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BLOSSOMING BEGETS B-SPLINE BASES 
BUILT BETTER BY B-PATCHES 

WOLFGANG DAHMEN, CHARLES A. MICCHELLI, AND HANS-PETER SEIDEL 

ABSTRACT. The concept of symmetric recursive algorithm leads to new, s- 
dimensional spline spaces. We present a general scheme for constructing a col- 
lection of multivariate B-splines with k-I continuous derivatives whose linear 
span contains all polynomials of degree at most k. This scheme is different 
from the one developed earlier by Dahmen and Micchelli and, independently, 
by H6llig, which was based on combinatorial principles and the geometric in- 
terpretation of the B-spline. The new spline space introduced here seems to 
offer possibilities for economizing the computation for evaluating linear com- 
binations of B-splines. 

1. INTRODUCTION 

Polar forms offer a unified approach to various algorithms for Bezier and 
B-spline curves [6, 7]. However, very little seems to be known about polar 
forms for surface representation. This question has been raised lately by several 
researchers. Some discouraging preliminary efforts seem to have cast doubt on 
the efficacy of this approach to recursive evaluation of spline surfaces. 

Recently, in [8], one of us focused on symmetric recursive algorithms and 
polar forms for polynomial surfaces. This led to a new representation of a 
polynomial surface in terms of B-patches. A B-patch shares many properties 
in common with Bezier patches and includes them as special cases. Recursive 
evaluation of B-patch representations of a polynomial is given in [8]. Also, as 
for Bezier representations, the control points of a B-patch representation of a 
polynomial are obtained by evaluating its polar form at certain vectors which 
generate the B-patches. 

The univariate analog of B-patches on an interval are no less than pieces of 
B-splines which have support on the interval with knots at the points used to 
generate the B-patches [7]. 

Hindsight makes it clear now that the term B-patch used in [8] was aptly 
chosen. For, in fact, we will first prove that the s-dimensional B-patch basis 
functions do agree with the restriction of certain s-dimensional multivariate 
B-splines to certain regions of Rs. The exact prescription of the regions of 
agreement and the collection of knots for building the B-splines must be cho- 
sen with great care. However, when this has been done, we are led to the 
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construction of a new multivariate spline space. As this space is rooted in sym- 
metric recursive B-patch algorithms, there is hope that efficient evaluation of 
the multivariate splines will follow. The numerical implications of this con- 
struction will be given in a forthcoming paper. 

The initial setup of our method follows a pattern that two of us have used 
earlier [2, 3]. Thus, we begin with a triangulation of Rs into simplices. With 
each vertex we associate a cloud of k additional vertices. A rule for selecting 
(k+s ) subsets of k + s + 1 vertices from the s + 1 clouds of a given simplex 
must be given. Each such subset then gives a multivariate B-spline of degree 
k which is generically Ck- I. The linear span of all the B-splines is then the 
spline space of interest. 

Two of us developed a rule for knot selection based on the geometric inter- 
pretation of the multivariate B-spline [3] (see also [4]). Briefly, we associated 
with every nondescending path from (0, 0) to (s, k) on the lattice points in 
[0, s] x [0, k] a knot set. The resulting spline space had a number of impor- 
tant desirable properties. Specifically, for clouds concentrated around the corre- 
sponding vertices, the B-splines were locally linearly independent, and provided 
a stable basis for the spline space. Moreover, the space contains polynomials of 
degree k, and also a spline projector with maximal order of convergence was 
constructed in [3]. 

In this paper we provide another spline space, by a totally different knot 
prescription, which accomplishes all the above properties while also achieving 
a simplicity not present earlier. 

The new knot selection strategy is neither based on geometric nor combi- 
natorial techniques but rather comes from matching the B-spline recursion to 
the symmetric recursive algorithm for B-patches. This suggests that the com- 
putation of linear combinations of these B-splines can be carried out more 
efficiently. Furthermore, we derive explicit representations of all polynomials 
of degree k in terms of B-splines of the same degree, which have an important 
advantage over the analogous formulas derived in [3]. In fact, the coefficient of 
each B-spline is formed by evaluating the polar form of the polynomial at the 
knots of the B-spline. Specializing this formula gives a natural normalization 
of the multivariate B-spline, so that they provide a partition of unity on Rs . 
In addition, we construct linear projectors which have optimal approximation 
rates, and establish the stability of the B-spline basis. 

2. B-PATCHES AND B-SPLINES 

We will begin by formulating the concept of polar forms and B-patches 
considered in [8], for a general s-dimensional setting. In order to do so, we 
start with the concept of a simplicial algorithm that evaluates a polynomial 
from given control points through successive affine combinations (see Figure 
2.1). Let X = {xl"fl i 1 < I < k O < i < ? , A E Zs++'} c Rs be any 
collection of points such that for any 1 < I < k and any ,B = (,Bo, ... , fls) E 
Fkl {fl E zs++l I,Bl = ,8o + . + /3s = k- l} the (ordered) subsets 

(2.1) Xl":= {xlj :j -,... I,s} 

are affinely independent. If we define for any ordered set W = {w?, ... , Ws} 
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c2 

(C'(i,l,O) C((,2,D) 

FIGURE 2.1. A simplicial algorithm for surfaces (s = 2) 

of affinely independent points in Rs 

(2.2) d(W) = det(lo 0s) 

and 

(2.3) dj(Wlx)=detQjo iii J wJ+S 

the barycentric coordinates of x with respect to the set X1-I are given by 
(2.4) Zl,fl,j(x) = dj(X' 3 lx)ld(X' A ), 
i.e., 

S 

X = ZA l,l ,j(x) * x' ' 

j=0 

and 

E Al j(X)j = 1. 
j=0 

Also observe the simple fact that Aj,)8fj(xl 13lm) = '5,m, i, m = O, 1, ... s, 
which we will make use of later. 

Let e' = (j,j)js=O, j = 0, 1, ..., s, denote the coordinate vectors. Given 
the sets X1-O above, a simplicial algorithm is a recursive algorithm of the form 

(2.5) C?(x) := cf, lE Fk, 

and 
S 

(2.6) C (x) := #2 Al' j (x) C'lei (x), E Fk-1 
j=0 
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that computes a polynomial C(.5 o)(x) of degree k from given control points 
c1, ,8 E Ik. Every simplicial algorithm has an associated multiaffine version 
defined as follows: given any xi, ... , xk E Rs, set 

(2.7) co( ) :=c, lE Fk, 

and 
s 

(2.8) C,(' W , xl) E=,1A 1)(XI)Cg+ (XI, xl 1), Erk. 

j=O 

The maps cl (x1, ..., xl) are affine in every component and satisfy 

c (x, ..,x) = C (x). 

Of particular interest are symmetric simplicial algorithms: A simplicial algo- 
rithm is symmetric if and only if the maps c(x, ...I , xl) that appear in the 
multiaffine version of the algorithm are symmetric for all control points cfl, 

E Ik . In this situation, cl (x1, ..., xl) is the polar form or blossom of the 

polynomial Ck(x). Recall that the polar form p of a polynomial P of total 
degree k on Rs is the unique symmetric k-affine function p(x1, ..., xk) de- 
fined for xi, ... Ixk E Rs such that p(x, ... Ix) = P(x), x E Rs. Examples 
of symmetric simplicial algorithms are the de Casteljau and de Boor algorithms 
for curves and surfaces (cf. [6, 7, 8]). The following proposition characterizes 
the form of these algorithms. 

Proposition 2.1. A simplicial algorithm is symmetric if and only if the points 
xi "1", j = 0, 1, ... , s, of the set X1-A only depend on /3j and not on 1 and 
flo, ,.. I flj-,, fljy+, ...,I fis, that is, 

(2.9) xl11fflj=yj 1s, 

for some set Y = {yj,": 0 < j< s, O < I < k}. 
Proof. Induction over I shows that the maps cl (xI, ... , xl) are symmetric if 
and only if 

(2.10) cl(x , x1-2, y, z) = cl(x , ... , xl-2, z, y) 

holds for all y, z E Rs. Indeed, if (2.10) is valid for all 1 > 2, and for some 
r > 2 the functions c-1(x1, ..., Xr-l), f, E Fkr+l, are symmetric, then 

cr(x ..., xr) is symmetric by (2.8) and (2.10). 
A repeated application of (2.8) yields the equation 

C1 (Xi1 Xl-2 y, Z) 

(2.11) ... , 

= Ziif,iziil,le,()7e +eJ (XI 
i=O j=o 

This identity is valid for all xl, ..., xl-2 E Rs and all control points cf, 
E Ik . Referring back to (2.8), we may use induction on I to verify that 

I (XI l+e+ J F ?I< ,1ll),fi 
(2.12) lcAx ,.., 

=Cfl+e1i + ...+eJlS . E Ik-1, ? _< ii _< S, i= * 
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where flW:f,and for 2 < m < 1, l (m) := fl + ei + + el-m+2 . Thus, 
if we fix a choice of ,8 and il, ... il-2, it is clear that the symmetric matrix 
(c +eJl_2)}i )= is completely arbitrary. Thus we can assert that the 
symmetry relations (2.10) are equivalent to the system of equations 

(2.13) Z1,,O,i(Z),Z1-1, ,8+eZ,,j(Y)+ 1, jZi-,B-e,(Y 

= Zl, x@, i (Y)Zl- 1, XB+e,, ,(z) + Zl, ,8, i (Y)A1- 1, ,8+eJ, i (Z) 

valid for all I=1,...,k, i,j=0,...,s, fle k l, and y,ze Rs. 
Let us assume now that the algorithm is in fact symmetric, i.e., that the 

system (2.13) holds. We first show that this implies 

(2.14) Al Al i(xl-,fl+eJ h) = o for h {i, j}. 

We will distinguish two cases. 

Case 1: i = j. For i = j, equation (2.13) simplifies to 

21,,S,i(Z2I1, ,8+e,, i (Y) = i1 /3 (Y)Zl- 1, 9S+e,, i (Z) 

and setting y = xl-l,fl+e,i and z = xl- ,I3+e , we obtain 

Zl-1,fl+e,,i(Y) = I and Zl 1,fl+e, i(Z) = , 

and hence 

(2.15) Al A i(x -1,f+e',') = 0. 

Case 2: i 5 j. Setting y = xl-,fl+e ,j and z xi- h,fl+ej,h in (2.13), we get 

Zl- 1,f3+e,, j(Y) = 1 and Rl- 1,fl+eJ, i(Z) = 0, 

and by Case 1 we also have 

Al "O, (Z) = Al ,fJ,i(Y) = 0. 

Hence, equation (2.13) yields 

Al A8' i (X 
1- 

l+ey = 
h 0 

which proves (2.14). 
Now, fix h t j. From (2.14) and the fact that the barycentric coordinates 

for a given 1, ,B sum to one, we infer )fi (xl-l fl+eJ h) = ih . This, in turn, 
implies that 

1- 1,8 ,+ej, h = X1, A, h for all h :t j . 

To finish the proof, we observe that a repeated application of the above identity 
gives 

Xk-flh , flhehh k-X1h-1, fihe +fJlJeJI+---+f,JJmeJm ,h 

whenever h 0 {il, . j. , im }. Consequently, 

Xk-flh,flhe,h xk-flI,fl,h 1,fl,h 

Setting yjI := Xk-l, le' ,j proves the assertion. 
Conversely, let us now assume that the point xl A j only depends on i and 

/j3, i.e., 
Xl,83,i = yi Jj'. 
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Then each pair (y, z) := (yifl, yIflj) satisfies (2.13). To see this, we set 

Gi jrh = 1,/, i(yr,' ,Or ),1_ I,+el, j (y ,lflh) 

and observe that Gijrh = 'ir'5jh if r t h. Hence (2.13) is satisfied for r t h 
and also trivially for r = h. Since the points y i/ , i = 0, ... , s, are affinely 
independent, this carries over to arbitrary y, z E Rs, and thus the proof of 
Proposition 2.1 is complete. O 

Proposition 2.1 has some important consequences. First of all, it shows that 
a symmetric simplicial algorithm is defined only by a collection X = {xi ,1: O < 
i < s, 0 < j < k} C Rs of points such that for any ,BE , ,O? < < k the 
subsets 

(2.16) X= j :j =0,...,Si 

are affinely independent. For a symmetric simplicial algorithm the recursion 
(2.5), (2.6) then simplifies to 

(2.17) C?(x) =cf, f E k, 

and 
S 

(2.18) Clx Ajx);e() E Fkl 

j=O 

where 

(2.19) )lp,j(x) = dj(XOl x)/d(XO) 
are the barycentric coordinates of x with respect to Xfl. 

The dual algorithm to (2.17), (2.18) is given by 

(2.20) B(o,...O )(x) = 1 x E Rs, 

and 
S 

(2.21) Bf (x) = ZE -eJ, j (X)Bfl-eJ(x)- e /X > 0, 
j=O 

so that for any 0 < 1 < k, 

(2.22) C(o 0)(x)= E BO (x)C' (x). 

The real-valued functions Bfl (x) are called normalized B-weights. Here we use 
the convention that the functions A8 (x) and Bfl (x) are set to zero whenever ,B 
has a negative component. As a consequence, the nonzero summands appearing 
on the right-hand side of (2.21) have a corresponding multi-index ,B - e1 whose 
components are strictly less than k . Thus the normalized B-weights Bfl (x) are 
for all ,B E Fk actually independent of the points xi k, i = 0, ... , s. These 
points xi'k will only become relevant later when we relate B-patches to B- 
splines. 

Following the development in [8] for the bivariate case, we conclude that 
Proposition 2.1 implies that the normalized B-weights Bfl(x), ,B E Fk, are 
linearly independent. Specifically, if CkO 0)(x) = 0, x E Rs, then its polar 
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form is also zero, ck. )(x1, ... , xk') = 0, x , xk E Rs. Therefore, from 

(2.8) we get by induction on k - I that c(l, .(.., xl) = , xI,.., xi E Rs, 
,B E Fk1, and, in particular, cf = 0 for all ,B E Fk. Since the cardinality 
of Fk agrees with the dimension (k+s) of the space 71k(Rs) of all polynomi- 
als of degree at most k on Rs, every polynomial P E Ilk (Rs) has a unique 
representation 

(2.23) P(x)= E caB(x). 
aEFk 

Moreover, the control points ca, a E Fk, in this representation are given by 

(2.24) ca = p(x?I ... x0 ?1, I , XS ?, ... I, xSas), 

where p denotes the polar form of P. 
Next, let us recall that for any set of points vo, ...n, E Rs the B-spline 

M(x v0 , ... , v n) is defined by requiring that 

/ f(X)M(xjv, I vn) dx 
(2.25) RS 

= (n -s)!j f(zov0+ + . n+vn)d1l *.dzn 
n 

holds for every f E C(Rs), where 

r ~~~~~n 
A\n = (To*, 'cn) : E -i = 1, -ri > 0, i = 0, ..,n 

t ~~~~i=o) 

denotes the standard n-simplex. M(. v, ...v , vn) is known to be a piecewise 
polynomial of degree n - s, supported on the convex hull [v0, ... , v n] of its 
knots vi whenever this convex hull has nonvanishing s-dimensional volume. 
For more detailed information on the properties of the multivariate B-spline, 
the reader is referred to [2, 3, 4, 5]. Here we note that for the above normal- 
ization one has 

(2.26) M(xIv, I Vs) = X[vo ... VS](x)/ det (;o I )| 

and for V {v?, vn}, n>s 

(2.27) M(xIV) = E dj(WjpIx)M(xIV\{viJ}) 

where W - {v'o, ..., v'S} is any subset of affinely independent points in V 
[5]. 

Now let us assume throughout the following that the set 

(2.28) mk:=int (n)x3] 
. flI<k 

satisfies 

(2.29) volS (Qk) > 0. 
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x x2, 

011' X192 
xo'2~~~~Q 

x FG,2 xUTh t 

FIGURE 2.2. The set 02 

In order to show that each B-weight agrees with some B-spline on the region 
Ok, we will make use of the following simple facts. 

Lemma 2.1. If (2.29) holds, then there exist a e {-l, I} such that 

(2.30) ag := sgnd(Xf) = a for all fl e Fl, 0 < I < k. 
Proof. Suppose for some fi e Fk and some i, 0 < i < s, we have fli > 0. By 
(2.29), [Xf] n [Xfle,l contains some neighborhood in Rs. Hence, the vertices 
xi At and xif -1 are both located on the same side relative to the hyperplane 
spanned by the vertices xi AJ, j = 0, 1, ..., i- 1, i+ 1, ..., s. Therefore, 
ug = U/pe, Applying this fact repeatedly to each positive coordinate of fi 
implies fi = 0, which finishes the proof of Lemma 2.1. El 

Defining for fl E Fl, l < k, the sets Vf := {xii: j = O, ..., fli, i= 
0, ... Is}, we have Vg-ej = Vf\{xj'fJ} whenever ,sj > 0. Thus, it will be 
consistent to use the convention that VfleJ does not contain any knot from the 
group xj1l, 1=0,..., k, when /3i =0. 

Lemma 2.2. Suppose that for some fi E Fk we have ,sj = 0. If (2.29) holds, 
then Ok n [ V,-eJ 0 

Proof. Define 

W:= [fxj,l: 1 = 0 ... , k, j = 0, ..., s, jSI4 i}] 

as well as 
Ci :=[{xi'm: m =0,..., k}], i= 0, ..., s. 

We will show first that 

(2.31) C1nW1=0, i=0, .. ,s. 
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To see this, observe first that y E Wi implies that there exists a hyperplane H 
containing y such that 

(2.32) H n Cj :?0 for jl ?i. 

Without loss of generality, let i = 0 and suppose that 
k 

(2.33) y E ?,XO"I Ez Wo n Co 
n=O 

for some q > O, Ek =1 . This implies the existence of nonnegative reals 

Hi, n such that 
s k s k 

Y Ev Eji, nxj nI E E jui n =1 
j=1 n=O j=l n=O 

Thus, defining 
k 

(2.34) j -:Zij,n 
n=O 

and 
yj f (EkoPij,nxj n)/j if XJ : 0, 

Xj1 nj if X1 = 0, 

for some n1 < k we clearly have yJ E Cj and 

s s 

y, eH:= {xI=?Ivy:?Iv= l E, j= l, . . ., s, 

j=1 j=1 

confirming (2.32). Next, we will show that one can find a hyperplane H con- 
taining y and satisfying (2.32) sO that, in particular, 

(2.35) Y; = Xj,n n j = I , *. - S, j :A 1 

for some / ez{1, ..., s} and some nj < k. Let K := {Ij :1I < j < s 
yi = xi, n' } . If #K = s - 1 , we are finished. So assume that H does not satisfy 
(2.35) yet. In fact, K could be empty initially. So let p, q ? K and pick 
some point Xp, r in the pth group of knots which minimizes the distance from 
H. Let z e H n Cp be the closest point to XP,r, and denote for t e [0, 1] 
the hyperplane passing through y, y1, I = 1, ... , s, 1 : p, q, and through 
YP (t) := tZ + (1 - t)Xp ,r by H(t) . Clearly, by construction, H( 1) still intersects 
all the sets CJ, j = 1 ... , s, j :A q. If H(l) also still intersects Cq, we 
replace H by H( 1), where the cardinality of the corresponding new set K has 
increased by at least one. If H(1) does not intersect Cq anymore, there must 
exist some to E (0, 1) such that H(to) is a supporting hyperplane of Cq , and 
hence must contain some extreme point Xq,nq of Cq. Thus, replacing H by 
H(to) in this case, we have again increased K. We may repeat this process 
until #K = s - 1, which is (2.35). So we may assume that H satisfies (2.35). 
We consider now two cases: Suppose first that the point y E Co already agrees 
with some point xO,m. Note that, by (2.16), H does then not contain any 
of the points xl m. Thus, H must intersect the interior of Cl, which means 
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that there exist two points xl ml , Xl, m2 located on different sides relative to 
H. But by (2.16), the two simplices [{xO m, XlM , xi J : i = 1, ..., s, 
j : 1}], i = 1, 2, must both contain ik . However, since by construction, their 
respective interiors are separated by H, we arrive at a contradiction. If y does 
not agree with any knot in the set {x? 0, x?0 1, ... , xOk}, we argue similarly 
as above and pick a point xO, m which minimizes the distance to H. Let again 
z e H n CO be closest to xO m, and define for t e [0, 1] the hyperplanes 
spanned by the points y(t) := tz + (1 - t)xO m, xi'b, ij = 1, . .., s, Ij : 1 . If 
H( 1) still intersects Cl, we replace H by H( 1), obtaining a contradiction by 
the first case. Otherwise, there must be a to e (0, 1) such that H(to) contains 
some extreme point xI'n from Cl. Interchanging the roles of 0 and 1, we 
are again in the situation described by the first case and obtain a contradiction. 
This proves (2.31). 

By (2.31), for any j e {0, .E. , s} , there exist exactly two common supporting 
hyperplanes H,, H2 of the sets Ci, i :$ j, which 'sandwich' the set W1. 
Suppose they are spanned by the sets Y: {xi'nl: i :& j}, Y2 := {xi,m, 
i :& j}, respectively. Fixing xi'm, we claim that one of the hyperplanes must 
separate xi,m from Wj. If this were not the case, the two simplices 3i: 

[{xJm} UY1] and (2 := [{xJm}IUY2] are by (2.16) nondegenerate and intersect 
only in xJ, m, contradicting (2.29). So we may assume that H, separates xj,m 
from Wj. Since [Vf_eJ] C Wj whenever /3i = 0, and since (51 contains Qk, 

the proof of Lemma 2.2 is complete. El 

We are now ready to state the main result of this section. 

Theorem 2.1. Suppose (2.29) holds. Then 

Bfl(x) = ag d(Xfl)M(xl Vf) for all x E Qk, fi Ez ek, 

where Vg = {xi i : j = O, ... , ,Bi, i = O, ... , s}. 
Proof. We will proceed by induction on k. Since Qo = [Xo], the assertion for 
k = 0 readily follows from (2.20) and (2.26). 

Suppose it holds for k - 1 . By Lemma 2.2 we know that the interiors of the 
sets [ Vg-ej ] and Qk are disjoint whenever flj = 0. Consequently, M(x I VfleJ) 
vanishes for x E Qk, and, by convention, so does Bfle,j(x) (in fact for all 
x E Rs). Thus, we may rewrite the right-hand side of (2.21) for any fi E Fk 
and x E Qk as 

(2.36) Bfl(x) = d Xdj(XjpejX) -o_e,d(X,_ei)M(x1V,_e,) 

j-o 
flJ >0 

But since dj(Xfle,1x) = dj(Xflx) whenever flj > 0, the right-hand side of 
(2.36) reduces, in view of (2.30), for x E Qk to 

s 

g d (Xg) fl, j (x)M(xI Vf\{xfli }) = vgd (Xg)M(xI Vg) 
j=o 

where we have used (2.27) in the last step. This completes the proof of Theorem 
2.1. E1 
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Setting cf = 1 in (2.23) readily gives, in view of (2.18) and (2.22), 

1 = BE B(x) 
p3ErI'k 

and hence, by Theorem 2. 1, 

E Zad(Xg)M(xjVg) = 1, X e Qk 
#Er'k 

This suggests introducing the following normalized B-splines: 

(2.37) Ng (x) := agd (XO)M(xjlVA ), fl ez rk, 

which therefore form a partition of unity on ik . Also, the linear independence 
of the polynomials Bfl, fi e [k , readily assures the following fact. 

Corollary 2.1. The B-splines Ng, fi e F,k, are locally linearly independent on 
every subdomain of Qk - 

3. A POLYNOMIAL IDENTITY FOR B-SPLINES 

The previous discussion suggests the following scheme for constructing lin- 
ear combinations of B-splines on all of RS (or on some bounded domain in 
Rs). Given points X = {xi'i, i e Z, j = 0,..., k}, let T = {A(I) = 

[xio ?, ..., x iS] 0I = (io, ..., is) E S c Zs+l} define a triangulation of Rs . 
This means that Rs = UIE- A(I), while for any two I, J e S', A(I) n A(J) 
is empty or is a common face of A(I) and A(J). In particular, any (s - 1)- 
dimensional facet of some A(I) E T is the common face of exactly two sim- 
plices A(I) and A(J), say. We will adhere to the notation of the previous 
section, indicating the reference to a particular simplex A(I) throughout by an 
additional sub- or superscript I. For instance, VJI: {xi' :=0, 1, .. ., /3j, 
j = 0, 1, ..., s} is the set that determines the (normalized) B-splines N (x), 
fi e [k , associated with the simplex A(I), I E ST. 

Note that the polar form of the polynomial (a + w0. x)k with respect to the 
set V = {xij : l = 0..., flj, j = 0,., s} is given by 

s fl-l 

(3.1) PI,fl(a,))=fl fl(a+c). x'ij,), 
j=0 1=0 

where, in agreement with our previous convention on the set VfleJ when /3i = 

0, it is to be understood that the factor Hl=1 l (a+w) * xi,, l) is interpreted as one. 
Hence, we readily conclude from Theorem 2.1 and the properties of B-patches 
derived earlier that the identity 

(3.2) (a + 0. X)k = T,fl(a, w)N,(x) 

holds for all x E QI, k, where we will assume throughout the following that 

It is also clear that every element 

S(x)= Z 5 cIfl Nj(x) 
IE9f fpeIk 
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of the space 
59'k (X) := span{Ni: ,eFk, I E } 

on QI k reduces to EErfEk cIJJN I(x). This suggests the following claim. 

Proposition 3.1. Suppose (3.3) holds. Then for any a e R and x, co e RS we 
have 

(3.4) (a+0).x)k S Z PI,fl(a, o)N,(x). 
~~~ f3J'k ~ ~ l() 

Under the assumption (3.3) it is also clear, in view of Theorem 2.1, that 
any element of 9k(X) can be evaluated efficiently by means of the recursive 
scheme (2.17) and (2.18) on any of the regions QI, k . The proof of Proposition 
3.1 is based on studying to what extent this recursive evaluation persists for 
x outside the regions QI,k . The essential observation may be formulated as 
follows. 

Lemma 3.1. Suppose the sequence {c,fl IIE'- /Erk has thefollowingproperty. For 
any two adjacent simplices A(I) and A(J) E T whose common face is 

1.0o? JiM-I ,O Xlm+1 0 0is, 

(3.5) = [Xbo?, . X XJq-2 ?, xjq , xis soi, 

and for any fi, y e Fk such that 

yi = ,Bj, j = ,.. m - I1, j =q, ..,s, 

(3.6) Yq-1 = fm = 0, 

Yj = lSy+, j = m, ... ,q -2, 

one has 

(3.7) cI,fl = CJ,y. 

Then 

(3.8) cI, fl N(x)= c(1)(x)N, 
IE9 fpErk IEf fpEFklI 

where 
S 

(3.9) ct ()g (x) : = () +e 
j=0 

Proof. By (2.37) and (2.27) we obtain 
s 

ZcI,/Nfl,(x)= S Z aI,fld(Xf)cIf,if l(x)M(x VfI'eJ) 
fpEFk ;=o fprFk 

= i(z , + )cI, fl I, fl d (X )i (x)M(xI VfIe) 
J=0 fJErk fJErk 

/J >0 f)J=O 

- S (EaUI,ii+eJd(XI+eJ)cI,ii+eJkI+eJ,j(x))N(xIVfl) 
lEr'k-I i=o 

s 

+ 5RI,j(x). 
J=0 
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Here, R, j(x) is defined to be 

R,~~~~~~ j():fl, a d,)Afl j(x)M(x lVp-ei) 
,tREr'k 
flE=k f3J=o 

Noting that by (3.3) and Lemma 2.1, Ufl+ej = ' f Ez -Fk -I, we obtain 
s 

I, fl+ej d (X)+ej)CI, fl+eij I+ej j(x) 
j=o 

s dj(X'i x 
- aI : ZCI, fJ+ejd(XIj+ej) d(XI 

j=O le 
s s 

- CI, # E CI, f+ei dj(XI+ej IX) = CI, f I CI, f+ei dj(Xp Ix) 
j=O j=O 

S 

-,, Ifld(X)CI, fl+efl j(X), 
j=o 

which, in view of (2.37), proves that 

S 

(3.10) cj cs pNp() c(l ) (x)NI (x) +ERi (x 
fErJk fErk-I j=O 

Hence, to finish the proof of Lemma 3.1, we have to show that, under the 
assumption (3.7), (3.6), 

/s\ 

(3.11) Z ( RI,j(x) =0. 

To this end, note that for 0 < m < s the term RI m(x) consists of summands 
of the form 

CI, /3 a,, jjdm (XI Ix)M(xI VI'em-) 

for some fi F [), where fm = 0. Hence, there exists exactly one adjacent 
simplex A(J) in T such that the common face of A(I) and A(J) does neither 
contain xim, nor XJq-1"0 E A(J). Thus, for this f E Fk , with fim = 0, 
we choose y z Fk as defined by (3.6). Then the sum Rj,q I(x) contains the 
summand 

Cj,yaJ,ydq-l(XjJX)M(XlJ//qiJ). 

Since VyJ eq I= VI'm, we have M(xx I7em) and also the = 3-m an A(-eq/1\ = MXIV m,adas h 

determinants dq I(XYJ x) and dm (Xi Jx) have the same absolute value, since 
the sets XyJ\{XIjq- ?} and Xp\{xim ?} are identical. These functions are zero 
only on the hyperplane H spanned by the set XI\ {Xm 0}. Moreover, we 
observe next that 

(3.12) aj,ydq_i(Xjlx) = -I,fldm(XXI). 
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In fact, it follows from Lemma 2.2 that xim 0 and xjq- ?0 are separated by the 
hyperplane H defined above. Hence, 

_Uj,ydq-1(i(IXji. Io) (3q13) ~~y, q-( ) j Jy d (XJ) 

On the other hand, since fm = 0, one has 

_ UI,fldm(XIjXim'O) 
(3.14) 1 =lAAm - f d (XI) 

Since the denominators in (3.13) and (3.14) are both positive, (3.12) must hold. 
Thus, (3.11) follows by (3.7), cj. = cIf , thereby completing the proof of 

Lemma 3.1. El 

We are now in a position to complete the proof of Proposition 3.1. By virtue 
of (2.26), (2.37), and Theorem 2.1, the assertion holds trivially for k = 0. 
Suppose it has been verified for k - 1 . Note that for any I, J e S such that 
A(I) and A(J) share an (s - 1)-face, and for any fi, y e Fk, related by (3.6), 
the coefficients cI, := TI,fl(a, co) and Cj,y := Tj,y(a, w), in view of (3.1) 
and by our above convention, are both composed of the same factors involv- 
ing only knots from the groups corresponding to I n J. Hence, Tj, y(a, o) 
and TP,,l(a, co) coincide under the assumption (3.6) and thus satisfy (3.7). 
Moreover, for any fi ek-l 

s 

ZB(x) TI, fl+eJ (a, co) = (a + .x)TI, fl(a, co), 
j=0 

so that (3.4) is an immediate consequence of Lemma 3.1. 
Since any polynomial of degree at most k can be written as a linear combi- 

nation of polynomials of the form (a + C) * X)k for appropriate choices of a E R 
and c) E Rs, Proposition 3.1 leads us to the main result of this section: 

Theorem 3.1. Let P be any polynomial of degree k, and let p denote its polar 
form. Then the following identity holds for all x E Rs: 

(3.15) P(x) = E p(xio , . . . ,X' 1 Xi'0 , . xisfl sl)NA(x) 

,EJ fpErk 

4. APPROXIMATION PROPERTIES 

In this section we derive further consequences of Proposition 3.1. Specifi- 
cally, we will provide approximation properties of the spaces '5k (X) and also 
prove the stability of the B-spline bases constructed above. 

Setting c) = 0, a = 1 in (3.4) gives 

1=Z N (x), xERs, 
IE,9 plerk 

i.e., the B-splines form a partition of unity. More generally, differentiating both 
sides of (3.4) with respect to co, evaluating at co = 0, and putting a = 1 yields 
for everya ce Zs+, aI < k, 

(4.1) k. (k - al + l)xa = E E (Dc'T1,f(I, w)0Z=o)N (x), 
IE,9f fEI k 
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which also confirms that 

(4.2) nlk (Rs ) C _9k' (X). 

Next, we will discuss a multivariate version of the Schoenberg operator. For 
any affine function L E Hl (RS), its polar form (as a polynomial of degree k) 
is (X1,.. .,xk) := L( k(xl + + xk)), and so, specializing Theorem 3.1 to 
affine functions, yields 

(4.3) L (X) = L(4 )N(X, x Ez Rs 
,EJ fJEIk 

where 

(4.4) = E E xiJ m) , Fk. 

j=O m=O 

Consequently, a standard argument implies that the operator 

(Sf)(x) := E E f (4,, )Np (x) 
IE,9f 1EJk 

realizes for any compact set Q estimates of type 

IlSf - f (loo () < Ch2 max IDa'f 11oH(QT), 
ja1=2 

where h := maxE- diamA(I) and QT := U{[X]: f E Fk , A(I) n Q : 03}. 

The usual way of obtaining better approximation rates is to construct opera- 
tors that reproduce higher-order polynomials. We briefly sketch this procedure 
in our case by again exploiting the identity (3.4). 

Expanding 

T , fl(a 
- c 

o Ti -r, )l 
= o a -)al I X 

jal<k 

where T, # is some fixed point in QI k, we define the functional u,t /3 on 
Ck (QI, k) by 

(4.5)8,pf) := c (k 
- 

I'l)! Dlf (-, fl 
jal <k 

and observe that 

It,fJ((a + w.e))= S CcI'fl(a + *TIf-, l)k- Ia1c=PI, fl (a, ). 
jal <k 

Hence, the operator 

(Qf)(x) 5 j, (f )5N( 
IE9f fJEIk 

reproduces all polynomials in Ik(Rs). 
Moreover, since for I : J, by Lemma 2.2 and (2.31), supp(NJ) n = 0 

and uIt,f is supported in QI k, so that III,fl(NJ) = 0, J : I, fl, Y E k, 
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and since by Corollary 2.1 the B-splines NI , fi e [k, are linearly independent 
over QI, k, one readily concludes 

(4.6) ,uj, fl (NJ) = bJIjJfl7 I, B k 

i.e., the uI, ql establish a dual basis for 5k (X) . 
The main step needed to characterize the approximation properties of the 

spaces 5'k (X) and to confirm the stability of the B-spline basis {NI i ek 
I E J} is to bound the dual functionals ,uI, p (4.5). This can be done by follow- 
ing well-established lines. However, the normalization (2.37) of the B-splines 
arising in the present setting provides us with two results, one on approxima- 
tion and the other on stability, which are valid under less restrictive assumptions 
than for the corresponding B-spline spaces of [3, 4]. For the convenience of 
the reader, we sketch the main steps leading to these facts. 

To this end, let DI, denote the smallest ball containing the knot set VI 
Define, as usual, the norm 

lHf H(P) = ess sup,E f (x) I, p =c 
(ff If (x) P dx)I/P 1 <p < 00, 

and Lp(Q), the corresponding space of functions f over Q with Ilf Ijp(Q) < 
00. 

Lemma 4.1. There exists a constant c depending only on s and k such that 

(4.7) Iy,uf,(P)I < cvols(DI,f)-'1PIIPIIp(DI,fl) 
for all P E k(RS), fl e Fk, and I E J. 

To prove (4.7), one observes first that 

j! E )a 
da = (d) ,fl(a-w.TI,f W)la=0 

lal=k-j 

fJ tCo (x'r'l -TI,fl), where the number of summands depends on s, k, and j, and each summand is 
a product of k - j factors co. (xir, I 

- s, ) . Therefore, it follows immediately 
that 

(4.8) 1Ca AI < ChIal 

where hifl := max{llTI3, - xirlll: r = 0, ..., s, 0 < / < flr} and the con- 
stant C depends only on s and k. Using the equivalence of norms on finite- 
dimensional spaces, standard scaling arguments, and Markov's inequality, one 
obtains that 

(4.9) IIDaPIIK(DI,fi) < CpH1aI-s/PHIPIIp(DI,f) 
for all P E I71k (Rs), where p diam DI, and the constant C depends only 
on s and k. Since hj, fi< p (4.8) and (4.9) yield 

bI,fI(P)I < E ic"fi (k - H)!lDcP(,,#) 
jal=k 

< Cp-s1P/IPIIP(DI,A), 

confirming (4.7). 
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By the Hahn-Banach Theorem, ,uIq has a norm-preserving extension to all 
of Lp (Q), which we also denote by uI, . Thus, the operator Q defined above 
is a projector from Lp(RS) onto 9k(X) for 1 < p < oo . 

One expects that the approximation properties of Q depend on how far the 
knots x'J lI are allowed to deviate from A(I). To describe this in detail, let 

Y:(I) J zY Dj,fi nA(I) : o for some fi z Fk} 

and 

U(I):= U{DJ, inA(I)A0, JEY, flEFk}. 

Of course, keeping the elements of VJ sufficiently close to A(I) would assure 
that J E Y(I) corresponds to an adjacent simplex A(J) for which J n I : 0. 

In general, we will assume 

(4.10) N := sup #Y(I) < oc, 

where #,F(I) denotes the cardinality of S(I). 
We are now in a position to prove the following result. 

Theorem 4.1. Suppose (2.29) holds. For any f e Lp(RS) one has 

(4.11) lf- Qf Ilp(A(I)) < C inf Ilf - Pllp(U(I)), 
PErlk(RS) 

where for p = oo the constant C depends only on s and k. For 1 < p < 00, 

it also depends on N given by (4.10), which is assumed to be finite. 

Using standard estimates for local polynomial approximation, one derives 
from (4.11) estimates in terms of moduli of continuity or Sobolev semi- 
norms, confirming optimal (local or global) convergence rates 6(hk), h = 
max{diam A(I) : I e 7}, whenever the kth-order derivatives of f are bounded 
in Lp(Rs). 

To prove (4.1 1), one may use the estimate [1] 

(4.12) IIM( IVII)IP < Cvols([VJ])- 1+1/p 

where C depends only on s and k. 
Hence, by (2.37), one concludes 

JINIIlp < Cvols([V,])'IPS 

giving 

HlQf llp(A(I)) ? ziz buJ(f) p N/JIP 
(4.13) JE?f(I) l1ll=k 

< Clif IIP(U(I)), 

where now C depends also on N when p < o0. Since Q reproduces all 
polynomials in FIk(Rs), we may apply the local boundedness of Q (4.13) to 

lif - Qf l(A(I)) < lif - Pli(A(I)) + IIQ(f- P- P(AM) 

which yields (4.1 1). 
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The second important application of Lemma 4.1 is concerned with the sta- 
bility of the B-spline basis. To this end, one needs first an appropriate Lp- 
normalization of the B-splines, namely 

(4.14) NJ l(X) (X )I-'IPN( 

sothat NI 4 x(X)=NI (x) and N[l (x)=M(xIVI). 
Defining for c =c, p }scg, pErk 

/ 1 /p 

IlclIlp :=I cI,flplP 
\IE?S/ fIEk / 

one obtains the following result. 

Theorem 4.2. Suppose (3.3) holds. Then for any sequence c =c,,,}IE,7Erk 

the estimate 

yllclllp '< E cI,flNI < clp 
IEY flEIk p 

holds for some constant y which for p = oc depends only on s and k, and in 
addition on N, see (4. 10), when 1 < p <coo. 

Proof. Let 1 + 1 = 1. Then (4.14) yields q 

p 

I~~?f f3J' 
P, f 

IE,9 #EIk p 

-JIRS ( E cc,flld(XJ)KI1/PNI(x)IPNI (x)1/) dx 

Z cJ,~~flr dj lvNj f") 
<A ( E ~~jI,fljPjd(XfI)j-'NhI(x.)) N,() dx. 

RsIE,9 flErk IE,9 flErk 

Since the Ni form a partition of unity, the right-hand side reduces to 

(4.15) l E cI,#IPld(XPI)- j NI(x)dx = llclllp, 
IEf fErk s 

where we have used again the fact that fRS M(x V) dx = 1 and the normaliza- 
tion (2.37). 

Conversely, given S(x) = IE N cj, p Nfi . (x), one has 

luI,fl(S)l = c cJ, Id(XJ)|I'IPy ,fl(N ) 
JE7 PEErk 

= lcj/l ld(X,)1-/Ip. 

Since, on the other hand, Lemma 4.1 says that 

jy,() Cvos Dx,#)1 1P XSljp(DcX,#)n 



B-SPLINE BASES BUILT BETTER BY B-PATCHES 115 

we obtain 

(4.16) cIfJ -? C (vI1id(X ;)) JJSJJ(DI,f,). 

In view of (4.15), the assertion follows now from (4.16). EC 
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