 5 0 VX1 — &) + (€ — ) + (G~ 1 =0,

KeT,

so, ay(0; i, &) = ax(0; ny, &,); then by (3.12), we have

1d
5 7z 1allh + a0l V&l
< (?9_?’5”),,_(%_7’60 + K (s n, &) — vy n, &)l
g R E) = @03 R, &)+ laa(wns ms, €)= @03 s &)

+ [(ndXvy , V&) — (m AV, VE))
+ (AKX Wy, VE) — (s nn s En)

+ 14K (1, &)l + |(R(ny > h) > E)n — (R(n, P), &n)l = D Fi.

Integrating (3.48) termwise over 7 in [, = [0, ¢] for ¢ € I*, we find that the
left-hand side of the resulting equation is bounded below by

(3.49) HIEOZ = 1€ O)7} + a0l VEnll7 (s, 12
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Next, we consider bounds for the terms on the right-hand side of the resulting
equation. Using Lemma 4.3 in Zlamal [34], (3.1b) and (2.6c), we have

(3.50) / Fidt< Ch /

By (2.5), (3.45), and (3.46), and noting that f(x) is Lipschitz continuous, and
(2.6), we get

[moes [ {3

<Ch [ 5 190 = 19l Vel do

KeT,

|Vén |dT < “V‘fn“L2 (I 5 L?) + Ch

KeT,

/|A1 Af ||Vn—th//||V€n|dx} dt

(3.51)
< Ch / IV — nVy|| [VE, dt
0

t
< Ch [ {vall+ 19wl Il Y& de

6”anHL2(1, )t Ch?.

From (3.6), (3.20), (3.4), (3.3), the Sobolev Imbedding Theorem, (3.2), (3.44),
and (2.6), we deduce

/F3d1</ S @ (0K b — IR — Allum — Eui + -} dT

KeT,

<C/ S W — Wil = 7]+ s = i ]
KeT,

X'énm—énkl"' }dT

<C [ S UVl VoI e

KeT,
+ ”VWhHLz(E)”V(ﬁn)lllLZ(fe “Vén“Loo(i(\)}dT
(3-52) <C / > hicllIV Wl 2 IV Al oy |Vl 2oy
KeT,

IVl L2 ) IV () 1l 20y 1V Enl Lo (k) } AT

t
< Ch/0 IVl {IIV Al 2i0-0 IV Enll L2r + IVl IV GR L} d T
t
< C/O{HVWH+lIVewll}{h"IIV'Ille/u—w+||V'7nII}IIV€nII dt

t
< Ch? /0 W lhso + 192y [} Inll4ol Vel d2

A
< E”Vén”%}(l,;ﬁ) + Chzg{”fn”ioou,;y) + “fp”ioou,;y) + 1}
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Breaking F; into pieces, we have

1
F4 < '2' Z bK{Ibmk - lIlnhm - nhk”énm +¢nk| + }
KET,

< C 7 {1Whm — WnklPhm — Pkl 1nm + Enicl + -+ }
KeTy,

<C Z {[lV’m — Wil|nm — i ||nm + &+
KeTy,

+ m— -&, mA Enk| + -
(3.53) [IW '//k”fnm ‘f k”‘fn é k' ]
+ [I‘/’m - '//k””nm - ”nk”‘fnm +fnk| + - ]
+ ['ewm - ey/k”nm - nk“énm +§nk| +--]
+ [Iewm - en//k”‘fnm = Cnkcl|Snm + Snic| + -]

+ [Iet//m - en//k”nnm — Nl Enm + Enie) + -1}
6
= Fa.
i=1
By (3.4), the Sobolev Imbedding Theorem, (3.3), and (2.6), we get

t t
[ Fadr <€ [ wm = vkl — mllan + el + ) d

KeT,

t ~
< C/O Z ”VV;I”LZ/(l—a)(k\)”VﬁI”LZ/(IAa)(i{\)”én”Ll/a(;(\) dt
KETh

t
< C/O Z ”VWIHLZ/(I—‘:)(E)”VﬁI”LZ/(l—q)(E)“én”Loo(f)dT
KeT,

t
< Ch¥ / S 19 Wl - IV 0o Il o ) T
(3.54) 0 Ker,

t
< Chz”/O Z MWl riso gy 121 1o (i) 1 [l Lo () AT

KeT,

t
<ch /0 W lsollnllsolEalle dt

t
< Ch¥|logh|'? /0 W lsolinlisollVE dt

a
< T¢I Vénliag; 1 + Ch*loghl.
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Using the Gagliardo-Nirenberg Inequality

(3.55) vl < C(@I PV =27, veV, g>2,
and Young’s Inequality

(3.56) ab < C(d, q)a? + 0bp9/(1-9) | a,b>0, g>1,

we have (let ¢ = 2/0)

t t
| Fade <€ [0S v = vellum ~ Eullenm + &l +---

KeT,

t -~ A
< C/(; Z ”V'/}I“Lz/(l—a)(k\)”Vén||L2(E)|I¢n',L2/a(2) dt
KeT,

t
<cC / S IVl 20 IV Enll 2k [ Enll e
(3.57) 0 ker,

t

<cC / IV Wl 0o V&l [Enll 2o
0
t

<cC /0 Wl a1 VE 12~ d

< D|ve,|? + Cll& |2

=16 nllL2(1, ;12 nllz21,; L2y

and by (3.4), (3.2), and (3.3),

t t
S Ende <€ [ 5 (1~ valltam — mallun + &l 4+ Yo

KeT,

t -~
<C [ S U901l IVt [l 2,
KeT,

t
<€ [ S IVt l-ni IV sl oy
(3.58) 0 Ker,

t
<C /0 VWl 0o IVl [Enll e 7

t
<c /O W 140 IV 7l [VEn ] 2

Qo
S Rl'vén“%)(]‘ ;LZ) + ChZU‘
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From (3.4), the Sobolev Imbedding Theorem, (3.3), (2.6), and (3.44), we get

t t
/0 F44dT < C/O Z {'ey/m —e.,,kllnm - nk“énm +€nk| + }dT

KeT,

t
<C [ 19@o a1Vl sl 4

KeT,
t ~
<C [ X IV@ @ 191l oy Il )
0 kem,
t
(3.59) <Che /0 S IV el IV 21l 0o [l oo iy T
KET;,

t
<cn [ Vel el dr
0 ker,

t
< Ch?|logh]!? /0 IVey | 17ll40 V&4l d2

aO 2
S Té“vé"”Lz(I,;L?)

+ Ch* | 10g h{|1€nllT o0 1, 12y + 1€0 11700 1, . 12y + A}

t t
/OF45dTSC/O Z{le'//m—ewkllénm—énk“‘fnm'i"fnkl"’”'}d'f

KeT,

t
<€ [0S 1@ IV Vol ey 47
KeT,

t
(3.60) < C/o Z IV (e )il L) IV Enll 2 k) €0l oo (k) d T

KGT;,
t
<C /0 IVey | 1VE €l dt

< (| 10gh|1/2{||fn“L°°(1,;L2) + 1€pll oo s, s 2y + ha}”an”izu,;Lz) )

t t
/O Faedt < C/O Z {,e'l/m - el//k“”nm - ”nkl'énm +énk' + - }dT

KET,

t ~
<€ [ 5 191 19 el Vol iy
KET,

t
(3.61) <c /0 S 19y )t 2o IV Ol g Il 20 oy

KeT,

t
<cC /O Ve, | 197l [Eallz d

< E”Vén”Lz([, L2)

+ Chzal IOghl{”én”iw([,;LZ) + “ép“ioo(]t ;LZ) + hZU}‘
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In order to estimate Fs, we shall break it into pieces as follows:
Fs5 = |(A{<enV'//a V&) + |(A{<r‘1Ve.,, , VE)| + |(A{<fnvew , VEI|
= I(A{(anl//, Vén)' + |(A{<’7nv‘//> Vén)l
+ '(Afﬁvew > Vén)l + I(A{(fnvev/ , V&)
= Fs51 + Fsy + Fs3 + Fsy.

From Remark 2.1, (2.6), and using the Sobolev Imbedding Theorem, the Gagli-
ardo-Nirenberg Inequality (3.55), and Young’s Inequality (3.56), we have

t t
/0 Fsidt<M /O Wall o VW L 2000 [[VEnll 2 d T

(3.62)

t
(363) S C”W”LOO(HHa)/O ”én”U”VénHZ—-a dT
ap
< 1_6”Vén“12(1,;L2) + C”én“iz(h;y).

Furthermore, by (3.2),

t t
/0 Fadi<M /0 Ul are |V Wl -0 [Vl 22 dt

t
(3.64) < CllWll oo, /O RIS
< D|ve,|? + Ch%
=16 nllL2(1, 5 L?) ’
by (3.44),
t t
/O Fsydt< M /O 1All= [ Vey || V& d

t
< Cllnflpewe) | 1Veyll V&l d
(3.65) < Cllnlima) [ IVe IV de

a
< BV 10 + CIVeU IRy 0

a
< E“an”iZ(l,;LZ) + C{Hé"“iz(l,;LZ) + ”éP“iz(I,;LZ) + hZ(T} ,
and by (3.3),

t t
Fsdt< M /0 Wallz [ Vey || V&l dt

< Cllogh|"*{||nll Lo s, 12)
18l 2y + ATHIVERNZags, 12y

(3.66)

Since
A, &) =) / AfVyy - Ve dx = ) area(K)Af Vy, - V&,
KeT, 'K KET,
and
Af (s &) = vn (05 wis &) = Y aX 1o (Wim — Vi) Enm — Em) + -]
KeTy

- % Z bK[('//hm - l//hk)(énm + énk) + .. ] ,
KET,
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we get
area(K)Afv‘//h ‘ Véh = aK[af(‘//hm - V/hk)(énm - énk) +---]

— KU~ ) G+ &)+ ]

Fy = |e(uns mp, &) = Y- 2area(K) 4V - 58, [ nd
KeT,

=|> d¥ {af(whm — Wik ) (Enm — Enk) [%(nhm + M) — 2/’?;*1,, dg] T }

KeT,

=3 3 5 { W = )G+ 800

KeT,

x [-;-(nhm+nhk)—2/l?ﬁhdi] +}‘

> oK (Wim = Wnk) Eam — St )(Mhm — 1j) + (Mpge = np )] + -+ }
KeT,

1

—% KZT XL (Whm — Wii) (Enm + ) (Mm — 1g) + (Mp — )] + - }|
€Ty

< C S {1Whm — Ykl Enm = Enicl + [Eam + Enr]

KeT,
X |(Rpm — npj) + (M — )| + - 1

Similarly to the treatment of F4, we can show that

t
Ao
/0 F6 dT S 1_6”Vé””%~2(1,;L2) + C“énllzLZ([l;LZ)

(3.67) + Ch?| IOth”fn”ioo([,;LZ) + “ép”iw(I,;LZ) +h*}
+ (| 108h|1/2{||fn||Loo(1,;L2) + 1ol ooz, s 22y + hg}”V‘fn”iZ(I,;Uy

By Remark 2.1 and (3.2),
t t
a
(068 [ Frde< M [ IVnlIVEId < IV, 0+ CH

Using Theorem 4.1.5 in Ciarlet [5], we have

|(R(n s p) > én)h - (R(n s p) s én)l
<C Y h(area(K))”*|R(n, Py, ol Venllra)
KET,
< Ch(area(Q))”|R(n, P)lwy V&l

2/(1~0)

< Ch{lInlli+o + IPllh+s + HIVE,
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where, in the last inequality, we have made use of (3.13) in Zlamal [33] and the
Sobolev Imbedding Theorem. Hence, by (3.16), (3.2), and (2.6),

/ Fydr < / (R(™, p)» & — (R(n, P), &)l
0 0

(3.69) + |(R(n4 5 Pr) s En)n — (R(n, p), En)nl} dT
a
S %“Vén“iz(l, ;LZ) + C{”én”%}(h ;Lz) -+ ”éPHZLZ(I,;LZ) + hza}‘

Combining (3.48)-(3.54), (3.57)-(3.69), and noting (3.16), |[|&,(0)]] <

[n0 — nO|| + ||n® — n°|| < Ch°, and C|logh|'/2h® < ag/16 for h sufficiently
small, we have
SO + 2Vl
(3.70) < (| 108h|1/2{||fn“L°°(1,;L2) + “ép”Lw(I,;LZ)}Hvén“iZ(I,;LZ)
+ UGN 12y + U2, 1y + 727
+ Ch*| IOghl{an“ioo(I, )t ||ép”ioo(1,;L2)}~

Similarly, we have

SISO + L9822
(3.71) < Cllogh|'{[1Enll Lo, 2y + 1€oll ooty Ly HIVEpII T, 12)
+ C{“én”iZ(I,;LZ) + ”ép”iZ(I,;LZ) +h?7}
+ CH*?|10g Al{[1CnllF o 1, ; 12y + o170 s, 12}

Let & ={&,, &} then

1 A
SIEDI + Tg1VeNZa, 12
(3.72) < Cllog Al oo 1y 1) IVENTa(s, s 12)
+ LI, 1) + 27} + Ch2 Mog hIE G 7 13

As in [6, 11, 31], let us make the induction hypothesis that

a
(3.73) Cl1og h|' €]l ooz, 12) < 3—3
Obviously, (3.73) holds for ¢ = 0. Thus, (3.73) will hold for ¢ < * for some
t* > 0. We shall show for 4 sufficiently small that ¢* = T* and that (3.43)
holds.

It follows from (3.72), (3.73), and Gronwall’s Lemma that

(374) “é”ioo(p ;LZ) + “Vé“%}(p ;L2) S ChZ(T s

where C is independent of 7*. Note that (3.74) implies that the induction
hypothesis (3.73) holds for small %, so that the entire argument is validated. 0O
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From Theorem 3.2 and (3.2), one easily obtains the following corollary.

Corollary 3.1. Let
(3.75) M = {||n]| o2y + 1Pl Lo ()} + 15

then
lnnll oo e s 22y + PRl oo (e s 12) < M.

If we substitute M defined by (3.75) for ||n°||;> and ||p°||,2 on which C*(k)
(in (3.27)) depends, then 7* defined by (3.28) depends only on 4. Thus, for
h fixed, T* is a fixed constant, and we can show that the problem (2.10) has
a unique global solution by extending gradually the local solution defined by
Theorem 3.1. Therefore, Theorem 3.2 holds for 7 instead of 7*. Noting (3.2)
and (3.44), we have the following main results of this paper.

Theorem 3.3. Problem (2.10) is uniquely solvable. Let {y , n, p} satisfy (1.5)-
(1.8) and {w, ny, pp} satisfy (2.10). If the regularity assumptions (2.6) hold,
then there exists a positive constant C such that, for h sufficiently small,

7 = nallpes 2y + 1P = Pall oo 22y + IV(W = W)l oo (22)
+IV(n = np)ll22y + IV(0 = Pu)ll 212y < ChC.

Corollary 3.2. Theorem 3.3 holds for the case when B = 0, considered by
Zldmal [33, 34].
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