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CLOTHOID SPLINE TRANSITION SPIRALS 

D. S. MEEK AND D. J. WALTON 

ABSTRACT. Highway and railway designers use clothoid splines (planar G2 
curves consisting of straight line segments, circular arcs, and clothoid segments) 
as center lines in route location. This paper considers the problem of finding a 
clothoid spline transition spiral which joins two given points and matches given 
curvatures and unit tangents at the two points. Conditions are given for the ex- 
istence and uniqueness of the clothoid spline transition spirals, and algorithms 
for finding them are outlined. 

1. INTRODUCTION 

The Fresnel integrals [1, p. 300], 

C(t) = j cos 7r u2 du and S(t) = j sin 7iu2 du, 

are nonnegative functions of t, t > 0. The integrals of the Fresnel integrals, 

(la) Cl(t) = f C(u) du = tC(t) - sin -t2 
Jo ~~~~7r 2 

and 

(lb) SI(t) = ]S(u) du = tS(t) + -cos 2t - _ 

are nonnegative, strictly monotone increasing functions of t, t > 0. A recent 
paper [7] gives convenient rational approximations to the Fresnel integrals. With 
the above formulae, those approximations also give convenient approximations 
to the integrals of the Fresnel integrals. 

The clothoid is a spiral which can be defined in terms of Fresnel integrals as 

(2) rB C(t)) 

where the scaling factor 7rB is positive and the parameter t is nonnegative. 
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FIGURE 1. Part of a clothoid 

The clothoid (2) is in the first quadrant, starts at the origin with t = 0, and 
approaches the limiting point (fB, IB) as t approaches infinity (see Figure 
1). Some useful formulae for the clothoid follow: the angle that the tangent 
forms with the X-axis is , t2, the curvature is B, an element of arc length is 
ds = 7rB d t, and the center of the circle of curvature is 

7rB ( 
C(t) 

t kS,(t)+ J 

A planar G2 curve (a curve which is twice continuously differentiable with 
respect to arc length [4, p. 151]) consisting of clothoid segments, circular arcs, 
and straight line segments is called a clothoid spline, as circles and straight lines 
can be considered limiting forms of clothoids. Clothoid splines are used in the 
route design of the center lines of highways and railways [2]. Route designers 
think of the clothoid segments in clothoid splines as transitional curves between 
straight lines and circular arcs, and between circular arcs of different radii. 
Clothoid splines have been studied recently in [ 10, 11, 12]. A clothoid spline is 
expressed parametrically, and has the attractive feature that the arc length and 
curvature are continuous piecewise linear functions of the parameter. 

Algorithms for finding clothoid segments to join given circles and straight 
lines, and produce a G2 curve, have been described in [9, 13]. The result is a 
clothoid spline, but it is not possible to specify the points on the given circles or 
straight lines where the clothoid segment starts or ends. Algorithms for joining 
a point on a circle or straight line and another point with a clothoid segment 
so that the circle or straight line and clothoid segment form a planar G2 curve 
have been described in [8]. However, in that paper, it is not possible to specify 
the curvature and the unit tangent at the second point beforehand. In this 
paper, a clothoid spline transition spiral is found to join two given points, and 
match curvatures and unit tangents at the two points. This is a type of Hermite 
interpolation, and will henceforth be called a Hermite matching. 
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2. TERMINOLOGY 

Much of the terminology required in the paper is established in this section. 
A tangent to a curve is considered to be a vector which points in the direction 
of increasing arc length. The curvature is positive (negative) if the center of 
curvature is on the left (right) when moving in a direction of increasing arc 
length. A spiral is a curve whose curvature is monotone increasing or monotone 
decreasing and does not change sign. 

The interpolation problem to be solved is to find a clothoid spline spiral which 
joins P to Q, and which has given unit tangents tp, tQ, and given curvatures 
Kp, KQ, at P and Q (Hermite matching). It may be assumed, without loss 
of generality, that the curvature of the clothoid spline spiral is nonnegative and 
nondecreasing. For an interpolation problem with Kp = KQ, the clothoid spline 
spiral would have constant curvature and would be a circular arc or straight line. 
It is easy to determine if it is possible to match the given data with a circular 
arc or straight line. Henceforth, assume that 0 < Kp < KQ. 

A standard form of the above interpolation problem is obtained by placing P 
at the origin, and aligning tp along the positive X-axis (see Figure 2). Assume 
that the tangent to the clothoid spline spiral rotates through an angle less than 
ir when traversing the curve from P to Q. This is not a severe restriction, and 
it is made to facilitate proofs of the lemmas below. Let the angle the tangent 
tQ forms with the X-axis be I W, 0 < W < 2. 

For some choices of Q, W, Kp, and KQ, there is no spiral of nonnegative, 
nondecreasing curvature joining the origin P to Q with a Hermite matching. 
For example, it is impossible to find such a spiral if Q is below the X-axis. 

Definition. Let the region F = F(P, W, Kp, KQ) be the set of points Q such 
that there exists a spiral of nonnegative, nondecreasing curvature which connects 
P to Q with a Hermite matching. 

With the point R defined as 

R= sine 
KQ 1 - cos -f W 

the following theorem describes the region F for Kp = 0 and for Kp > 0. 

Theorem 1. If Kp = 0, the region F is the interior of the wedge bounded by 
the ray from R making an angle of 4 W with the X-axis and the ray from R 

tQ 

Ag 2c w 

curvature KQ 

P tp 

curvature Kp 

FIGURE 2. The interpolation problem in standard form 
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* Q 

region F 

R 

PX 

FIGURE 3. The region F when Kp = 0 

region F 

R 

4w 
p f/ 

FIGURE 4. The region F when Kp > 0 

parallel to the X-axis (see Figure 3). If Kp > 0, the region F is the segment 
of the circle (3) which is to the right of the ray from R making an angle of 4 W 
with the X-axis (see Figure 4). 

Proof. The region F can be found using theorems in Guggenheimer [6]. Vogt's 
theorem [6, p. 49] states that the angle tQ makes with PQ is greater than the 
angle PQ makes with the X-axis. This means that Q must be to the right of 
the straight line through the origin which makes an angle I W with the X-axis. 

Kneser's theorem [6, p. 48] states that any circle of curvature of a spiral 
contains every smaller circle of curvature in its interior. For Kp = 0 and a 
spiral of nonnegative curvature, this can be interpreted to mean that the circle 
of curvature at Q must be entirely above the X-axis. Thus, the Y-component 
of Q must be greater than (1 - cos I W)/KQ. For Kp > 0, the condition that 
the circle of curvature at P must entirely enclose the circle of curvature at Q 
can be replaced by the condition that the distance between centers of those two 
circles of curvature is less than the positive difference of their radii. This leads 
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to the fact that Q must be in the following circle: 
w i *1 1 

(3) center: I I COsn W radius K K__ 
Kp KQ rais2K Q 

Guggenheimer [6, p. 52] shows that the conditions in Vogt's and Kneser's 
theorems are also sufficient conditions on Q that a spiral can be found to join 
P to Q, given W, Kp, KQ. 5 

The main mathematical result of this paper is that for any Q in F, there is 
a unique clothoid spline spiral (of type A or type B, cf. ??4 and 5, respectively) 
joining P to Q with a Hermite matching. This result will be proven in ?6. 

3. PARTITION OF THE REGION F 

The region F is partitioned into two subregions FA and FB by the two 
curves D(t) and E(t) (see (6a), (6b), (7), and (8)) because the type of clothoid 
spline spiral which will be used depends on where Q is in F. If Q is at S, 
the meeting point of D(t) and E(t), a single clothoid segment can be used to 
give a Hermite matching. If Q is on D(t), a clothoid spline spiral comprising 
a clothoid segment and a circular arc of angle I t can be used to give a Hermite 
matching. If Q is on E(t), a clothoid spline spiral comprising a line of length 
t or a circular arc of angle I t, and a clothoid segment can be used to give a 
Hermite matching. In ?4, it is shown that a clothoid spline spiral comprising a 
line or circular arc, a clothoid segment, and another circular arc, and matching 
W, Kp, and KQ can reach any point in FA uniquely. In ?5, it is shown that a 
clothoid spline spiral comprising a clothoid segment, a circular arc, and another 
clothoid segment, and matching W, Kp, and KQ can reach any point in FB 
uniquely. 

Define the matrix of rotation by I o ' 

(4) R(w) (cos w2 X 2sin (4) kW) ~~~~~\sinI o) Cosw I }( 
and the variable B for formulae in this section, 

(5) B= t 

The curve D(t) for 0 < t < W is 

D(t) =7rBR(-K2B2) (C(KQB) - C(KpB)) 

(-1 (-sin W?+ sin '(W - t)\ 
KQ Cos cosIW-CosI(W- t)J 

and the point S = D(O). When Kp = 0, D(t) can be written more compactly 
as 

(6b) D(t)- ( C( W- t) +RR 

Note that in both cases D(W) = R. When Kp = 0 and t > 0, the curve E(t) 
is 
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* Q 
region FB 

/~~~~~~ E(t) 

/ ~~D(t) /region FA 

R 

FIGURE 5. The partition of F when Kp = 0 

T 

E(t) 

region II 

D(t) 

R 

FIGURE 6. The partition of F when Kp > 0 

and, when Kp > 0 and 0 < t < W, the curve E(t) is 

= - (~~~C(KQB) - C(KpB) ) I1 sin 't E 7BR(t - K2B2) S(KQB) - S(KpB) + 1-cos 2t ) 

Note that in both cases E(O) = S. 
The region F is divided into two disjoint subregions, FA and FB, by the 

curve D(t) which runs from R to S, and by E(t), which is a straight line 
from S parallel to the X-axis when Kp = 0, and which is a convex curve from 
S to T = E(W) when Kp > 0 (see Figures 5 and 6). 

If it is possible to join P to Q with a spiral, then Q is in F. Since the 
boundaries of 1 are straight lines and circular arcs, it is easy to test a given 
point to see if it is in 1. However, the goal is to join P to Q with a clothoid 
spline spiral. The type of clothoid spline spiral to be used depends on whether 
Q is in 1A, FB or on the boundary between those two regions. 

Algorithm 1. How to determine whether Q is in 1A, FB or on the boundary 
between those two regions. 
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Lemmas 1 and 2 show that D(t) and E(t) are curves whose curvature is 
positive, and whose tangents rotate through an angle of less than 7r. These are 
the conditions required by the algorithm WhichSide [8] which can determine 
whether a given point is on, on the convex side of, or on the concave side of 
a parametric curve. When Q is in F but is not on either of the curves D(t) 
and E(t), it must be determined whether Q is in FA or in FB . If Q is on the 
convex side of D(t), and below E(t) when Kp = 0, or if Q is on the convex 
side of D(t) and on the convex side of E(t) when Kp > 0, then Q is in FA, 

otherwise Q is in FB El 

Lemma 1. The curve D(t), (5) and (6a), from R to S, is a curve of positive 
curvature and the tangent rotates through an angle of less than 7r. 

Proof. The curvature of D(t) running from S to R is 

det(D'(t) , D"(t)) 

jD(t)13 

where the sign of the numerator determines the sign of the curvature. The 
function D(t), written with integrals, is 

QBKCOS 72 (u2 - Kp2B) I - sin I W + sin 2 (W - t) 
D(t) = 

1rB sin 2 (u u2 _K2B 2) 
du 

(KQ COs I2W - COs 2 (W - t)) 

The substitution U = u2 - K2B2 transforms the integral term in the above into 

7r W-t B (csi2U) 

21o U?K~~ B 
O 

\snUJ d U. 

Differentiating with respect to t, we get 

(9) D'(t) f 
7r W-t ( O 

(9) D' (t) 4(K2 -K2) B(u + KpB2)32 sin u d 

and 

D"(t) r (cos (W - t) 
4K3B2 V sin 2(W - t) J 

7rB fWt u(u + 4KpB2) (c 2u du. 
8(W - t)2 Jo (u + K2B2)5/2 sin 2 uJ 

The numerator of the curvature, det(D'(t), D"(t)), consists of two terms. The 

first term is a negative multiple of 

j5 (u + K2B2)3/2 2 ( )du 

where the integral is positive since W - t < W < 2, and the second term is a 

positive multiple of 

zW--t zW-t U V(V + 4Kp2B2) . f 

Jo Jo (u + KpB2)3/2 (v + K2B2)5/2 sn 2 - u) du dv. 

The identity 

(b fb vb jf( 
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applied to the above double integral, transforms it into a negative multiple of 

J; j; (u + Kp(B2)v5/2(+ K2B2)5/2 sin 2(v-u)dudv. 
This double integral is positive since W - t < W < 2. Both terms in 
det(D'(t), D"(t)) are negative; so the curvature of D(t) from S to R is nega- 
tive. Thus, the curvature of D(t) from R to S is positive. 

The value of D'(O) from (9) is a positive multiple of 
- [W 

u ( cos2U dU 

Jo(u + Kp2B2)3/2 sin7r du. 

This vector points into the third or fourth quadrant. Differentiating (6a) directly 
and setting t = W, which means B = 0, the value of D'(W) is a positive 
multiple of (-J) . The tangent to the curve D(t) when traversing the curve 
from R to S points in the opposite direction to the above vectors and thus 
rotates through an angle of less than 7r. o 
Lemma 2. When Kp > 0, the curve E(t), (5), (8), from S to T is a curve of 
positive curvature and the tangent rotates through an angle of less than 7r. 
Proof. The proof is very similar to the proof of Lemma 1 and will be omit- 
ted. ol 

4. CLOTHOID SPLINE SPIRAL OF TYPE A 

In this section, a clothoid spline spiral which can reach any point in FA will 
be described. The proof that the clothoid spline spiral is unique for any point 
in FA, and a short description of an algorithm for finding the clothoid spline 
spiral, will be given. 

With Kp = 0, a clothoid spline spiral of type A consists of a straight line fol- 
lowed by a clothoid segment which is followed by a circular arc (see Figure 7). 
Let the length of the straight line be x, let the scaling factor of the clothoid seg- 
ment be 7rB, and let the angle of the circular arc be IL. To match curvatures, 
the parameter in the clothoid segment must run from t = 0 to t = KQB. The 
total angle through which the tangent rotates when traversing the curve from P 
to Q, 2 W, must equal the sum of the angles through which the tangent rotates 
over the clothoid segment and over the circular arc. Equating angles gives 

W = KB2 L, 

from which B is found to be B = vW -L/KQ. The circular arc is part of the 
circle of curvature of the clothoid at t = KQB. A formula for Q is the center 
of that circle of curvature plus a radius vector which is perpendicular to tQ, 

(11l) Q = Q(L, x) = D(L) + ? 

where formula (6b) can be used for D(t). 
Lemma 3. If Kp = 0 and Q is in rFA, a unique clothoid spline spiral of type A 
which can join P to Q with a Hermite matching exists. 
Proof. Let Q (Q=); then the conditions that Q is in FA are 
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KQ \\\\/ circular arc 

= tKQB 

tp 
P clothoid segment 

straight line t= 0 
of length x 

FIGURE 7. Clothoid spline spiral of type A, Kp = 0 

and 
I-(1-cos 2W) < Q2 I -( - cos 2W) + K-SI ("W-) 

From the given data, the center of the circular arc is 

Q+ - sinI WA 
KQV Cos I WJ 

According to [9], a unique clothoid segment joining a line to a circle exists if 
the distance from the line to the circle is greater than the radius of the circle. 
The distance from the center of the circle to the X-axis is Q2 + I cos 2 W, and 
this is greater than the radius of the circle, by the left part of the above 

KQ 
condition on Q2 that Q is in FA. The center of the circle of curvature of the 
clothoid at t = KQB is the same as the center of the circular arc. Comparing 
the Y-coordinates, one obtains 

(12) KSIQ W L)? Q2+ -coS-W. 

The restricted values for Q2 and the fact that S1(t) is a strictly monotone in- 
creasing function mean that there is a unique solution of that equation satisfying 
O < L < W. Comparing the X-coordinates, one gets 

(13) x +?C ,( ) = QI - -K-sin - W. 
KQ KQ 2 

The restriction on Qi means that x will be positive. Thus, for any Q in PA, 
there is a unique solution to Q = Q(L, x), equation (11), with 0 < L < W 
and x > 0. O 

Algorithm 2. How to find a clothoid spline spiral of type A with KP = 0. 

The clothoid spline spiral of type A with KP = 0 can be found by solving 
the nonlinear equation (12) for L by a numerical method, and then solving the 
linear equation (13) for x . El 

With KP > 0, a clothoid spline spiral of type A consists of a circular 
arc followed by a clothoid segment which is followed by another circular arc 
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tQ 

I~~~~~~~~~~~I 

KQ circular arc 

t = KQB 

clothoid segment 

circular arc 
Pt It=KpB 

tp 

FIGURE 8. Clothoid spline spiral of type A, Kp > 0 

(see Figure 8). Let the angle of the first circular arc be I-Lp, let the scaling 
factor of the clothoid segment be 7cB, and let the angle of the second circular 
arc be 2 LQ . To match curvatures, the parameter in the clothoid segment must 
run from t = KpB to t = KQB. The total angle through which the tangent 
rotates when traversing the curve from P to Q, I W, must equal the sum of 
the angles through which the tangent rotates over the clothoid segment and over 
the circular arcs. Equating angles gives 

W = Lp? (KQ - Kp)B2 + LQ, 

from which B is found to be 

(14) B= 
- Lp - 

Q 
Q P 

A formula for Q is the sum of vectors which join the starting point to the 
ending point in the first circular arc, the starting point to the ending point in 
the clothoid, and the starting point to the ending point in the second circular 
arc: 

Q(Lp, LQ)-K ( 1 -cos 2Lp 

(15) +-r BR(Lp - Kp22) )(S(KQB) - S(KpB) 

1 ( sin 2 W - sin 2(W - LQ) ) 

KQ -cos W+cos (W-LQ) 

where R is defined in (4). 
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The following lemma is used in proving that there is a unique clothoid spline 
spiral of type A joining P to Q with a Hermite matching when Q is in PA . 

Lemma 4. The Jacobian of Q(Lp, LQ), (14), (15), is nonzero for 0 < LP, 
0 < LQ, and LP + LQ < W < 2. 

Proof. We write (15) in terms of integrals, 

~KQB (COS ZEU2 
Q(LP, LQ) = JCBR(LP-KPB2)I ( 2 du 

JKB sin lu2j 
+ 1 ( sin 2Lp I + ( sin ' W - sin 2(W - LQ) 
KP 1- cosLp K cos ? W+cos (W-LQ)J 

Bringing the rotation matrix into the integral and making the substitution U = 
u2 + LP - KPB2, we can write the integral in the above as 

7rJW-LQ B (COS I U) 

2 JP /U+KB L(sin I2U)dU p ~ ~ Lp s2n 

Differentiating Q(Lp, LQ) with respect to LP and with respect to LQ yields 
____ ____ [W -L W+ LQ____(COS__I_U 

QLP(Lp, LQ) = 
4(K2 -K2)B (u + KpB2 Lp)3/2 (csinu 

du 
Q JLp ?K2 ~32sn~ 

and 

QLQ(Lp __Q__-____ 
[WLQ u -Lp (COS \ dU . 

QLQ(LP LQ) = 4(K2 - K2)B ILP U+KPB2-Lp)3/2 ( sinudu) 

The Jacobian of Q(Lp, LQ), det(QLp, QLQ), is a positive multiple of 

[W-LQ W-LQ U- W + LQ v-LP . Z JW-LQ 
~ ~ ~ ~ ~~~~~~~~~-sini- (v -u) du dv. 

JLP JLP (u + KP2B2 - Lp)3/2 (V +?K2B2- Lp)3/2 2 

The identity (10) transforms the above double integral into 
fWLQ [V 

~~~~~~~~~~i - -u) du dv, 
JLp (u + K?2B2_ Lp)3/2(V +K2B2-Lp)3/2 2 

which is negative for 0 < LP, 0 < LQ, and Lp + LQ < W < 2. El 

Lemma 5. If KP > 0 and Q is in FA, a unique clothoid spline spiral of type A 
which can join P to Q with a Hermite matching exists. 
Proof. A unique clothoid spline spiral of type A which joins P to Q with 
a Hermite matching exists if there is a unique solution to the equation Q = 
Q(Lp, LQ) in (15). A result by Goursat [5, p. 321] shows that a planar mapping 
function which maps the boundary of a domain to the boundary of the image 
in a one-to-one manner, and has a nonzero Jacobian over the domain is a one- 
to-one mapping between the domain and the image. Lemma 4 in conjunction 
with this result implies that, for any Q in FA, there is a unique solution to 
Q = Q(LP, LQ) in (15) with Lp > 0, L>0 P + LQ < W. El 

Algorithm 3. How to find a clothoid spline spiral of type A with Kp > 0. 
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The following method for finding the Lp and LQ is given in [9]. The square 
of the distance between the centers of the circular arcs is 

(Q, - sin 7W)2? (Q2 - -+ cos W) 

The square of the distance between the centers of circles of curvature at t = KpB 
and t = KQB of a clothoid of scaling factor 2B is 

(7 C,I(KQB) _7r C, (KpB) ) 2 (27S,(KQB) + 1 _ 7rS,(KpB) + 1 2 

KQ Kp 
+ 

KQ Kp ) 

These two distances must be equal, and this gives one equation in one un- 
known, B. In [9] it is shown that this equation has a unique solution when 
the distance between the centers of the circles is less than l /Kp - 1/KQ and 
B < 2/(KQ - K2). The first condition is satisfied because Q is in F, while 
the second follows from (14) and the restriction that Lp and LQ are positive 
with W < 2. Once B is found by a numerical method, Lp + LQ can be 
calculated directly from (14). Looking at the vector joining the centers of the 
circular arcs, and knowing that the clothoid and the vector joining the centers 
of its circles of curvature is rotated by 2 (Lp - K2B2), it is possible to find Lp. 
Now LQ can be calculated since the sum Lp + LQ is known. o 

5. CLOTHOID SPLINE SPIRAL OF TYPE B 
In this section, a clothoid spline spiral which can reach any point in FB will 

be described. The proof that the clothoid spline spiral is unique for any point 
in FB, and a short description of an algorithm for finding the clothoid spline 
spiral, will be given. 

A clothoid spline spiral of type B is a clothoid segment followed by a circular 
arc which is followed by a continuation of the same clothoid (see Figure 9). 
Let the scaling factor of both clothoid segments be zB, let the curvature of 
the circular arc be K, and let the angle of the circular arc be -L. To match 

IC 
tQI 

\ \ ~Qf t=KQB 

K \ \ /clothoid segment 

circular arc 
clothoid id 

segmen t = KB 

Pe. 
t = KpB tp 

FIGURE 9. Clothoid spline spiral of type B 
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curvatures, the parameter in the first clothoid segment must run from t = KpB 
to t = KB, while the parameter of the second clothoid segment must run from 
t = KB to t = KQB. The angle through which the tangent rotates from P to 
Q, 5 W, must equal the sum of the angles through which it rotates over the 
two clothoid segments and in the circular arc. Equating angles gives 

W = (Kf2-K2)B2 + L + (KQ-K2)B2 
from which B is found to be 

(16) B= L 
K 2 -K2 Q P 

A formula for Q is the sum of the vectors which join the point on the clothoid 
at t = KpB to the center of the circular arc, and the center of the circular arc 
to the point on the clothoid at t = KQB: 

(17) 

L) R(-K2B2) Cf7 ( (KB) )7B (C(KpB) 
Q(K, L) = ~ K k\SI(KB) +S(KpB) 

(W 2B2)!B C (KQB) 7n C1 (KB) 
+ R(W .QB {B (S(KQB)) K (SI(KB)+,If' 

where R is defined in (4). 
The following lemma is used in proving that there is a unique clothoid spline 

spiral of type B joining P to Q with a Hermite matching when Q is in FB . 

Lemma 6. The Jacobian of Q(K, L), (16), (17), is nonzero for Kp < K < KQ 
and O < L < W <2. 

Proof. Using the identities (1) to eliminate the integrals of Fresnel integrals, 
and writing (17) in terms of integrals, one obtains 

~KB (COS ,u2N 
Q(K, L) =7BR(-K2B2)A 2 2 du 

1~~~~~i t i -(u-K2B 
JKpBK\ s COn u22 

? 7(BR(W IKQB2)f (csin u 2 du 
JB 2\5f~U 

1 ( sin (W-(KK2 -K2)B2) 
K - cos 2( -(K2 -K2)B2) ,J 

Bringing the rotation matrices into the integrals and making the substitution 
U = u2 - KpB2 in the first integral and U = K2B2 - u2 in the second, we can 
write the integrals as 

^1;(K2-Kp)B2 KsB (4 - - )K 

K -csB (-si 2(W- U)) d 

2 2 ~ ~ KB2U =sin22 _2U 
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Differentiating Q(K, L) of (17) with respect to K and with respect to L yields 

(18) Q ( ) ~~2 ir f(cos 
" 

((K2 - Kp2) B2 + 2L)) (18) QKc(K, L)=---in ?!L (s((2 -K) 2? 
K2 4 si'(K -KpB2+L 

and 

QL(K, L) - ~~u (COS12U du 
QL(K, L) = 4(K2 - K2)B J (u + K2B2)3/2 ( sin 2u u 

? 4K2 -K)B(K-K2)B2 U Kcos(K-U) d 

4(KQ2 Jop2 (KQ2B2 - U)3!2 ~ sin7(W-u 

Now, the Jacobian of Q(K, L), det(QK, QL), is a negative multiple of 
2 ( ? KB2)3/2 sin 2 ((K2- K)B2 ? - du 

(K KP)B u L 

? i (K2B2 )3l2 sin- 2 (KQ K - K )Bp? -2u) du. Jo ~~(KQ2 B2 -U) 3!2 2 Q 2 j 

The argument of sine in the first integral varies from I ((K2 - Kp)B2 + L) to 
L . The first quantity is less than 

2 ((KQ-K )B2?+ ) = < (W-L ? L) 7n. 

Thus, the sine is always positive in the first integral. The argument of sine in 
the second integral varies from , ((KQ -K2)B2+L) to 4 . The first quantity is 
less than 7, so the sine is always positive in the second integral. The Jacobian 
is nonzero when KP < K < KQ and O < L < W < 2. El 

Lemma 7. If Q is in FB, a unique clothoid spline spiral of type B which can 
join P to Q with a Hermite matching exists. 
Proof. Lemma 6 in conjunction with the result of Goursat [5, p. 321] implies 
that, for any Q in FB, there is a unique solution to Q = Q(K, L) in (17) with 
KP < K < KQ and 0 < L < W. This is just what is needed to show that there 
is a unique clothoid spline spiral of type B which joins P to Q with a Hermite 
matching. El 

An effective algorithm for finding the clothoid spline spiral which passes 
through a given Q in FB is obtained by considering curves Q(K, L), (16) and 
(17), of constant L (see Figure 10). Lemma 8 shows that those curves have 
positive curvature K varying from Kp to KQ. Note that, as K approaches 
KQ, the curve Q(K, L) of constant L approaches D(L). 

Lemma 8. Curves Q(K, L), (16) and (17), of constant L for K varying from 
KP to KQ have positive curvature and a tangent which rotates through an angle 
of less than n . 
Proof. The derivative of Q(K, L) with respect to K, QK(K, L), is given in 
(18), while the second derivative with respect to K is 

-2 2)L B2 . 7r sin '((K2 -Kp)B 2+ )) 
QKK(K, L)= KQK(K, L)? K sin -L 2j{K jJB2i) 
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4 

R 

FIGURE 10. Curves Q(K, L) of constant L in 4B 

The sign of curvature is the same as the sign of det(QK, QKK), and 

det(QK, QKK) = K3 sin2 U2 L 

which is positive; so the curvature of Q(K, L), L constant, is positive. 
The tangent at K = KP forms an angle of Z + 4L with the X-axis, while 

the tangent at K = KQ forms an angle of Z + I W - I L with the X-axis. The 
difference is ' (W - L) which is less than Z because W < 2. El 

Algorithm 4. How to find a clothoid spline spiral of type B. 

The algorithm WhichSide [8] can be used to determine whether a given Q 
is on a curve of given L, on the convex side or on the concave side. If Q 
is on the concave side, a smaller L is needed, while, if Q is on the convex 
side, a larger L is needed. Since L is restricted to (O, W), a simple bisection 
algorithm [3] can be used to find the L for which Q(K, L) passes through Q. 
The algorithm WhichSide returns both K and L when Q is on the curve. El 

If Kp = 0, the case illustrated in Figure 10, the curves of constant L come 
from infinity as K increases from zero. The algorithm WhichSide cannot be 
applied directly because the curve segments are infinite in length. A practical 
way around this difficulty is to choose a positive lower limit for K. Such a 
restriction on K will put a lower bound on the length of the first clothoid 
segment. Thus, if Q is in some parts of FB, the algorithm will not be able to 
find the required clothoid spline spiral because the first clothoid segment in that 
clothoid spline spiral is too short. 

6. CONCLUSION 

Lemmas 3, 5, and 7, and an examination of special cases can be combined 
to give the main mathematical result of the paper. 

Theorem 2. If Q is in r as defined by the given W, KP, and KQ, then there 
exists a unique clothoid spline transition spiral which passes through P and 
Q, whose tangent at Q makes an angle of 2 W with the X-axis, and whose 
curvature is KP at P and KQ at Q. 
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Proof. If Q is in PA and Kp = 0, the proof is given in Lemma 3; if Q is in 
PA and Kp > 0, the proof is given in Lemma 5; and if Q is in FB, the proof 
is given in Lemma 7. 

When Q is on either of the curves D(t) or E(t), the analysis is simple and 
the results are quoted below. If Q is on D(t), Q = D(t1), the clothoid spline 
spiral which joins P to Q is a clothoid segment followed by a circular arc of 
angle I t1 . The tangent to the clothoid rotates , (K2 - K2)B2 over the clothoid 
segment, and the tangent to the clothoid spline spiral rotates I W over the 
whole spiral; thus, the scaling factor of the clothoid is 

rB = 7r . 

If Q is on E(t), Q = E(t2), and Kp = 0, the clothoid spline spiral is a 
straight line of length t2 followed by a clothoid segment. The tangent to the 
clothoid rotates through an angle of , K2B2= 9 W; thus, the scaling factor of 
the clothoid segment is 

7rB = 7r ;.W 
KQ 

If Q is on E(t), Q = E(t3), and Kp > 0, the clothoid spline spiral is a 
circular arc of angle ' t3 followed by a clothoid segment. The scaling factor of 
the clothoid can be calculated as above and is 

B = 
w t3 O 

Algorithm 5. How to find the unique clothoid spline spiral to join P to Q with 
a Hermite matching. 

The first step, deciding if Q is in F, is easy as the boundaries of F are 
straight lines and circular arcs. Algorithm 1 shows how to decide whether Q 
is in FA, FB or on the boundary dividing those two regions. If Q is in PA, 
Algorithms 2 and 3 show how to find the clothoid spline spiral which joins P 
to Q. If Q is in IB, Algorithm 4 shows how to find the clothoid spline spiral 
which joins P to Q. If Q is on the boundary, the clothoid spline spiral can 
be found as outlined in the proof of Theorem 2. o 
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