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LINEAR CONVERGENCE 
IN THE SHIFTED QR ALGORITHM 

STEVE BATTERSON AND DAVID DAY 

ABSTRACT. Global and asymptotic convergence properties for the QR algorithm 
with Francis double shift are established for certain orthogonal similarity classes 
of 4 x 4 real matrices. It is shown that in each of the classes every unreduced 
Hessenberg matrix will decouple and that the rate of decoupling is almost always 
linear. The effect of the EISPACK exceptional shift strategy is shown to be 
negligible. 

1. INTRODUCTION AND SUMMARY 

A standard approach to approximating the eigenvalues of an n x n real 
nonsymmetric matrix B is as follows (see [3, ?7.5]). First B is reduced by 
orthogonal similarity transformations to an upper Hessenberg matrix HO. The 
QR algorithm with Francis double shift (QRF) is then employed to produce a 
sequence {Hi} of orthogonally similar Hessenberg matrices. While in practice 
the above procedure usually produces a rapid decoupling, there is little the- 
oretical foundation for its overall speed and reliability. In [8, 9], conditions 
are identified which assure asymptotic quadratic and cubic decoupling rates. 
Examples of unreduced Hessenberg matrices which are fixed under QRF are 
known (see [7, p. 379] for an example) but believed to be unstable under per- 
turbation. We prove that there exist orthogonal similarity classes of matrices 
for which global convergence is assured but the asymptotic rate of decoupling 
is only linear. 

Theorem 1.1. Suppose A e R and HO is an unreduced Hessenberg matrix in the 
orthogonal similarity class of 

( -1 n 0j 
1 A O 1 
O O A -1 . 
0O 0 1 i, 

Then the QRF sequence {Hk} will decouple (H3k - 0). Furthermore, there 
exists a matrix H such that 

(1) if there does not exist a diagonal matrix D with Dii = +1 such that 
HO = DHD, then the rate of decoupling is linear; 
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(2) if there exists a diagonal matrix D with Dii = + 1 such that HO = DHD, 
then exact decoupling is immediate (H312 = 0). 

QRF is used in the HQR2 module in EISPACK [6], the prevailing algorithm 
for computing all the eigenvalues and all the eigenvectors of a real Hessenberg 
matrix. In HQR2, if QRF has not produced a decoupling by the tenth iteration, 
the exceptional shift is employed on the eleventh iteration. QRF is then resumed 
until the twenty-first iteration, at which the exceptional shift is repeated. The 
remaining iterations are QRF. The motivation of the exceptional shift is as 
follows. Suppose one begins with a matrix for which QRF has difficulty. The 
exceptional shift produces an equivalent problem for which QRF will hopefully 
be more successful. In [1] it is shown that there exist matrices which, in exact 
arithmetic, will not decouple under HQR2; however, the known examples are 
extremely unstable. A corollary of the above theorem is that linear convergence 
persists even after exceptional shifting. Moreover, the linearity is robust under 
perturbation within the orthogonal similarity class. 

2. BACKGROUND 

In this section we define the iterative algorithm discussed in the paper. These 
algorithms may be viewed as functions on a space of candidates (e.g., Hessen- 
berg matrices). 

Suppose Hi is an unreduced Hessenberg matrix. Let X(.) denote the char- 
acteristic polynomial of the lower right 2 x 2 submatrix of H'. The QRF 
iteration is given by Hi+1 = F(H') = QtHLQ, where Q comes from the QR 
factorization of X(Hi). 

We now define the EISPACK exceptional shift for an unreduced Hessenberg 
matrix Hi. Let ,I = Hnn- + JHn_j,n-21 , and define the polynomial w(t) = 

t2 _ 1.5,Bt + fl2 . Then H'+1 = E(H') = Qt(Hi - H,nI)Q, where Q is from 
the QR factorization of wo(H' - HinI). Note that F preserves the orthogonal 
similarity class and that E maps into the orthogonal similarity class of the 
shifted matrix Hi - Hn-nI 

Fix an orthogonal similarity class and canonial (Schur) form representative, 
A. By the implicit Q theorem, each unreduced Hessenberg matrix in the class 
is essentially determined by the first column of the orthogonal similarity class 
from the Schur form. While QRF tracks a sequence of Hessenberg matrices, one 
can define an analogous iteration which tracks the sequence of corresponding 
unit vectors. We call this iteration PQRF, and it is discussed in depth in [1, 2]. 

To define PQRF, let ui be a unit vector which does not lie in an invariant 
subspace, and consider the Krylov matrix K = [u'lAuil. An-lui]. Let qj 
denote the jth column of the QR factorization of K. Define x(t) to be the 
characteristic polynomial of the 2 x 2 matrix [qnI lqn]tA[qn-I lqn]. The PQRF 
iteration is given by u'+1 = G(u') = x(A)u'/jx(A)u'jj. 

The relation between PQRF and QRF is formalized by a surjection from 
PQRF vectors onto the corresponding unreduced Hessenberg matrices in the 
orthogonal similarity class. The map is defined by F(u) = QtAQ, where Q 
comes from the QR factorization of K. It can be shown that F maps the PQRF 
sequence for u to the QRF sequence for 1(u), and if the PQRF sequence for 
u converges to an invariant subspace, then the QRF sequence for F(u) will 
decouple. Thus, one can utilize PQRF to analyze the convergence of QRF 
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within a particular orthogonal similarity class. One advantage of PQRF is the 
exploitation of Schur forms. 

We establish linear convergence of PQRF and QRF in the orthogonal simi- 
larity class of 

O -1 2 0 

A 1 0 0 1 
A= 0 0 0 -1 I 

O 0 1 O0 

The roots of the characteristic polynomial are +i, and the only proper invariant 
subspace is the plane spanned by the first two coordinate vectors. Thus for 
PQRF to succeed, the iteration sequence must converge to this plane. 

3. THE PQRF ALGORITHM 

The PQRF algorithm starts by computing the QR factorization of 

K = [ulAulA2U A3U], 

where u is a unit vector. 
We factor K, using the Gram-Schmidt algorithm. Let u = (w, x, y, Z)t 

and e = V2+ z2 > 0. The Gram-Schmidt algorithm applied to K produces 
q, = u, q2 = Au - (u, Au)u, q2 = q'/llq211, and so on, where qi is the ith 
column of Q. Let 

U =(Z V = () V=( ) 

and 
a=wy+xz, b=wz-xy. 

Then for our choice of A, we have Au = u'+v, a2+b2 = e2-e , a = (u, Au), 
and 

(q', q') = (Au, Au) - a2 = (1 +b)2 + e4. 

Using the ordered basis q = {u, uL, v, v'} simplifies the calculations. For 
any p e R4, let [p]_ denote the coordinates of p with respect to q . For any 
p and q in R4, 

(p, q) = ([p]_V, M[q]_), 

where 
1 0 a -b 

M= 0 1 b a 
a be82 0, 

-b a 0 62 

The vector q' = (A - aI)u has the coordinates [q2]_ = (-a, 1, 1, O)t with 
respect to the new basis. Let r = llq2 11 . We have r = 1 + 2b + e2 - a2 = 

(1 +b)2+e4 . Now before continuing Gram-Schmidt, note that A2u = -u+2v . 
Since u e span{u, Au}, the vector q3 is determined by orthogonalizing v' 
against span{u, Au}, 

(q2, v') = ([q2]w, Me4) = a(b + 1) . 
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By the Gram-Schmidt formula, 

[q3] = (b, 0,0, O)t a(b + 1)(-a, 1, 1, o)t. 3 ~~~~~~~~r 
After multiplying by M and simplifying, we obtain 

M[q]_ r I M[q']_ = e (ia ) 

a(l + b) r +a2 

Hence, IIq'II2 = ([q3]_V, M[q']_V) = I c4(r + a2). 
The next step is to compute q4 by orthogonalizing v against u, q2, and q3: 

(q, V) = b + X,2 2 ( a 4e (q~v)=b+ - -a , q,v _ 2 3 ~~~~~~~~~r 
By the Gram-Schmidt formula, 

[q']_q (-a, o, 1, O)t 
- b- -a [q']_ + a[q']_V 

After algebraic simplification, 

M[q4]_ = 1,1, II q4112= 
- 

4 

r+a2(0' 

1 1 ) 
r + a2 

This completes the explicit computation of Q. 
We now determine explicit formulae for G(u). Let u' denote G(u) prior 

to normalization, 
u' = (d - 1)u - t(uL + v) + 2v', 

where t and d are respectively the trace and determinant of [q3lq4]tA[q3lq4]. 
Thus, 

IIU1112 = 482 + (d - 1)2 + t2(r + a2) - 2a(d + I)t - 4b(d - 1). 

Let e denote the norm of the last two coordinates of the representation of G(u) 
with respect to the standard basis, 

g2= g2((d - 1)2 + t2)/IIu'12. 

In the new basis, 

-1 0 0 

[A]= 
I 0 O O 

0( 1 1 0(J 

[X]w[q2](112 +2()bl)? (t 

[A_[A] (a )be b a )+ a I a 
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Using the formula 

(p, Aq) = (M[p]_, [A]_q[q]_q), 

we have 

[q'lq']'A[qjlq'] = ( a(r - 2(1 + b)(r + a r r+a2a 3 4 3 4 f4a( l4 + 2)~4i-c 4aa) 
r+a2 Tr +a2)2 

Now we obtain closed form expressions for t and d: 

t= (q3Aq3) + (4 -q) 2a1rb, 

(q3, Aq')(q', Aq4) - (q3, Aq4)(q4, Aq') = 2 d 3 3 4 - 4 3) = I+ -(1+ b -r). 
llq 1211 '12 r 

Substituting these values into the expression for 11u' 12 and reducing, yields 

4e2 

11U112 = r2 ((1 + b)2(4(1 + b) - 3c2) + r(r + a2)c2). 

Similarly, 

(d - 1)2 + t2 = 42 ((1 + b)2 + (b2 - 1 +c4)c2) 

and 
_2 (1 + b)2 + (b2 _ 1 +c64)c2 

-2 (1 + b)2(4(1 + b) - 3c2) + r(r + a2)c2 

Since r + a2 = 1 + 2b + 82, is a function of e and b. 

3.1. The convergence of PQRF. Recall that decoupling under QRF corre- 
sponds to convergence of the PQRF sequence to an invariant subspace of A. 
For PQRF to map a vector to this target space, we must have t = 0 and d = 1. 

Lemma 3.1. We have t = 0 and d = 1 if and only if e = 1/v'2 and b= 1 2 

Proof. Since r and 1 + b are strictly positive, t = 0 if and only if a = 0. 
Furthermore, d = 1 and a = 0 if and only if r = 1 + b and a = 0 if and only 
if e= 1/ v and b=-4. a 

Lemma 3.1 characterizes the set of vectors which hit the target after a 
single iteration. One can show that these are the unit vectors of the form 
(w, x, x, -w)t . The following lemma shows that all other vectors converge to 
the target. 

Lemma 3.2. There holds 92/c2 < . 
Proof. We must show that for -e1-2 < b < 1e-2 and 0 << 1, 

(1 +b)2 + (b2 - 1 +,64)c2 1 
(1 + b)2(4(1 + b) - 3c2) + r(r + a2)2 <2 

The term 4(1 + b) - 3R2 > 4(1 - _ 2- c4) - 3c2 > 0 with equality holding if 
and only if c2 = 4 . We have r(r+a2) 2 ((1+b)2+4)(1+2b+2). Therefore, 
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the denominator above is strictly positive, and we can cross-multiply. It suffices 
to show that the following expression is positive: 

(1 + b)2(4(1 + b) - 3c2) + ((1 + b+ 2 4)(1 + 2b + 62)62 

- 2(1 + b)2 - 2(b2 _ 1 +c64)c2 

=8 + (2b - 1)c6 + (1 + b)2c4 + 2b(b2 - 1)c2+ 2(1 + b)2(2b + 1). 
From the domain restriction it follows that - 2 < b < 1 . Note that the c8, c4, 2 - -2 
and constant terms are nonnegative. 

We consider two cases for the above polynomial. 
Case 1: 0 < b < 2 . Here, 

- 2' 
c8+ (2b - 1)c6 + (1 + b)2c4 + 2b(b2 - 1)c2 + 2(1 + b)2(2b + 1) 

> c8 8 6 + 4 _ 32+ 2> c8 + g4 + I >0. 

Case 2: -2< b < 0. Note that if e = 1, then b = 0, which was dealt with 
in Case 1. Thus, we may assume 0 < e < 1. 

Evaluated at b = - 2 
2' 

8+ (2b - 1)c6 + (1 + b)264 + 2b(b2 - 1)c2 + 2(1 + b)2(2b + 1) 
=88 2c6 + I-c4 + 3g2 > -8 - 2c6 + g4 = c4(c2 _ 1)2 > 0. 

4 4 

Take the partial derivative with respect to b of the original polynomial: 

- (e8 + (2b - 1)c6 + (1 + b + 2b(b2 - 1)c2 + 2(1 + b)2(2b - 1)) 

= 28 6+ 2(1 + b)c4 - 2(3b2 - 1)c2 + 4(1 + b)(3b + 2) 
> 2c6 + g4 - 2c2 + 1 - 2c6 + (62 _ 1)2 >0. 

The function is positive at any point on the line b = - 2. Increases in b up 
to 0 produce increases in the function. 5 

The following theorem is obtained by combining Lemmas 1 and 2 and noting 
that only the set from Lemma 1 may reach the target prematurely. In the event 
that the target is not reached on the first iteration, each subsequent iterate will 
have a value of e < 1/VX2. Thus exact decoupling will never occur after the 
first iteration. 

Theorem 3.1. The PQRF algorithm with 
0 -1 I 0 

A 1 0 0 1 
A=( 8 O O -1 

0O 0 1 0 

converges in zero, one, or an infinite number of iterations to e = 0. PQRF 
converges immediately on {u: e = O} and in one iteration on {u: e =I/V2 
and b = - I }. Both sets are one-dimensional curves. 

Theorem 3.2. The PQRF algorithm converges linearly in the case of 
A 0 -1 2 02\ 

A_ 
I 0 0 1 

- 0 n n _11 
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Proof. We have 
2 (I +b )2 + (b2 _ 1 +_ 4)_2_I_ 1 + o(2) 

-2 (1 + b)2(4(1 + b) - 3c2) + r(r + a2)92 4(1 + b) + 0(02) 

Recall that b2 < a2 + b2 = g2 - g4 < g2 Thus g2/c2 = 1 + O(c), and 

c 1e+0(8c2). El 

3.2. The convergence of QRF. 

Lemma 3.3. We have (F(ui))32 = rj2c2Vr + a2, where r = (1 + b)2 + e4. 

Proof. Suppose c > 0. Then 

(q', Aq') = (M[q']_, [A]_[q']_) = -2c4(r + a2), 

(r(u)3 2= 3 ' H q 3 , 122 r . E1 

Corollary 3.1. One has (F(u'))32 = 0 if and only if e = 0. 

Suppose HO is an unreduced Hessenberg matrix in the orthogonal similarity 
class of 

0 -1 1 02 
1 0 0 1 
O O O -1. 
0O 0 1 0 

Produce uo such that F(uO) = HO . Decoupling of the QRF sequence follows 
from Theorem 3.1. 

If the QRF sequence starting from HO were to decouple in the (2, 1) or 
(4, 3) positions, this would imply that HO had a real eigenvalue. Since the 
roots of the characteristic polynomial are +i, decoupling must occur in the 
(3, 2) position. 

Suppose Q comes from the QR factorization of the Krylov matrix corre- 
sponding to ui. By the previous lemma, 

H32 = (1(u'))32 = (q3, Aq2) = -2c r+a2, 

where r = 1 + 0(e). Therefore, Hi+1/H32 = i + 0(c). 

4. PROOF OF THEOREM 1.1 AND LINEAR CONVERGENCE OF HQR2 

We now complete the proof of Theorem 1.1. The matrix M and the vectors 
[q ],g, ... , [q4]w are functions of a, b, and e only, and [A]g is constant. 
Since [QtAQ]ij = (M[qj]g, [A]g[qj]g), we have that F(u) = QtAQ is a func- 
tion of a, b, and e only. Since Q is determined up to multiplication on the 
right by a diagonal matrix D such that Dii = + 1, the matrices that decouple 
after one QRF step are of the form DtF(u)D, where u is any unit vector such 
that a = 0, b = 1-, and c2 =I . This completes the proof of Theorem 1.1 
for A. 

A Hessenberg matrix orthogonally similar to A(i) = A + 2I has the form 
H? +RI, where H? is orthogonally similar to A . If s and 52 are the roots of 
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the characteristic polynomial of the lower right 2 x 2 submatrix of H?, then 
si + A and 52 + A are the shifts for HO + AI. Shifting by s, + A and 52 + A 

nullifies the AI for the QR factorization and produces the QRF iterate HI +AI. 
Thus, the argument for A(i) follows from that for A. 

Now consider applying the exceptional shift E to an unreduced Hessenberg 
matrix H whose Schur form is A(A). The result is a Hessenberg matrix E(H) 
with Schur form A(,u) for some ,u e R. Almost every unreduced Hessenberg 
matrix in this orthogonal similarity class converges linearly under QRF. 

Corollary 4.1. Suppose A e R and HO is an unreduced Hessenberg matrix in 
the orthogonal similarity class of 

A -1 I 0\ 
1 A O 1 
O O A -1 . 

( 0 1 i 

Then the HQR2 sequence {Hk } will decouple. Furthermore, there exists a set 
X of measure 0 such that 

(1) if HO V Z, then the rate of decoupling is linear; 
(2) if HO e Z, then exact decoupling occurs in a finite number of iterations. 

Note. By the HQR2 sequence we mean the algorithm obtained by applying the 
exceptional shift at steps 11 and 21 with Francis shifts employed for all other 
iterations. 

Proof of Corollary 4.1. If decoupling has not occurred by the 21 st iteration, then 
Theorem 1.1 guarantees that it will subsequently occur. We concern ourselves 
with {HI E(H) or F(E(H)) is reduced}, the set of matrices for which the 
exceptional shift effects an exact decoupling. To show this set is meager, we 
first develop the exceptional shift analogue of PQRF. 

Recall from ?2 that ,B = I Hn, n- I I + IHn_ -, n-2 , co(t) = t2 _ 1.5,Bt + 132, 
and E(H) = Qt(H - HnnI)Q, where Q is from the QR factorization of 
w(HI - HnnI). As with PQRF, we will define a map of unit vectors. If u 
does not lie in an invariant subspace of A(i), define 

D(u) _ w(AL) - HnnI)(u) 
joj(A() - HnnI)(u)11 

where H = F(u). 
Details about the relationship between D, E, and F are available in [1, 2]. 

From that analysis it follows that E(H) is reduced if and only if D(u) lies in 
an invariant subspace. Furthermore, F(E(H)) is reduced if and only if D(u) 
is in the set of Lemma 3.1. 

For D(u) to lie in an invariant subspace, the last two coordinates of u must 
be annihilated by the matrix w(A(A) - H44I)(u). The bottom two rows of this 
matrix have the form 

[ 
0 0 

t 
A - 
iH44 -1 ])] [0 0 I([A-H44 ,H) 

The last two coordinates will be annihilated when w(t) is the characteristic 
polynomial of 

(A-H44 -1 
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This occurs when 2fl = 2(A - H44) and f82 = -_ H44)2 + 1. It follows that 
D(u) lies in an invariant subspace only if fl2 = 1i. From the calculations of 
the previous sections, 

" = IH321 + "H431 = 
2 

r (r + a2)3/2 + r3/2 

Since c, r, and a are each real analytic functions of 

w\ 

defined on the hemisphere z > 0, fl2 is an analytic function on this variety. 
The level set t2 - 16 is a subanalytic set and thus has a triangulation [4]. The 
function ft2 iS not a constant function, since its values approach 1 as e goes 
to 0. Consequently, the triangulation contains no 3-simplices, and the level set 
is a measure 0 collection of smaller simplices. 

We have shown that {uI D(u) is in an invariant subspace} has measure 0. 
This is the set corresponding to {HI E(H) is reduced}. Actually, we are con- 
cerned about {HI EF10(H) is reduced}, which corresponds to {ul DGI0(u) is 
in an invariant subspace}. That this set is meager follows from composing fl2 
with G10 and applying the previous argument. 

If D(u) is in the set of Lemma 3.1, then the sum of the squares of its last 
two coordinates is 2 . Once again, this is the level set of a nonconstant analytic 
function, and the argument proceeds as in the previous paragraphs. 

The set ' consists of the image under 1 of a measure-zero set of vec- 
tors. Since T depends only on b and c, each 2-simplex is mapped to a one- 
dimensional set which has measure zero in the space of matrices. O 

5. NUMERICAL EXAMPLE 

We applied the EISPACK subroutine HQR2 to 

O -1 0 1\ 

Ho F(UO)= 2 0 -1 0 

O O -1 0 

for uo = (0, 0, 0, 1)t, and monitored the (3, 2) element of H until it decou- 
pled. This is displayed in column two of the table. This is the only way for 
HQR2 to converge when the eigenvalues of HO are all complex. Column three 
shows the ratios of consecutive (3, 2) elements. This ratio converges to I and 
persists after the exceptional shifts at iterations 11 and 21. Decoupling occurs 
when Hi2 reaches the double-precision machine epsilon. HQR2 computes the 
first two eigenvalues of HO in 34 iterations. 

We also computed the corresponding sequence of PQRF vectors. The norm 
of the last two components of each vector is given in column four of the table. 
Column five shows the ratios of these norms. As predicted, these ratios converge 
to 1 
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Iteration H32 ratio l ratio 
1 0.28D+00 0.2000000 0.45D+00 0.4472136 
2 0.57D-01 0.2032374 0.18D+00 0.4120817 
3 0.13D-01 0.2279239 0.84D-01 0.4572662 
4 0.31D-02 0.2395767 0.40D-01 0.4795176 
5 0.77D-03 0.2449622 0.20D-01 0.4900170 
6 0.19D-03 0.2475265 0.98D-02 0.4950764 
7 0.47D-04 0.2487748 0.49D-02 0.4975555 
8 0.12D-04 0.2493903 0.24D-02 0.4987821 
9 0.29D-05 0.2496959 0.12D-02 0.4993922 
10 0.74D-06 0.2498481 0.61D-03 0.4996964 
11 -0.73D-06 -0.9987853 0.61D-03 0.9993923 
12 -0.18D-06 0.2499241 0.30D-03 0.4998483 
13 -0.46D-07 0.2499620 0. 15D-03 0.4999242 
14 -0.11D-07 0.2499810 0.76D-04 0.4999621 
15 -0.29D-08 0.2499905 0.38D-04 0.4999811 
16 -0.72D-09 0.2499952 0.19D-04 0.4999905 
17 -0.18D-09 0.2499976 0.95D-05 0.4999953 
18 -0.45D-10 0.2499988 0.47D-05 0.4999976 
19 -0.11D-10 0.2499993 0.24D-05 0.4999988 
20 -0.28D-11 0.2499996 0.12D-05 0.4999994 
21 0.28D-11 -0.9999976 0.12D-05 0.9999988 
22 0.70D-12 0.2499994 0.59D-06 0.4999997 
23 0.18D- 12 0.2499983 0.30D-06 0.4999999 
24 0.44D-13 0.2499938 0.15D-06 0.4999999 
25 O.11D-13 0.2499755 0.74D-07 0.5000000 
26 0.27D-14 0.2499021 0.37D-07 0.5000000 
27 0.68D-15 0.2496088 0.19D-07 0.5000000 
28 0.17D-15 0.2484401 0.93D-08 0.5000000 
29 0.41D-16 0.2438378 0.46D-08 0.5000000 
30 0.94D-17 0.2265230 0.23D-08 0.5000000 
31 0.16D- 17 0.1715232 0.12D-08 0.5000000 
32 0.11D-18 0.682D-01 0.58D-09 0.4999999 
33 0.68D-21 0.623D-02 0.29D-09 0.4999999 
34 0.27D-25 0.397D-04 0.14D-09 0.4999998 
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