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ON THE NUMERICAL EVALUATION 
OF LEGENDRE'S CHI-FUNCTION 

J. BOERSMA AND J. P. DEMPSEY 

ABSTRACT. Legendre's chi-function, Xn (z) = E=' o z2k+1/(2k + )I)n, is reex- 
panded in a power series in powers of log z . The expansion obtained is well 
suited for the computation of Xn(z) in the two cases of real z close to 1, and 
z = e , a E R. For n = 2 and n = 3, the present computational procedure 
is shown to be superior to the procedure recently proposed by Dempsey, Liu, 
and Dempsey, which uses Plana's summation formula. 

1. INTRODUCTION 

Recently, Dempsey, Liu, and Dempsey [2] presented a procedure for the 
numerical evaluation of the series 

0? A2k+1 0? A2k+1 

(1.1) ZE (2k+1)2' Z(2k+1)3 (O<A< 1), 

(1.2) 00sin(2k+1I)a 00cos(2k+1I)a (Oa ) 
(1.2) (2k+ 1) k=O (2k + 1)3 
which arise in the mathematical analysis of unilateral plate contact problems 
[6, Appendix B]. These series are slowly convergent, particularly if A is close 
to 1. To improve the convergence, the procedure in [2] uses Plana's summation 
formula, which in turn requires the computation of several definite integrals by 
Romberg integration. 

In this paper we develop a computational procedure which appears to be 
considerably simpler. The series (1.1) are treated as special cases (n = 2 and 
n = 3) of Legendre's chi-function of order n, defined by 

0o z2k+ 1 

(1.3) xn(z (2k+ l)n lzl < 1, n=2, 3, 4 
k=O 

2 ) 

Here the terminology and notation have been adopted from Lewin [5, p. 283]. 
The chi-function can also be expressed as 

(1.4) Xn(Z) = 2[Lin (z) -Lin (-z)] = Lin (z) -2-n Lin (z2), 
where Lin stands for the polylogarithm of order n, defined by [5, p. 282] 

(5 zk 
(1.5) Linn(Z) = lzl < 1, n = 2, 3, 4. 

kl1 
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On setting z = e ia, a a 11R, in (1.3), we introduce the notations 

(1.6) Cn (aj) s )n Sn()(2k +1 ) 

k 2k +Ik=O (2k+1J)n 

for the real and imaginary parts of Xn(e'c). Obviously, the series (1.2) are 
identical to S2 (a) and C3 (a). It is shown below that the Fourier series (1.6) for 
C2n (a) and S2n+I (a) are summable in closed form, the sum being a polynomial 
in a. The functions S2n(a) and C2n+I (a) can be expressed as 

(1.7) S2n (a) = Cl2n(a) - 22n Cl2n(2a)), 

17(C2n+a() = Cl2n+ (a) - 2-2n-1 Cl2n+l (2a), 

where Cln denotes the generalized Clausen function, given by [5, p. 2811 

(1.8) Cl2n(0)= s2in() C12n+I(0) k2n+1 
k=i k=1 

In ?2 of this paper, Legendre's chi-function (1.3) is reexpanded in a power 
series in powers of log z . The expansion obtained and the corresponding ex- 
pansions for Cn (a) and Sn (a) are rapidly convergent for real z close to 1 and 
for 0 < a < 7 /2, and are eminently suitable for the computation of Xn(Z), 

Cn(a) , and Sn(a) . In ?3 the expansions are specialized for the cases n = 2 and 
n = 3, and are then used in the numerical evaluation of the series (1.1) and 
(1.2). The present approach is shown to be more effective than the procedure in 
[2] based on Plana's summation formula. Yet another computational procedure 
has been developed by Gautschi [4]. In his approach the function Xn(Z) (or 
Rn(z) in the notation of [4]) is expressed as a Stieltjes transform which is then 
evaluated by backward recursion. As for the numerical evaluation of the series 
(1.1), our procedure and Gautschi's are comparable in efficiency, except near 
(and below) A = e- and in the vicinity of A = 1 , where Gautschi's, resp. our, 
procedure is clearly superior. For the series (1.2) our procedure is believed to 
be more efficient than Gautschi's, since the latter involves complex arithmetic. 

2. EXPANSIONS FOR Xn(Z), Cn(a), AND Sn(a) 

In terms of Lerch's transcendent ID(z, s, v) [3, ? 1.1 1], defined by 

(2.1) @(Dz, s, v) =, E +k lzl < 1, v f~ 0, -1, -2, .. 

the function Xn(Z) can be expressed as 

(2.2) Xn(Z) = 2 zcD(z2I n 1 2 

We now employ the series expansion from [3, equation 1.11(9)] to obtain 

Zn(z) =2-n n 
4(- k 2) k 

(2.3) k#4n-1 

+(log z2)n- [ ()-v -o o 
+ 2n(n - 1)! [2I(n)- j (2)-lo (\log(9))] 

ilogz2 <22 
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Here, ag(s) denotes the logarithmic derivative of the gamma function [3, ? 1.7], 
i.e., VI(s) = 1P(s)/I(s). By setting m = n - k, the generalized zeta function 
C(m, 1 

) is evaluated by means of [3, equations 1. 10(1), ( 1 1), 1. 13(14), (15)]: 

( 

' 

2)E (k + 1)m 
= (2m - I)C(m), m = 2~ 3~ 4 

-2m )= -2m+l ) = O, m = 0, 1, 2,... 

(2m- I 
I 

_ 2 = -2(- )m(2m+ 1)!Z (2 r)2m+2 

=2(-1 )"(2m 2+ 1 ) ( 1-2 -2m- I ) C(2m + 2), 
- (27r)2m+2 

m=O,1 1, 2,....I 

where C(s) denotes Riemann's zeta function [3, ?1.12]. These results are in- 
serted into (2.3). Then, after some rearrangement and simplification, we find 

n-2 (o ) 

Xn(Z) = Z(1 - 2-n+k)C(n -k) k(ogz) 
k=O 

(2.4) + (2k +2) (1 - 2 2k-1 )(2k + 2)(log + 

+ 2(n-1)! [vi(n) - ( log(-2 log z)], log zI < 7r, 

where (2k + 2)n is a short notation for 

(2k + 2)n = (2k + 2)(2k + 3) - (2k + n + 1). 

The infinite series in (2.4) obviously converges if I log zI < r . 
For z = eia, a e 1R, the expansion (2.4) becomes 

n-2 (ia)k 
Xn (eli) = Z(1 -2-n+k)(n - k) 

k=O 

?? 1-2-2k-I Qn+2k+ 
(2.5) + 

in+2k (2k +2) an72k+2 

+ <~)fj, [V(n) - q/()-log(21cal + 7r i sgn (a)~ + 
2(n -1)! [ M 2 ) (| 2 g() 

By taking real and imaginary parts in (2.5), similar expansions are obtained 
for the functions Cn((a) and Sn((a), introduced in (1.6). Notice that the real 
(imaginary) part of (2.5) is a polynomial in a, if n is even (odd). Thus the 
Fourier series (1.6) for C2n (a) and S2n+1 (a) are summable in closed form, the 
sum being a polynomial in a on the intervals [O, j] and [-n, 0] . These results 
also follow from the known Fourier expansions of the Bernoulli polynomials 
(see [3, equations 1.13(14), (15)]). 



160 J. BOERSMA AND J. P. DEMPSEY 

The expansions (2.4) and (2.5) are perfectly suitable for the numerical eval- 
uation of Xn(z) in the two cases of real z < 1 , and z = e', a E 1R. Here, the 
necessary values of C(n - k) and C(2k + 2) can be taken from [1, Table 23.3]. 
From [3, equation 1.13(22)] we also have 

(2.6) C(2k + 2) (2)k( )2 B2k+2, 2(2k +2)! Bk2 

where the Bernoulli numbers B2k+2 are rational numbers, listed in [1, Table 
23.2]. On substitution of (2.6) into (2.4) and (2.5), it is recognized that the 
coefficients of the series become rational numbers. The expansion (2.4) is con- 
vergent for real z with e- = 0.0432 < z < 1. To achieve rapid convergence, 
we suggest to restrict the range to e-f112 = 0.208 < z < 1. Then in the worst 
case z = e-l2, the general term of the series in (2.4) behaves like 

I- 2 2k- 
7/1+k ,2n 

(2.7) 1 + 2)2 4(+ 2) 2) (7r 1 2k+2 (2k + 2)n 22k+2 (k oo). 

Thus, the tail of the series converges like a geometric series of ratio , and the 
truncation error is therefore less than 4 times the first term discarded. Over 3 
the remaining range, 0 < z < 0.208, the function Xn(Z) can be calculated from 
the original series (1.3). Alternatively, one might place the transition point at 
zo = 0.34 instead of 0.208. This value has been chosen such that for z = zo 
both series (1.3) and (2.4) converge like a geometric series of ratio 0.12. As for 
the functions Cn (a) and Sn (a), we establish the symmetry properties: Cn (a) 
is even in a ; Sn (a) is odd in a ; Cn (a) =-Cn(JC- a); Sn (a) = Sn(JC-a). 
Because of these properties it is sufficient to calculate Cn (a) and Sn (a) over 
the range 0 < a < 7 /2 only. The calculation is readily made by use of the real 
and imaginary parts of the expansion (2.5). In the worst case a = 7/2, one has 
again the estimate (2.7) for the general term of the series in (2.5). 

3. SPECIAL CASES n = 2 AND n = 3 
The series (1.1) and (1.2) are identical to X2(A), %3(A) and S2(a), C3(a), 

respectively. The numerical evaluation of these slowly convergent series was 
recently discussed by Dempsey, Liu, and Dempsey [2]. These authors used 
Plana's summation formula (PSF) along with Romberg integration to improve 
the convergence of the series under consideration. In this section it is shown 
that the expansions (2.4) and (2.5), specialized for the cases n = 2 and n = 3, 
provide a better alternative for the numerical calculation. 

In the special cases n = 2 and n = 3, the expansion (2.4), with z replaced 
by A, reduces to 

, 2 00 
1~)k (1-2k)'2 )(logA)2k+3 X2vA' = +Z E ( 2-IC2 ) 2k+2 

(3.1) 8 k=O (2k + 2)(2k + 3) (+ 

+ 2log A[1r+ log 2 - 1og(- log A)], e A?- <A<A1, 
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7 2 
%3(A) = (3) + 8 logA 

00 
1~()k (-22k\rk+2 (log A)2k+4 

(3.2) + Z (2k + 2)(2k + 3)(2k +4) 722k+2 

+I(logA)2 [-3+log2-log(-logA)], e`" A< 1. 

The expansion (3.1) can also be derived from (1.4) and the expansion of the 
dilogarithm Li2(ez-) in [5, p. 21]. The expansions (3.1) and (3.2) are very suit- 
able for the numerical evaluation of X2 (A) and X3 (A) over the range e-l2 < 

A < 1, say. By taking into account ten terms (Ejo) of the series in (3.1) 
and (3.2), the truncation error will be less than 7.4 x 10-10 if n = 2, and less 
than 4.8 x 10-1I if n = 3, in the worst case A = e -2. Numerical compar- 
isons were made with the PSF procedure in [2], for A = 7/4. In [2, Tables 
8 and 10], X2(7/4) and X3(7r/4) were calculated by PSF and Romberg inte- 
gration, requiring 512 subdivisions of the integration intervals for 15 decimal 
place accuracy. On the other hand, for A = 7/4 the expansions (3.1) and (3.2) 
have truncation errors less than 6.6 x 10-17 and 3.2 x 10-16, when the series 
are truncated to five and four terms, respectively. Clearly, the computational 
procedure based on the expansions (3.1) and (3.2) is undeniably superior. The 
values of C (2k + 2) needed in (3.1) and (3.2) can be found from (2.6) and [1, 
Table 23.2]; as before, the coefficients of the series in (3.1) and (3.2) become 
rational numbers. 

Next we turn to the numerical evaluation of the series (1.2), which are identi- 
cal to S2 (a) and C3 (a). By taking the real and imaginary parts of the expansion 
(2.5) with n =2, 3,wefind 

(3.3) C2(a) = -7l, lal < X, 

1) i2- 2k1C2k 
1 

)O'2+ 

S2(a) = -E (2k + 2)(2k + 3) 7(2k + 2) 2k+2 

+ Ia[[1 +log2-log lal], lal < 7, 

7 (3) ?? 1-2-2k-i a2k+4 
C3(a) = L(3) + 00 1 C21~ (2k + 2)a2+ 

(3.5) 
8 k=O (2k + 2)(2k + 3)(2k + 4) 7k 

4 2[2+log2-logloal , <_7 <, 

(3.6) S3 (a) = _8 ?- _a lal1, I a I < 7U. 

The closed-form results for C2(a) and S3 (a) are known (see [2, equation 

(la', b')]). The expansion (3.4) can also be derived from (1.7) and the ex- 

pansion of Clausen's function C12(0) in [5, p. 106]. The expansions (3.4) and 
(3.5) are again eminently suitable for the numerical evaluation of S2(ae) and 
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C3 (a) over the range 0 < a <K /2. By taking into account ten terms of the se- 
ries in (3.4) and (3.5), the truncation error is of the order of 10-9 to 10-10, in 
the worst case a = n/2. Numerical comparisons were made with the PSF pro- 
cedure in [2], for a = U/4 (see [2, Table 3]) and a = j7c/18, j = 1, 2, ..., 9 
(see [2, Table 1 1]). As indicated in [2, Tables 3 and 11], the calculation by PSF 
and Romberg integration required 64 and 128 subdivisions of the integration in- 
tervals, respectively, for 15 decimal place accuracy. For a = 7/4 the expansion 
(3.4) has a truncation error less than 9.4 x 10-17, when the series is truncated 
to ten terms. For a = j7/ 18 the expansion (3.5) has 14 decimal place accuracy 
or better, if truncated to a number of terms that increases monotonically from 
3 for j = 1 to 16 for j = 9. 

Finally, it is interesting to mention that the analysis in [2] got very close to the 
expansion (3.5). In [2, equations (17), (18)] there is an asymptotic expansion 
due to Grossman, which reads 

(3.7) C3 (t) = 
C 

c(3) - 0(t) + 10(2t) (t 1+), 
k=0 (2k +1 1)3 8k - $t q(2) ( 80) 

where 

(3.8) CO = [log (t) + 
2+ (2j 2)(2j)! 

To enable a comparison with (3.5), we set, by use of (2.6), 

(3.9) B2j-2 I)i (27>) -2j+22(2j - 2)!C(2j - 2); 

then it follows that 

-C(t) + 80(2t) = - t2 [3 + log 2 - log t] 

(3.10) (-I)i(I - 2-2j+3) __2-2) 

j=2 (2j - 2) (2j - 1) (2j) j -72j-2. 

The latter series agrees with the series in (3.5) except for the factor (-1 )i, which 
is erroneous. The error can easily be corrected by inserting a factor (-1 )i in 
the series in (3.8). This also explains the conclusion in [2, p. 700]: Grossman's 
"expression in (17) is exact for t = 0, accurate to eight decimal places for 
t = c/ 18, but accurate to only three decimal places for t = 47r/9 (see Table 
1 1)." The corrected expression is exact for all t in the range 0 < t < 7, and is 
not only an asymptotic expansion but a convergent series expansion. 
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