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A METHOD OF TABULATING 
THE NUMBER-THEORETIC FUNCTION g(k) 

RENATE SCHEIDLER AND HUGH C. WILLIAMS 

ABSTRACT. Let g(k) be the least integer > k + 1 such that all prime factors of 

(g(k )) are greater than k . The function g(k) appears to show quite irregular 
behavior and is hard to compute. This paper describes a method of computing 
g(k), using sieving techniques, and provides a table of values of g(k) for 
k< 140. 

1. INTRODUCTION 

In a symposium on computers in number theory held in 1969, Erd6s [3] pre- 
sented a paper consisting of problems he felt might be approachable by com- 
putational techniques. One of these was to determine an estimate for g(k), 
where g(k) is the least integer (> k + 1) such that all the prime factors of 
(g(k)) must exceed k. In a subsequent paper, Ecklund, Erdos, and Selfridge 
[2] provided a table of values of g(k). This table is complete for k < 40; also, 
three more entries are present for k = 42, 46, and 52. These are all the values 
of g(k) < 2500000 when k < 100. 

Very little seems to be known about the behavior of g(k). It appears to 
increase rather rapidly with increasing k, and it is difficult to compute. Thus, it 
was thought that a larger table of g(k) might prove to be useful. The purpose of 
this paper is to discuss a method of computing g(k) by using sieving techniques, 
and to provide a complete table of values of g(k) for all k < 140. 

We begin with a brief discussion of the generalized sieving problem. In 
general, a sieving problem P defines h linear congruences 

x =_ ri, , ri2, ri,, (mod mi) (i = 1 , 2, . ,h ; I < ni < mi), 

where the moduli mI, iM2, ..., iMh are positive integers. It may be assumed 
that the mi are relatively prime in pairs, and that each set of admissible residues 
Ri = {ri, ri2, . .. ., ri } contains distinct, nonnegative integers less than mi . 
The solution set S(P) for P is defined to be all integers x that lie within an 
interval or range specified by P, say A < x < b, such that 

(1.1) x(mod mi) E Ri (i = 1, 2, ..., h) 

and satisfy any additional restrictions placed on x by P. 
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It is possible to construct very fast special purpose machines for finding so- 
lutions to sieve problems. Recently, Stephens and Williams [5] have described 
such a device, called OASiS. OASiS will search for values of x satisfying a siev- 
ing problem at the rate of 215 000 000 trials per second. It should be pointed 
out that OASiS is just the most recent in a long series of such machines. For a 
history of the developments, we refer the reader to [5]. When sieving mecha- 
nisms are in use, it is customary to call the sets of admissible residues Ri rings 
modulo mi and the process of determining values which should be in the R1 
sets loading the rings. The execution of any sieve problem is made up of two 
phases: (1) loading the rings, (2) searching for the solution. The process of 
searching for a solution is performed by first producing values in the range sat- 
isfying (1.1) and then determining whether these values satisfy any additional 
restrictions. This latter operation is called filtering. 

In the next sections we will show how the problem of determining g(k) can 
be converted to a sieve problem. 

2. THE ALGORITHM 

We need to determine the minimal number n > k + 1 such that no prime 
p < k is a divisor of (n). In order to determine whether or not ( ) is divisible 
by a prime p, we first make use of a result which is essentially due to Kummer 
(see [1, p. 220]). 

Theorem 1. Let n = >i__ bip' and k = Z__ aipl be the base-p representations 
of n and k, respectively, where p is a prime. Then t (n) if and only if bi > a1 
(i =O, 1,5...,5t) . 

Proof. Let e- = 0, and for i = 0, 1, ... ,t put 

( 1 if bi < ai + i-I 
'io= >0 if bi > ai +ai1l cl =p b1 - - 

Then the ei are the "carry-overs" when performing the subtraction of k from 
n in base p, and we have 

n - k =E cipi pt+le 
i=O 

and 0 < ci < p. Since n - k > 0, we must have Et = 0, and we have found 
that the base-p representation of n - k is given by 

n - k = cip. 
i=O 

We can now use the well-known theorem of Legendre on the highest power of 
p which divides the factorial of an integer to find that 

P1(k ) 

where az =>0c=o sii. It follows that p (n) if and only if so= = =l Ot = ?, 
and this occurs if and only if ai < bi (i = 0, 1, ... t) . o 
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In order to make use of this past result, we need to be able to compute 
the coefficients of k in base p. If k = E'0 aipi where m is such that 
ptm < k < pm+l, i.e., m = Llogp k] = Llog k/ logp] > 1, then the coefficients ai 
(i = 0, 1, ... , m) can be easily computed by putting 

ao-=k(modp) (O<ao<p), so = k 
(2.1) 

ai+1=-si+I (modp) (O < ai+I <p), 5 = 
si - ai 

Since we would like to convert our condition p { (k) into a sieving problem, 
we must determine the possible residues of n modulo pm. Define the sets C, 
(i = 0, 1, ... , m) by 

Ci = {ai, ai + 1, ai + 2, ..., p - 1}. 

Ifn = Z=o bipi, then t > m and by Theorem 1, p t (n) if and only if bi E Ci 
for all i = 0, 1, ... , m. For two arbitrary sets S, T of integers and a rational 
number 1, let 

S+T={s+tlsES, tE T}, IS ={IlsS E S}, 

S?+I =S?+{I} , sl=IS. 

We now define sets 

Bo = Co, B B i=B, +p'Ci (i= 1, 2, ..., m). 

It follows that Bi = EJ'=o p'C. 

Lemma 1. Let n' n (mod pm) and 0 < n' < pm. Then n' E Bm-i if and 
only if bi E C1 (i =0, 1, ..., m - 1). 

Proof. It is easy to see that if bi e Ci (i = 0, 1,.., m - 1), then n'= 

ZmK= bip E Bm-1. The rest of the lemma follows from the fact that p'Ci n 
pJC; = 0 for i :$ j. o 

From Theorem l and Lemma l it follows that p{ (k) if and only if n' e 
Bm-i and bm E Cm . If we write n = n' +pmy, then y = -Oj %m+ip';hence, 
y) =bm (mod p). Since n/pm < y < n/pm + I, we have bm -Ln/pm] (modp). 
If we let Bmi, = {rl, r2, ... , rq}, we obtain the following result. 

Theorem 2. We have p { (k) if and only if n _ rl, r2, ..., rq (mod pm) and 
Ln/pm] (mod p) > am. 

This gives rise to the following sieving algorithm for determining g(k). 

(a) Load the rings. For each prime p < k: 
(1) Compute m = Llog k/ logpj and determine ao, al, ..., am as in 

(2.1). 
(2) Find Bmi-i = {ri, r2, ... , rq}. 
(3) Load the values of r1, r2, ..., rq into the ring of modulus pm. 



254 RENATE SCHEIDLER AND HUGH C. WILLIAMS 

(b) Search for g(k) . 
(1) Start searching for solutions at 2k + 1 . (In [2] it is shown that 

g(k) > 2k + 1 for k > 4.) 
(2) Once a certain range has been sieved, test each solution candi- 

date s by the following routine: for each p < k determine that 
Ls/pmJ (mod p) > am. 

(3) The least value of s which passes this test is the value of g(k) . 
The implementation of this algorithm produced immense sieving times for 

values of g(k) for even modest values of k . Fortunately, it is possible to speed 
up the computation by a factor of approximately k in the case when k + 1 is 
a composite integer. To describe this faster algorithm, assume that k + 1 is 
composite, and write k + 1 = qpa (a > 1), where p is a prime and p t q. 

Lemma 2. If k + 1 is composite, then k + 1 Ig(k) + 1. 
Proof. If k + 1 is composite, we have p < k and 

k = qpa - 1 = (q - 1)pa +pa - 1 
= (q- 1)pa + (p_ 1)(plp +p-2 + *+p+ 1); 

hence, ao = a, = = aa_l = p - 1 and C0 = C, = = Ca-, = {p - 1}. 
From this it is easy to show that 

Bi = pi+l- II (? < i <a - 1). 

From our earlier results it is easy to deduce that P t (n) only if n (mod pa) E 
Bai,; that is, if p t (n) then n -1 (mod p) . Since this must be true for all 
prime divisors of k + 1, we see that when k + 1 is composite we must have 
k+1lg(k)+1. o 

Thus, in this case, h(k) = (g(k) + 1)/(k + 1) is an integer, and in fact, 
N = (n + 1)/(k + 1) must be an integer for all possible values n for g(k). 
Hence, we can increase the speed of sieving by a factor of k + 1 by sieving for 
h(k) instead of g(k). We now explain how this can be done. We first require 

Theorem 3. Let n be a possible value for g(k), where k + 1 is composite, and 
let N = (n + 1)/(k + 1). Let p < k be a prime. 

(a) If p t k + 1, then N(mod pm) E Qm(Bm-? + 1), where 

(2.2) Qm(k+ 1) 1 (modpm). 

(b) If palIk + 1, then we have two cases: 
if a = m+ 1, then n_ -1 (mod pm); 
if a < m, then N (mod pm) E Qm(Bm-I + 1)/pa, where 

(2.3) Qm + -1 (mod pm). pa 

Proof. By Lemma 1, we have n + 1 (mod ptm) E Bmi ? 1+. 
(a) Let p t k + 1 and let Qm be as in (2.2). Then n (mod Ptm) E Bm_i if 

and only if N (mod ptm) E Qm(Bm_i ? 1).m 
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(b) Let pallk + 1. Since k + 1 < pm+l , we must have a < m + 1. If 
a = m + 1, then Bm-I = {pm - l}, and hence n -1 (mod pm). Now 
suppose a < m, and let Qm be as in (2.3). Then 

N -= naI QM (modpm). 
pa 

Now if r E Bm-I, then r (mod pa) E B, I; thus, r -1 (mod pa), so all the 
elements of Bmi, + 1 are divisible by pa . Hence, 

Bmi, ? 1 
N(modpm)EQm pa 

In the particular case k + 1 = pm+l, the congruence n -1 (mod pm) is 
always satisfied, and we do not need to include the modulus pm in the sieving 
process. So in the case of k + 1 being composite, we can modify our earlier 
algorithm by changing step (3) of part (a) to: 

(3) If p t k + 1, compute Qm of (2.2) and load the residues Qm(ri + 1 ), 
Qm(r2 + 1), . .. , Qm (rq + 1) (mod p m) into the ring of modulus pm. 
If pallk + 1 and a < m, compute Qm of (2.3) and load the residues 
Qm(ri + 1 )/pa Qm (r2 + 1 )/pa Qm (rq + 1 )/pa (mod pm) into the 
ring of modulus pm. 
If k+ 1 =pm+l, then do not sieve on pm. 

Part (b) of the algorithm is changed as follows. Since (g(k) + 1)/(k + 1) > 
(2k + 2)/(k + 1) = 2, we start the search at 2. Once a certain range has 
been sieved, test each solution candidate s by putting S = (k + 1)s - 1 and 
determining for each p < k that LS/pmi (mod p) > am. The least value of S 
for which this holds is g(k) . 

3. THE TABLE 

In Table 1 we give all the values for g(k) for k < 140. To get some idea of 
how long this took to do, we point out that OASiS required 2 hours 48 minutes 
to compute g( 1 11); it required about 11 days 11 hours to compute the largest 
value found, g( 139); and it took 5 days 1 hour to compute g(I 12). For these 
last two values, the sieving times slightly exceeded the expected computation 
times of approximately 10 days and 4 days 21 hours, respectively (based on a 
rate of 215 000 000 trials per second). The reason for this is that OASiS verified 
the contents of its rings every hour, and each such checkpoint required around 
9 minutes for g(139) and 2 minutes for g(1 12). The checkpoints for g(139) 
took significantly more time than those for g(l 12), since k = 139 required 
more congruences, so there were more rings to verify. We note here that in the 
cases of k = 111 and k = 139, sieving for h(k) did in fact achieve a speedup 
of roughly k + 1 relative to the expected time of sieving for g(k) . 

In [4], Erdos pointed out that the values of g(k) appear to grow much faster 
than the lower bound kl+c given in [2], where c is a positive constant. Our 
computations seem to confirm this. 
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TABLE 1 

k g(k) k g(k) k g(k) 

2 6 49 38074099 96 5589371247 
3 7 50 4302206 97 104141995747 
4 7 51 13927679 98 10628330723 
5 23 52 366847 99 5675499 
6 62 53 79221239 100 3935600486 
7 143 54 7638454 101 2128236159983 
8 44 55 53583095 102 175209712494 
9 159 56 17868986 103 5092910127863 

10 46 57 34296443 104 6003175578749 
11 47 58 4703099 105 4753399456493 
12 174 59 108178559 106 488898352367 
13 2239 60 93851196 107 6260627365739 
14 239 61 2237874623 108 9746385386989 
15 719 62 254322494 109 73245091349869 
16 241 63 157776319 110 94794806842238 
17 5849 64 266194499 111 222261611307119 
18 2098 65 174133871 112 90200708362489 
19 2099 66 25013442 113 517968108138869 
20 43196 67 673750867 114 517968108138869 
21 14871 68 643364693 115 12714356616655615 
22 19574 69 237484869 116 4112143718554871 
23 35423 70 549177974 117 10584753118053749 
24 193049 71 3184709471 118 3781786358757119 
25 2105 72 4179979724 119 598228285941119 
26 36287 73 15780276223 120 260509131365372 
27 1119 74 19942847999 121 404087677322873 
28 284 75 48899668971 122 115598852533247 
29 240479 76 16360062718 123 71406652074623 
30 58782 77 2198202863 124 28204866143999 
31 341087 78 950337359 125 3988617067133 
32 371942 79 29154401359 126 5614007242751 
33 6459 80 43228410965 127 60503616486143 
34 69614 81 6599930719 128 14320632355808 
35 37619 82 1101163607 129 38423911578259 
36 152188 83 797012560343 130 7984603413422 
37 152189 84 95695473244 131 3249072073157063 
38 487343 85 449488751711 132 96965971239157 
39 767919 86 328151678711 133 1558724612351669 
40 85741 87 39419852119 134 621248003653094 
41 3017321 88 94923115999 135 3157756005623 
42 96622 89 3524996442239 136 4138898693368 
43 24041599 90 2487760912090 137 951598054985213 
44 45043199 91 739416801247 138 745504491090939 
45 9484095 92 2380889434844 139 25972027636644319 
46 692222 93 577593151999 140 9089854222866845 
47 232906799 94 107706126974 
48 45375224 95 71573860223 
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