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A TABLE OF ELLIPTIC INTEGRALS: 
TWO QUADRATIC FACTORS 

B. C. CARLSON 

ABSTRACT. Thirteen integrands that are rational except for the square root of 
a quartic polynomial with two pairs of conjugate complex zeros are integrated 
in terms of R-functions of real variables. In contrast with previous tables, 
the formulas hold for all real intervals of integration for which the integrals 
exist (possibly as Cauchy principal values). This is achieved by using Landen's 
transformation and the duplication theorem. In an appendix, an elliptic integral 
of the third kind with a restricted complex parameter is transformed to make 
the parameter real. Also, a degenerate integral of the first kind is separated into 
real and imaginary parts. 

1. INTRODUCTION 

This paper treats integrands that are rational except for the square root of a 
quartic polynomial with two pairs of conjugate complex zeros. Integrals of the 
form 

x 5 

( 1.- 1 ) [P] = [P1 P51 ps]=j17J(ai + bit)P/2 dt, 
Yi=l 

where PI, ..., p4 are odd integers and p5 is even, are treated in [4, 5] if all 
quantities are real. Reference [8] deals with cases where P2 = P3 and a3 + b3t 
is the complex conjugate of a2 + b2t . Here we assume further that P1 = P4 and 
a4 + b4t is the complex conjugate of a1 + b1t. That is, we consider 

x 2 
(1.2) [PI 5 P2, P2, PI Ps] = J J(f + git + hit2)P/12(a5 + b5t)P512dt, 

Yi=l 

where all quantities are real, x > y, fi + g t + hit2 > 0 for all real t, P1 and P2 
are odd integers, and p5 is even. We retain the redundant notation on the left 
side of (1.2), omitting P5 if it is 0, for consistency with [5, 8]. Section 2 contains 
the 11 cases (apart from exchange of P1 and P2) with 2lp II + 2 IP21 + IP51 < 8 
and 2PI + 2P2 + P5 <0 , as well as [1, 1,1 1, -2] and [1, 1, 1, 1]. The 
formulas hold for all x and y for which the integral exists (possibly as a 
Cauchy principal value if p5 = -2). 
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In Byrd and Friedman's table [1, ?267] such integrals are listed only with a 
lower limit that depends on the parameters in the integrand, and a restriction 
on the upper limit is added in [9, 3.145(4)] so that q in Legendre's F(0, k) 
is between 0 and 7/2. Also, there is an ambiguity of sign; e.g., [1, 267.00] 
with al = a2 = VX_ is correct if b2 = -bl = 1/2 and y = 1 but incorrect if 
b, = -b2 = 1/2 and y = 2 unless g, is taken to be the negative square root 
of g2. 

The integrals (1.2) are expressed in terms of four R-functions: 

I 00 

(1.3) RF(X,Y, Z) [(t + X)(t + y)(t + Z)]f1/2 dt, 

(1.4) Rj(x,y,z,W)= 2 j[(t + X)(t + y)(t + Z)]fI2(t + w)1 dt , 

and two special cases, 

RD(X, Y, z) Rj(x, y, z, z) 
and 

(1.5) RC(x, y) = RF(X, Y, Y)= (t + x)-112(t + y)-1 dt. 

The functions RF, RD, and RJ respectively replace Legendre's elliptic inte- 
grals of the first, second, and third kinds, while RC, which requires special 
attention in this paper, includes the inverse circular (if 0 < x < y) and inverse 
hyperbolic (if 0 < y < x) functions. Fortran codes for numerical computation 
of all four functions are listed in the Supplements to [4, 5] and are available in 
several major software libraries. 

In [8] a Landen transformation was used to change the first two variables 
of RE, RD, and RJ from complex to real numbers; the remaining variables, 
including those of RC, were never complex. In the present paper the complex 
variables are the parameter (the fourth variable) of RJ and both variables 
of RC. However, a Landen transformation of RE and RD is used in ?3 to 
eliminate a restriction on the interval of integration that arose in [3] because 
of a branch point. In ?4 the complex parameter of RJ is made real, not by a 
direct Landen transformation but by an inverse Landen transformation followed 
by the duplication theorem (see Appendix A), a combination that also takes 
care of the branch-point problem. The function RC with complex variables 
is separated into real and imaginary parts in Appendix B, and the imaginary 
part cancels another RC that comes from the inverse Landen transformation 
of RJ. 

The formulas of [5, 8] made it unnecessary to do any further work with 
recurrence relations, although conversion to notation appropriate for this pa- 
per sometimes entailed tedious algebra. The integrals I2, I3, and I3 used 
previously are now complex, but the eventual cancellation of imaginary terms 
provided a partial check. The 13 integral formulas in ?2 were checked by nu- 
merical integration; some details of the checks are given in ?5. The variables of 
RJ and RC are nonnegative, even when the three integrals with p5 = -2 have 
their Cauchy principal values. 

2. TABLE OF INTEGRALS 

We assume x > y and fi + git + hit2, >O for i = 1, 2 and all real t. 
Some relations useful for numerical checks are included among the following 
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definitions: 

(2.1) j= (f + gix + hiX2)112 qi = (ft + giy + 

(2.2) = (gi + 2h1x)/241, /j = (gi + 2h,y)/2i1i, 

(2.3) B= U2- j ' 
q2, E = XlX2 2-1 q, 

q 2, 

(2.4) i =2f + gi(x + y) + 2hixy i - hi(xy)2, 

(2.5) Ci = (2ctjqj + tw)1/2 = [(4i + q -)2 - hi(x _ y)2]1/2 

(2.6) U = (4I rq2 + q1l42)1(X - Y), M =I 21 /(X - y), 

(2.7) =5j = (2f hj + 2fjhi - g1gj)1/2, A = ((52 - (i1(522)1/2 

(2.8) A4- - -52 ?A5, L4 = M2 + A?, L+L_ = 2MU, 

(2.9) G = 2AA+RD(M2, L2, L+)/3 + A/2U 

+ ((526 -2 +(12201 -11 02)/441 q, U, 

(2.10) RF=RF(M2,L, L+), I= G-A+RF+B. 

For integrals with p5 $A 0 we also define 

(2.11) ai5= 2fib5- ga5, fi5= gib5- 2hia5, 

(2.12) yi = (ai5b5 -iJ5a5)/=2 f 2- gia5b5+ hia2 > 0, 

(2.13) A =521Y2/YI, 2 = m2 + A, 

q/ = (a15/3251-5)/2 

(2.14) = (g1h2 - g2h1)a 2 - 2(f1h2 - f2h1)a5b5 + (fi9g2 - f2g,)b , 

2 - _ 52l y2 + 2(2 1ylY2 - I222Y1 = YI Y2(A+ - A)(A - A-)/A 

(2.15) 45 = a5+ b5x, 5= a5+ b5y, 

(2.16) A(pl, 5P2 5 P2 5 PI , Ps) = 41<2 2,5 1 -U2 P5l 

(2.17) X = [K5(a15 + 315Y)>12/11 + qj5(aI5 + f15X)42/1i]/2(x - y) 

(2.17) - j= s5q[OIA(-l 1 , 1 , -1)/2 - X5q5A(l 1 , 1 , 1 ,-4)]/(x -y)2 

(2.18) S = (M2 + ?32)/2 - U2 = (I1602 + ?2qj26I)/(x-y)2, 

(2.19) ' = Y1I5'1/51l1l , T = ,uS + 2y1Y2, V2 = JL2(S2 + AU2), 

(2.20) a = SQ21U + 2AU, b2 = (S2/U2 + A)Q4, 

(2.21) a2 = b2 + A2yi2/yiy2= b2 + A(A+ - A)(A - A-), 

(2.22) H- llh[Rj(M2 , L2 L+ 2)/3 + Rc(a2, b2)/2]/ y 
-XRC(T2, V2). 

We shall want some of the quantities above when a5 = 1 and b5 = 0. These 
will be labeled by a subscript 0: 

(2.23) Ao =5bl1h2/h1, Q2 =-M2?+Ao, 
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(2.24) V'o = g1h2 - g2h1, 

(22 = -52l1h2+ 2C52 h1h2 -_ d2 h2 = h1h2(A+ - Ao)(Ao - A-)/Ao, 

(2.25) x0 = -(U2 + ?1i?2)/(X - y) 
= [01A(- 1, 1, 1,- 1)/2 -A(l, 1, I1, 1)]I(X _y)2, 

(2.26) io=hj/ljqj, To= uoS+2hh2, V02 = (2 + AoU2), 

(2.27) ao = SQ21U + 2AoU, b2 = (S2/U2 + Ao)Q4 

(2.28) a2= b0 2 + A2 2I/hih2= b2 + Ao(A+ - Ao)(Ao - A-), 

(2.29) Ho = 1h y,o[Rj(M2 , L2, L+, Q0)/3 + Rc(ao, bo)/2]/hl 
- XoRC(TO, V) . 

If the interval of integration is infinite, convergent integrals (with 2p, + 2P2 + 

P5 < -4) do not involve Ho. If x +-* oo and y is finite, we find (for i = 1, 2) 
that 

(2.30) 2h1/2x Oi -(gi+2hiy)x, 
2 

(2.31) U = h 12 q2?h 12qi, M2 - fJ(2h 1'2qi + gi + 2hiy). 
i=1 

If y -oo -0 and x is finite, then (for i = 1, 2) 

(2.32) l i hi lII, Oi (gi + 2hix)y, 
2 

(2.33) U = h 12 2+ h'12Xl, M2 = FJ(2h 12'i - gi - 2hix). 
i=1 

If x = -y -- +oo, then (for i= 1, 2) 

(2.34) j- qi -hi2x, Oi - -2h1x2, Ci = c5ii/hi1, 
1/U = M = Rc(a2, b2)= XRC(T2, V2) = 0. 

In all three of the limiting cases an identity useful for (2.41) is 

B - b5A(1, 1, 1, 1, -2) 

= (a15 + /l15Y)q2/2qq5 - (a15 + i15X)42/2X?Xs5 

Aside from interchange of Pi and P2, there are 11 integrals 
X 2 

(2.35) [Pi, P2, P2, Pi, P]5= n(f + git + hit2)pil2(a5+ b5t)P5/2 dt 
i=1 

with odd integers Pi , P2 and even integer p5 such that 2 pII + 2IP21 + IP51 < 8 
and 2p1+2p2+ps < 0 . We shall include also [1, 1, 1, 1, -2] and [1, 1, 1, 1] . 
The integral of the first kind is 

(2.36) [-1, -1, -1, -1] = 4RF, 

and the next two integrals are of the second kind: 

(2.37) [-3, 1, 1, -3] = 4(-G + A+RF 



A TABLE OF ELLIPTIC INTEGRALS: TWO QUADRATIC FACTORS 169 

[-3, -1, -1, -3] = 8hl [(Ao - (52 )G/A - (AO - A+)RF]/02,A 

(2.38) -4yoA(-1, 1, 1,-1)/A2. 

Like the three preceding integrals, three integrals of the third kind with 2pi + 
2P2 + P5 < -4 are not restricted to finite intervals of integration. They involve 
H but not HO: 

(2.39) [-1, -1,-1, -1, -2] = -2(bsH + /1sRF/YI), 

[1,-1,-1, 1-4] 

(2.40) = [IH + G + (A - A+)RFI/Y2 
-[/15A(-1, 1, 1, -1) + 2y,A(-1l, 1, 1, -1, -2)]/2b5y2, 

(2.41 ) [ - 1 1 -1, - 1 1, -4] = b5(/15/YI + /25/Y2)H +/3g2RF/Y 
2 

4-b52[ - b5A(l 5 1,5 1, 1, -2)]/1yiY2 

Seven integrals of the third kind have 2P1 + 2P2 +P5 > -2 and exist only for 
finite intervals of integration. Four of them with p5 > 0 involve HO but not 
H: 

(2.42) [-1, -1, -1, - 1 , 2] = 2b5Ho - 2/15RF/hl, 

(2.43) [1, -I, -1, 1] = (IoHo? + + AORF)/h2 , 

(2.44) [-1, -1,-1,-1, 4] = - b5(/31/h1 + 820/h2)Ho 
+ b2h h2 + 325 RF/h2, 

[1 , 1 , 1 , 1] ]- (2_/h2- /h2)[2oHo + (Ao- 12)RF]8 

(2.45) - (3q4 - 4hihr22)(X + 52 RF)/24h2 h2 

+[A2RF-yIoA(l, 1,1 1)]/12h1h2+E/3h, . 

The final three integrals have p5 < 0 and involve both H and HO: 

(2.46) [ 1, -1, -1 1, -2] = 2(-y,H + h1Ho)/b5, 

[1, 1, 1, 1, -2] = -2y,y2H/b5 + [(hiy2 + h2yI)/b53- yi/4hih2b5]Ho 

(2.47) + (/J15/h1 ? /J25/h2)(1 + AORF)/4b5 

-(121 VIRF12h12b5 +A(l 5 1,5 1, 1)/2b5, 

(2.48) [1, 1, 1, 1,-4] = Y[- /25 + y2/15)H + (hi/b25+h2915)HO 5 

+ [21 + (A + Ao)RF)]/b52 - A(l 1 1 , 1 , 1 , - 2)/b5 

3. INTEGRALS OF THE FIRST AND SECOND KINDS 

In this section we derive (2.36), (2.37), and (2.38). By [5, (2.13), (2.17)], 

X4 
II =j fJ(ai + bit)- 2dt = 2RF (U2, U13, U14) 

i=1 

(3.1) (X-Y) Uj = Xj Xj Yk Ym + Yi Yi Xk Xm, 

Xi= (a1 + biX)1/2, Yi = (ai + i)l 
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where i, j, k, m is any permutation of 1, 2, 3, 4. Let 

(3.2) (a, + b, t)(a4+ b4t) = fi + git + hit2 > , -oo < t <00, 

(a2+ b2t)(a3+ b3t) = f2 + g2t+ h2t2 0, -oXo < t < oo. 

Then the biquadratic polynomial in the integrand of 
rx 

(3.3) I= j[(fi + git + hit2)(f2 + g2t + h2t2)]-1/2 dt 

has two pairs of conjugate complex zeros. Equation (3.1) remains valid by the 
permanence of functional relations if the Uij are in the open right half-plane. 
We shall see that Ul4 > 0, and we may choose Ul3 > 0. Although U12 is 
real, it may be negative, and (3.1) is then invalid if RF is taken to have the 
principal value represented by the integral (1.3). The reason is that RF, as a 
function of any one of its variables, has a branch point at the origin [2, ?8.3]. 
When U12 describes a semicircle about 0 from the positive to the negative 
real axis, U,2 makes a complete circle and RF returns to a different branch. 
Negative values of U12 may occur, as shown in [3, ?4], when the quadrilateral 
whose vertices are the complex zeros has diagonals intersecting at an interior 
point of the interval of integration. The integral I, can then be expressed in 
terms of two standard integrals by breaking the interval of integration at the 
intersection. In the present paper we shall eliminate this complication by using 
Landen's transformation [7, (5.5)] to write 

I, = 4RF(M2 L2 , L2), M= U12 + U13, 

(3.4) L? = [(U14 + U12)(U14 + U13)]1/2 ? [(U14- U12)(U4 - U3)]1/2, 

L+L_ = 2MU14, LA -2 = [(UI24-U1?2)1/2 ? (U?4 _ U23)1/2]2, 

where M A L_, and L+ will be proved nonnegative for every interval of in- 
tegration. Alternatively, the duplication theorem could be used for the same 
purpose, but the resulting expressions are less simple. 

In (3.2), since only fi, gi, and hi are given, we may choose b1 = b4= h /2 > 
0, b2 = b3 = h-12 > 0, Im(al) > 0, and Im(a2) > 0. If we assume x and 
y to be finite and take the principal branch of the square roots in (3.1), then 
XI, Y1, X2, Y2 lie in the open first quadrant of the complex plane, while their 
respective complex conjugates X4, Y4, X3, Y3 lie in the open fourth quadrant. 
It is clear that Ul4 > 0 because both terms of (x - y) Ul4 are strictly positive 
and we assume x > y. The same assumption, along with Im(al) > 0, shows 
that 

Im(Xl2Y) = Im[(aI + b1x)(a4 + b4y)] = hi'2(y - x)Im(al) < 0. 

Thus, XI Y4 is in the open fourth quadrant if x and y are finite, and a similar 
argument shows that X3 Y2 is in the open first quadrant. Hence the product 
XI X3 Y2 Y4 is in the open right half-plane, its real part is positive, and U13 > 0. 
Because X2 Y3 is the complex conjugate of X3 Y2 and so is in the open fourth 
quadrant, XI X2 Y3 Y4 is in the open lower half-plane, and Ul2 may be positive 
or negative. However, XI Y4 + Y1 X4 and X2 Y3 + Y2X3 are both strictly positive, 
whence 

(3.5) U12?+ U13 = (X1Y4?+ Y1X4)(X2Y3?+ Y2X3)/(x - y) >0. 
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It follows from (3.1) that 

(3.6) UTk - Um = dijdkm, dij = aib -ajbi. 

In particular, we see that 

U4 - U1 = dl2d43 = JdI212 > 0, 

(3.7) u2 - u2 = dI4d32 > 0, 

TT2 - u2 = dI3d42 = 1dI312 > 0. 

Note that dl2 :$ 0 because we exclude the degenerate case where a, + b, t is 
proportional to a2+ b2 t (whence f1 + g1 t+ h1 t2 is proportional to f2+g2t+h2t2, 
and the integral (3.3) is elementary). The second inequality holds because dI4 
is positive imaginary and d32 is negative imaginary. Finally, dI3 $A 0 because 
Im a1 > 0 and Im a3 < 0 . We may now conclude, if x and y are finite, that 

(3.8) U14 > U13 > 0 and - U13 < U12 < U13. 

By (3.4) it follows that M> 0, L+ > L >0, and L2 - M2 > 0, whence 

(3.9) L+ > L_ > M > O. 

Since L3r - M2 depends only on the quantities listed in (3.7), which are inde- 
pendent of x and y, both (3.9) and (3.8) are still valid if either x or y is 
infinite, but not both. If the interval of integration is the whole real line, then 
U14 = U13 = -U12 = +oo and M = 0, as we shall show later. 

Again assuming x and y to be finite, we shall now express M and L? in 
terms of f, gi, and hi. Let 

Xl = XX4 =(f? + glx + hlx2)1/2, 42 = X2X3= (f2 + g2x + h2x2)112, 

q, = YY4 =(f? + gly + hIy2)I/2, q2 = Y2Y3 =(f2 + g2y + h2Y2)112, 
(3.10) = XIY4 + Y1X4 = 2Re(XiY4), C2 = X2Y3 + Y2X3 = 2Re(X2Y3), 

61 = X2Y2 + Y12X 2 = Q2 - 241jq, 2 =x 2 + Y22 = 2 - 222. 

Then Xj, qi, and Ci are positive, but 6i need not be. By (3.4) and (3.5) we 
see that 

(3.11) Mi = 4142/(x - y) 1 Si2 = ( + q)2 - hi(x _ y)2, 

where the second equation follows from 

(3. 12) C2 -(XI y4 + y1 X4)2 = (XIX4 + y, y4)2 _ (Xl2 _y12)(X42 -y2) (3.12) 14 

and similarly for 2. 

If we define 

(3.13) ij= (2fihj + 2fjhi - g,gj) 12 

then 5ii > 0 because fi + git + hit2 > 0 for all real t. A stronger result than 
512 > 0 will be given in (3.17). By (3.2) we have 

al b4 + a4b1 = g1, (al b4)(a4b1 ) = fi h1.f 
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We solve these two equations for a1 b4 and use the assumption Im(al) > 0 to 
find 

(3.14) alb4 = (g1 + i,1j)/2, d14= a1b4- a4b1 =id 1. 

A similar procedure yields 

(3.15) a2b3 = (g2 + i522)/2, d23 = i522 

Thus we find 

Id2 1 = d12d43 = (a b2 - a2b,)(a4b3 - a3b4) 

(3.16) = f1h2 +f2h1 - 2Re[(g + id?h1)(g2 - i522)/4] 

- (12 - (511(522)/2. 

Since d12 54 0, except in the excluded degenerate case (cf. (3.7)), we have 

(3.17) 52122 > 0511022 > 0. 

A similar calculation leads to 

(3.18) Id2 I = ((52 + 05110522)/2. 

We define 

(3.19) A = ('42 - (52 5'222)1/2, A4 = 052 'A > ?, 

and use (3.7) and the last equation of (3.4) to get 

(3.20) U12-U?4 - U a1 12 4 ( ?1122)/2, U?4- U13 = (562 -s11022)/2, 

(3.20) U 1=3-U2= 11522, L 
The last equation and (3.1 1) allow calculation of M2 and L? . 

If the interval of integration is infinite, we take the appropriate limit in (3.1 1) 
to find (2.31), (2.33), or (2.34). In the first two cases, M2 is a product of two 
factors such as 

2hJ1'2k - gi - 2hix = [(gi + 2hix)2 + j2]12- (gi + 2hix) > 0. 

Hence, M > 0, except when the interval of integration is the whole real line. 
An integral of the second kind used in previous parts of this table [5, (2.14), 

(2.1 7)] is 

(3.21) 12 =[I 1,,-1,53] 
= 2dl2dl3RD( U2, U, U24 )/3 + 2XI YI/X4 Y4 U14 . 

(Since Pi 54 p4, this integral is now complex.) Putting w = z in [7, (8.5), (5.5)] 
to obtain the Landen transformation of RD, and using the notation in (3.4), 
we find 

(3.22) A\RD( U2, U2, U2) - 8A+RD (M2, L2 , L2) 
- 12RF(M2 , L 2 L2 )+ 6/U14. 

Substituting in (3.21) and using the identities 

(3.23) d12d_3d24d34 = 1d_2d _ 12 = A2 IA 
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we get 

(3.24) I2 = 4d12d13[2G - 2ARF -ik11A(-1, 1, 1, -1)]/A2, 

(3.25) G = 2AARD (M2 , L2, L+)/3 + A/2U + (126ol - 6l2 02)/441 qh U, 

where we denote RF(M2, L2, L+) by RF and U14 by U forbrevity. 
The integrals [-3, 1, 1, -3] and [-3, -1, -1, -3] can now be obtained 

from [8, (2.24), (2.23)]. In the second case, we use the identity 

2dl2d13 = [hi(5l2 - h2(52 + i(gih2 - g2h1 I ]1h (3.26) - 1li2 - Ao + iyios511/h1- 

4. INTEGRALS OF THE THIRD KIND 

We shall encounter Rj(U12, U123, U14, W2), where the first three variables 
are real but W2 is complex. The function can be changed by Landen trans- 
formation [8, (4.14)] into Rj(M2, L2, L+ W+2), but W+2 also is complex. 
Instead, an inverse Landen transformation followed by the duplication theorem 
leads to Rj(M2, L2, L2, Q2) with real Q2. This combination of two trans- 
formations (see Appendix A) is equivalent to a direct Landen transformation 
for integrals of the first and second kinds but not the third kind. 

In (A.8) we identify (z, z+, a) with (U12, U13, U14) and find from (A.9) 
and (3.4) that (+ + i, y2 + i, z2 ?A) - (L2, L+, M2). Because of [5, (2.15), 
(2.9)], we put 

(4.1) w2 = W2 = U2- d2dl3d45ldl5 

Since d15 and d45 are complex conjugates, it follows that Ja2-w+22 = Jd12d1312. 
By (3.7) the condition (A.2) is satisfied, and so w2 is the complex conjugate 
of w2: 

(4.2) w2 = U2 - 4342d15145 

We define 

(4.3) -2 = w2 + A, w = w+w_/U14, 

and find from (A.3), (3.7), and [4, (5.22)] that 

-2 _ M2 = W2 Z2 = w2 + W2 _ Z2 _ 2 

= (U14 - U13) + (U14 - U12) - -4342d 

= (dl2d45 - d42d15)(d43d15- dl3d45)-dl5d45 

= (dIA5- d42d15)l/d15 2 = Jd14d251d15 12. 

Defining 

(4.4) yi = Jdi5 2 = f b2- gia5b5+ hia 2, i = 1, 2, 

we note that yi > 0 because Imdi5 $A 0. By (3.14) we have 

(4.5) n22=M2+A) w2=z2+A, A=5l2 1y2/yI>O. 

Since Q2 > 0, we may choose Q > 0. Then it follows from (3.9), (A.5), (4.3), 
and (3.20) that 
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where M = 0 by (2.34) only if the interval of integration is the whole real line. 
It will be useful to define also (for i = 1, 2) 

(4.7) ai5 = &Yi/&b5 = 2fib5 - g1a5, /35s = -,yj/,a5 = gib5 - 2hia5, 

whence 

(4.8) yi= (ai5b5 - i?5a5)/22. 

(The definitions (4.7) are equivalent to a15 = a1d45 + a4dI5 and /J15 = b1d45 + 
b4d15, and similar relations for a25 and 325.) 

From (4.1) and (4.2) we can obtain a coefficient in (A.8): 

w+ - w2 = -dl2dl3d45ldl5 + d43d42d51/d45 

= -(2i/yI)Im(dI2dI3d245). 

It is straightforward to show by (3.6) and (3.2) that 

dI2d45 = a5(hIa2 - alb4b2) + b5(fib2 - a4bia2) 

Replacing the subscript 2 by 3, multiplying dI2d45 by dI3d45, and taking the 
imaginary part with the help of (3.14), we find 

(4.9) w+ - w2 = -ic511 q/Yi, 

where 

i/ = (a15 25 - a25/315)/2 
= a5 (g1h2 - g2h,) - 2a5b5(fih2 - f2h,) + b5(f1g2 - f2gI) 

Incidentally, with the help of (A.3) and (3.19) we see that 
(4.10) (w+ - w2 )2 = (X2 _ w 2)(y2 _ W2) = (L2 - Q 2)(L 2 _ 2- 

= (A_ - A)(A+ - A) = A2 - 262 A + 6522. 

Substituting A from (4.5) and comparing with (4.9), we get 

(4.11) 0 > (W2 _ W2)2 = -A 21y,Y2 

where 
2= _2y2 + 2352y1y2 - 222Y1 > 0, 

a result that is tedious to obtain by squaring qi. Although it provides a useful 
numerical check, the last equation does not determine the sign of qi, which 
may be positive or negative. 

Since b = w(w2 + A) = wQ22 by (A.6), we can now write (A.8) as 

2(W2 - U24)Rj (U12, U23, U24, W2) 
(4.12) = -i(61, yi/yI)[2Rj(M2, L2 L2 22) + 3Rc(a2, b2)] 

+ 6RF(M2, L2, L2 )-3RC(z2 W2) 

where W2 is given in (4.1) and 

Z = U12 U13/U14, w2 _ 2 = 2 - M2 = A = Y2/Y, 
(4.13) U=w123 

4 
I2I Y221= A2y2/ 2= AfA?-AI(A-A) 
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An integral of the third kind used in previous parts of this table [5, (2.15), 
(2.17)] is 

( 2d2d1 3dl4RJ(Uj22, U,3, U24, W2 )/3dl5 + 2RC (P2 , Q2). 

Substituting (4.12) and using (4.1), (3.14), and (4.4), we find 
I /2d15 = - 2 VI[Rj(M2, L2, L2, Q2)/3 + Rc(a , b2)/2]/y2 

- iU3IRF/yl + i61IRC(z2, w2)/2y, + RC(P2, Q2 , dI5, 

where RF = RF (M2, L2, L2). 

We shall separate the real and imaginary parts of the last term, 

(4.16) RC(P2, Q2)/dI5 = RC((dI5p)2, (d15Q)2), 

and find that the imaginary part cancels the next to last term. Putting d15P = 

X + iY and referring to (B.1) in Appendix B, we shall need X, Y, X2 + 
y2, IdI5Q14, and 

(4.17) c = d5 (Q2 - p2) = -d25d35dl5d45 = -Y Y2, 

where we have used [5, (2.5)] and (4.4). It follows from [5, (2.8)] and (3.10) 
that 

(4.18) (x - y)(X + iY) = (x - y)dl5P = (j5s2l/I)dl5X42 +(U2lql)dlsY42 

where 
45=X52=a5+ b5x, q5 = Y2a5 b5y 

Using (3.14) and (4.7), we find 

(4.19) 2dI5X4 = 2(ab5 -a5bi)(a4?b4X) = aeI5 + ? 15x + idll5, 

and similarly for d15Y42 . Substitution in (4.18) yields 

(4.20) 2(x - y)X = q5(aI5 + fll5x)42/1i + 45(aI5 + /15Y)'2/'l, 

2Y = 51145q5(k2/1 + ?2/ll)/(X -y) = 611455 Ul 

Instead of squaring X and Y, it is easier to get X2 + y2 by calculating 
IdI5PI2 = y, IPI2 from [5, (2.8)]: 

(4.21) (X - y)2lPl2 = (45 2)2 + (q522)2 + X5 q5s2 q2(X4Y/IXI Y4 + X1 Y4/X4YI) 

(4.21) = (s5 q2)2 + (q5s2)2 + 45qA5O1I2 l2/ 1?1 

From Y2 = d25d35 and (x - y)di5 =- 52 - 5X2 it follows by (3.10) that 

(4.22) (x _ y)2 Y2 = (4s5 2 )2 +(q542 ) 2- _5q5r2, 

and hence 

(4.23) (x - y)2lPl2 = 5565(02 + 012?12/Iql ) + (x -y) Y 

Defining 

(4.24) S=- Uz = U12 U13, 
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we find 

(x - y)2S = (X1 X2 Y3 Y4 + YI Y2X3X4)(X1 X3 Y2 Y4 + Y1 Y3X2X4) 

(4.25) = 4i6i1(X2Y3 + Y2X3) ? 2,2(X2Y2 + Y12X42) 
= cl 062 + 4?261 

and thus 

IP12 = 45 q5S/4II l + Y2, 
(4.26) x2 + y2 - YIXs sS/Il + YI Y2 = 85 + YI Y2 = T-YI Y2, 

JL= YIcA5?7/c101, T = pS + 2y1Y2. 

Finally, [5, (2.5)], (4.1), and (4.3) imply 

(4.27) IdI5Q14 = (W+W_)2= (uUw)2 = J2U2(z2 + A) = V2 
(.)2 =2(S2 + U2A), 

while 

(4.28) X2 + y2 + c = S?+ Y1Y2 - Y1Y2 = uUz . 

From (B.1) we now have 

RC(P2, Q2)/dI5 

(4.29) = XRC(T2, V2) - i(3ijjiU/2yj)RC((1uUZ)2, (yuUw)2)) 
= XRC(T2, V2) - i(i I /2y,)RC(Z2, w2). 

The last term cancels a term in (4.15) to yield 

(4.30) I3 = -2d15(H + id1 RF/YI), 

where 

H = 3j2 IV[Rj(M2, L2, L2, Q2)/3 + Rc(a2, b2)/2]/y2 - XRc(T2, V2). 

Using a subscript 0 to label quantities in which we have put a5 = 1 and b5 = 0, 
we obtain from [5, (2.17)] also 

(4.31) I3' = 1-, -1] = 2b,(Ho + i(5jjRF1hj), 
where 

H0 - 32 y'o[Rj(M2, L_, L2 Q0)/3 + Rc(ao, bo)/2]/hl - XoRc(TO2 , V02). 
Since I,, I2, I3, and I3 have now been reduced to R-functions of real vari- 

ables, the ten integrals of the third kind in ?2 can be derived by substitution 
in the formulas of [5, 8] (the latter if the odd p's are not in decreasing or- 
der). Converting coefficients to the notation of this paper is straightforward 
but sometimes tedious. In addition to the recurrence relation [5, (4.8)], the 
following identities are useful: 

(4.32) 2d24d34 X2Y12 = (32 1l-_ 2 102)/2- i,51 11 ijUA(-1 , 1, 1,-1), 
(4.33) h1/2A(l, 1, 1, -1) =B + i3i1A(-1, 1, 1, -1)/2, 

(4.34) h1/2A(3, 1, 1, 1)=E+i3i1A(1l, 1, 1, 1)/2, 

where B and E are defined in (2.3). 
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5. NUMERICAL CHECKS 

The 13 integrals in ?2 were checked numerically when x = 2, y = -3, 
(fl, gi, hi) = (2.7, -1.8, 0.9), (f2, g2, h2) = (2.0, 2.4, 0.8), and (a5, b5) = 
(1.1, -0.4). (The zeros of the quadratic polynomials are 1 + iv/2 and 
(-3 + i)/2. Because S < 0, the validity condition [3, (33)] is violated (cf. 
(4.25)), and the integral of the first kind would have to be split in two parts 
before using [3, (34)].) In each of the formulas (2.36) to (2.48) the integral 
on the left side, defined by (2.35), was integrated numerically by the SLATEC 
code QNG. On the right side the quantities RF, G, H, HO were calculated by 
using the codes for R-functions in the Supplements to [4, 5], and the remaining 
calculations were done with a hand calculator. For each of the 13 cases the 
values obtained for the two sides agreed to better than one part in a million 
(better than the claimed accuracy of QNG). 

Some intermediate values are 

M2= 0.36362947, RF(M2, LI2, L2) = 0.54784092, 
L2 = 0.53423014, RD (M2, L2 L2) = 0.042910488, 
L+2 24.673029, Rj(M2 L2 L2 Q2) = 0.048599080, 

Q2 = 21.199185, Rj(M2, L2, L+I, Q) = 0.12739513, 
Rc(a2, = 

02 = 6.1236295, Rc(a2 b2) 0.0098889795, 
2= 11237.193 Rc(a 2I b2) = 0.050085175, 

b2= 9741.4746, Rc(T2, V2) = 0.58372845, 

a0 = 844.71933, Rc(To2, V02) = 0.94657139, 
b 2= 247.52253, G= 10.495586, 

T = 10.288757, H= 0.049905556, 

V2 = 1.1362990, HO = -1.8557835, 
TO2= 1.1328716, A(-1, 1, 1, -1) = 1.5731367, 

VJ2=2 1.1077327, A(1, 1, 1, 1) = -0.49594737, 
X =-1.1571677, A(-1, 1, 1, -1, -2) = 6.2622360, 

XO= -0.093427949, A(1, 1, 1, 1, -2) = 14.845682. 

As a test of Cauchy principal values, the three integrals with p5 = -2, viz. 
(2.39), (2.46), and (2.47), were checked numerically with the same values of 
x, y, fi, gi, and hi as before but with a5 + b5t = t, so that each integrand 
has a simple pole in the open interval of integration. In each case the Cauchy 
principal value of the left side was computed by the SLATEC code QAWC, 
and the right side was calculated as before. Cauchy principal values are not 
required for either RJ or RC, as one can see from (4.6) and (2.19), since 
V2 > 0 whether 45 15 is positive or negative. For each of the three cases the 
values obtained for the two sides agreed to better than one part in a million, 
even though the SLATEC code issued a warning about impairment of accuracy 
by roundoff error in the case of (2.47). 
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APPENDIX A. RJ WITH A RESTRICTED COMPLEX PARAMETER 

When the fourth variable of RJ is complex but has a special relation (see 
(A.2)) to the first three variables, which are real, transformation (A.8) leads to 
RJ with four real variables. To derive this, we start from the inverse Landen 
transformation [7, (8.5), (5.7), (7.2)], 

2(W2 _ a2)Rj(Z2 ,Z2 ca2 w2) =(w+-w2 )Rj(X2, y2, z2, w2) 

+ 3RF(X2, y2, Z2) - 3Rc(Z2 W2) 

y + x = 2a, y - x = (2/a)[(a2 - z2)(a2 - z2)]1/2, z = zz_/a, 

w = W+W/a, (a2 _ w2)(a2-w2) = (a 2 _ z2)(a)2 _ Z2) 

We are concerned with the case in which w+ is not real, a > z+ > 0, and 
-z+ < z_ < z+. (We exclude the degenerate case a = z+, in which RJ 
is elementary, w2 = a2, and w2 = w+, whence w2 is complex.) The last 
equation in (A. 1) defines w2 and shows, since the right side is positive, that 
a2 - w+ and a2 - w2 have equal and opposite complex phases. If they have 
also the same absolute value, i.e., if 

(A.2) la 2 - 412 = (a2 _ 2 )(2 _ 2) 

then w2 is the complex conjugate of w+, and hence w2 > 0. Since w cannot 
vanish, we may choose w > 0, whence w_ is the complex conjugate of w+. 

From (A.1) and (A.2) we see that y > x > 0 and 

xy + z2 Z2 + z2 xy +w2 2 + w2 

(A.3) (x + y)z = 2z+z_, (x + y)w = 2w+w, 
(X ? Z)(y Z) = (Z+ Z_)2, (x ? w)(y w) = (w+ W_)2 
w2 _ z2 = w2 + w2 z2 _ z2 

We find also that 

x2 _z2 = [(a2 _ z2 )1/2 - (a2 - z2)1/2i2 

y2 _ z2 [(2 _ z2 )1/2 + (a2 -z2)1/2]2 
(A.4) - 

= [(a - w2)/ +a 
x2- _ 2 2 _(2w 2 )1/2 _ (a 2 _w2)1/2i2, 

2 = Ua 
- 

+ 

y2 _ w2 = [(a2 _ w2 )1/2 (a22 )1/2i2 

Since (x - w)(y - w) = (w+ - w_)2 < 0 and x2 - z2 > 0, we have 

(A.5) y>w>x>O and -x<z<x. 

If z_ < 0, then z < 0, and the R-functions in (A. 1) do not take the principal 
values represented by (1.3) to (1.5). A remedy is provided by the duplication 
theorem [7, (6.1)(8.7)]: 

RF(X2, y2 z2) = 2RF(X2 + A y2 + A Z2 + A), 

(A.6) Rj(x2, y2 z2, w2) = 2Rj(X2 + A, y2 + A, z2 + A W2 + A) 

+ 3Rc(a2 b2), 
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with 

= xy +xz +yz, a = w2(X + y + z) + xyz, 

b = w(w2? A), b a =(w +x)(w+ 2y)(w + z). 

It follows from (A.5) that b - a <0. Since Z2 + A = (z + x)(z + y) is a product 
of nonnegative factors, and w2 + A > z2 + A by (A.5), we have 

(A.7) a > b > O. 

Finally, we combine (A.6) and (A. 1): 

Theorem. If (A.2) holds, let w_ be the complex conjugate of w+ . Then 

2(W- a2 )Rj(Z2I Z, ,a2, w2) 

(A.8) = (W2 -w2 )[2Rj(X2 + A, Y2 + A, Z2 + A W2 + A) + 3Rc(a2 b2)] 

+ 6RF(X2+ A Iy2+ A, z2 A) )-3RC(z2 w2, 

where 

ak > z+ > O, -z+ < z_ < z+, Im(w+2) :A O, 
z = z+z/a, w = W+W/a, Z29+ = (z+ +z)2, 

x2 + A = (Z? + Z_2 + [(a2 - Z2)1/2 - (a2 _ z2)1/212, 

9 2 + A = (z+ + z_)2 + [(a2 _ Z2)1/2 + (a2 - z2)1/2]2 

W2+ A = W+ + W2 + 2z+z_, a = [(w2 + W2)Z+Z_ + 2ww2 ]/a, 

b = w+w_(w2 + w2 + 2z+z-)/a, 

b + a = (w+ w_)2(w+w_ + z+z_)/a, 

b2- a2 = (w2 - w2 )2(w2 _ z2) = (w2 - W2)2(w2 + W2 _ z2 ). 

Note that z2 + A is the square of a nonnegative quantity, even if z < 0. 
The first term on the right side of (A.8) is pure imaginary while the second 
and third terms are real. If z < 0, the third term is not represented by (1.5) 
until it is rewritten by the duplication theorem as -6RC((z+W)2 , 2w(z+w)); 
alternatively, it can be expressed in terms of an arctangent taken in the second 
quadrant rather than the fourth. Neither procedure is needed in this paper. 

APPENDIX B. REAL AND IMAGINARY PARTS OF Rc 

In ?4 we need to separate the real and imaginary parts of Rc when its two 
variables are complex but differ by a real number. (If the difference is not real, 
it can be made real by using the homogeneity of Rc .) 

Lemma. Let x, y, c be real, z = x + iy, r2 = X2 + y2 > O, and z2 + c : 0. 
If Icl < r2, then 

(B.1) RC(Z2, Z2 + C) = xRc((r2 _ C)2, Z2 + c12) 

- iyRc((r2 + C)2 1Z2 + C12) 

where RC(z2, Z2 + C) denotes the branch that is continuous in c and takes the 
value 1/z when c = O. 
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Proof. Let Icl = a2 < r2. Then (B.1) reduces by [2, (6.9-15), (6.9-16)] to the 
correct equations 

log a= log ?a -iarctan 2 a2 if c= -a2, z -a z -ar 
a 1 2ax i r2 +2ay+a2 ifc-a2 arctan -arc 2 arctan 22 - log r2 -2ay + a2 i 

On each right-hand side, the logarithm is taken real and the arctangent is taken 
in the first or fourth quadrant to get the principal value of the left side. 

In the excluded case when IcI > r2, the arctangent must be taken in the third 
or second quadrant, and the corresponding Rc in (B. 1) has the square of a 
negative number as its first argument. This can be replaced by the square of 
a positive number by using the duplication theorem [7, (3.7)], and c can then 
have any real value provided z2 + c : 0. The result is given here although it 
is not needed in the present paper; it provides a way of computing Rc with 
complex arguments. 

Theorem. Let x, y, c be real, z = x+iy, r2 = x2+y2 > 0, and s = 1z2?+C > 
0. Then 

RC(z2, Z2 + C) = xRC( 2, S-) - iyRc(4+, s,+), 
(B.2) 52 = 4z2CX2c12 = (r2 - C)2 4cx2 = (r2+C)2 - 4cy2, 

u? = (r2 ? c + s)/2 > 0. 

In the first equation, RC(z2, Z2 + C) denotes the branch that is continuous in 
c and takes the value l/z when c = 0. In the exceptional cases where Z2 is real 
and c/z2 < -1 , it denotes the Cauchy principal value of (1/z)Rc(1, 1 +c/z2) . 
On the right side of the first equation, each Rc denotes the principal branch 
represented by (1.5). 
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