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ERROR ESTIMATES FOR A NONLINEAR
DEGENERATE PARABOLIC PROBLEM

P. LESAINT AND J. POUSIN

ABSTRACT. In this paper we are dealing with a partial differential equation of
parabolic type, which degenerates on one side of the domain. This equation
may be viewed either as a model of particle diffusion in plasma physics, or as a
simplified model of a viscous boundary layer in two dimensions. Known results
for the existence and uniqueness of the weak solution are first recalled. A finite
difference implicit scheme is then defined, and error bounds are derived, taking
into account the low degree of smoothness of the exact solution. An iterative
algorithm for the computation of the numerical solution at each time step is
shown to be convergent.

1. INTRODUCTION

The problem that we intend to study is the modeling of diffusion of parti-
cles (see Drake et al. [9, equation 4;]) in plasma physics, where the unknown
function u denotes the density of the particles.

This problem may also be viewed as a simplification of the equations for
a viscous boundary layer in two dimensions, occurring in fluid mechanics in
the case of an incompressible fluid flow around a solid body. If we neglect the
advection terms in the direction orthogonal to the body, the unknown function
u represents the velocity of the fluid along the ¢ direction, parallel to the body,
and the other variable x represents the distance to the body (see also Oleinik
[18]). Let Qr = (0, 1) x (0, T); we define the problem (P) as follows:

to find u(x, t) satisfying:

Ul — Uxx =0 in Qr,
u(x, 0) = up(x) in (0, 1),
u(0,t)=0, u(l,t)=u(¢t) in (0, T).

Our main results concerning problem (P) are the following: a finite difference
implicit scheme is defined, existence and uniqueness of the numerical solution
is proved, and error bounds are derived. An iterative algorithm allowing us to
compute the numerical solution at each time step is defined, and the convergence
is proved.
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An outline of the paper is as follows. The later part of this section is devoted
to the assumptions concerning problem (P). A weak formulation of this problem
is given and known results for the existence and uniqueness of the weak solution
are recalled. In §2, we define a finite difference scheme, implicit with respect
to the time variable ¢. We show the existence, uniqueness, and stability of the
numerical solution. In §3, we adapt a technique first developed for the Stefan
problem by Nochetto [16], and we derive an estimate of the error between the
exact solution u and the approximate solution U, namely

T
”U — ullLZ(QT) < C (E +hl/2) ,

where 7 and # denote the parameters of the discretization respectively in
time and in space. The term % arising in the estimate is the price to pay
for the degeneration of the problem at x = 0. In §4, we define an iterative
algorithm which allows us to solve the nonlinear system of equations satisfied
by the approximate solution at each time step. We show that this algorithm
converges when the number of iterations goes to infinity. In the last section, we
give some possible generalizations of the previous results in the cases where the
term wuu, is replaced by #?~'u,, p > 2, and (or) for a spatial dimension equal
to two or three.

We now recall results of existence and uniqueness for the weak solution of
problem (P); a proof of these results can be found, for example, in Sabinina
[20] or in [19]. Other results of existence and uniqueness of an even weaker
solution have been derived; for these we refer to Arison and Benilan [1], Arison
and Peletier [2, pp. 381-411], Benilan [3], and Herrero and Pierre [12].

We define the following spaces:

v, %0r) = C%0, T; L*0, 1))n L*(0, T; H'(0, 1)),

W (Qr)={p € H'(Qr); (0, 1) =9(1,1)=0, 0< 1< T;
p(x, T)=0, 0<x <1}
and we denote by ||¢||,.0, the usual normin L?(Qr), 1 <p < oo.
We assume that the following hypotheses are satisfied:

HP1. ug(x) € C([0, 1]), u; € CO([0, T]) and have bounded derivative;

HP2. u(0) = uo(1), uo(0) =0;

HP3. uy and u; are positive functions and 38 > 0 such that ug(x) > fx
for 0<x<1and u(t)>f for 0<t<T.

A weak solution of problem (P) is defined by:

Definition 1.1. The function u € V2"0(QT) is a weak solution of problem (P)
if

1
- /0 —u3(x)p(x, 0)dx
1.1

+ [ 2u(x, Dox(x, 1) —uP(x, ei(x, 1)dxdt =0
Or

Vo € W, (Qr) N CO0, T; L=(0, 1)); u(0, 1) =0, u(l, t) =u(t), 0<t<T.

We have the following result:



ERROR ESTIMATES FOR A PARABOLIC PROBLEM 341

Theorem 1.1. Problem (P) has a unique weak solution u € V,"*°(Qr). Moreover,
(i) ue C%Qr)NL>(0, T; W'>(0, 1));
(i) vz >0, le fOT(u,)2 dxdt < C/z, where the constant C is independent
of z;
(iii) 38 > 0O such that u(x,t) > Bx in Or.

Remark 1.1. For the sake of simplicity, we assume hereafter that u,(¢) = b is
independent of ¢. In the case where u;(¢) is not a constant, there would arise
boundary terms.

Proof of Theorem 1.1. The proof of such a theorem is now classical; see, for
example, [1, 2] or [20]. We only sketch the idea of the proof, especially to
obtain the estimate (ii).

We solve, for ¢ > 0, the problem:

(1.2) wtut —ut, =0 in QOr,
(1.3) uf(x, 0) =up(x) +e¢ in (0, 1),
(1.4) ut(0,t)=¢, u(l,t)=u;(t)+¢ in (0, 7).

It is known that such a problem, for any ¢ > 0, admits a classical positive
solution u¢ satisfying u¢ > Bx (cf. [13, 11, 15]). To get the estimate (iii) for
u® , just use the maximum principle on the linear equation:

ute; — ex, = 0, with boundary and initial conditions,
where e = u® — Bx.

To get the estimate (ii) for u®, we first multiply equation (1.2) by «¢ and
integrate in space and time. We obtain

// dxdz+// uty dx dt

2/ Y — (1 (x, 0))2) dx = 0.

Since u¢ is positive and u® > fx, we easily get

T 1
z/ / ()2 dxdi < C.
0 z

Taking the limit when ¢ — 0, we get Theorem 1.1. O
Remark 1.2. We have (cf. [4]):
for every ty, 11, 0 < fp < t; < 00,
u € LP((0, 1) x (to, t1)) forany 1 <p < 3.

2. THE DISCRETE PROBLEM, EXISTENCE AND UNIQUENESS OF A SOLUTION,
AND A PRIORI ESTIMATES

For given integers N >0 and m > 0, we let
T
N’ th=nt, 0<n<N,;

h=———, xi=ih, 0<i<m+1.

T =



342 P. LESAINT AND J. POUSIN
For ¢ a given constant, we define the spaces V;,, Vj(c), and W/(c) by:

Vi = {o(s) € C°[0, 1]; ¢|(x,,x,,) is 2 polynomial of degree 1},
Vi(e)={p € Vi; 9(0) =0, o(1)=c},
Wi(c) ={o(-, -) € L*(0, T; C°([0, 11)); ¢ (4,0 = 9" € Vi(c),

1 <n < N, where ¢" is constant with respect to ¢}.

To the scalar product (-, -) and norm ||-|| in L2(0, 1) we associate respectively
the discrete semiscalar product (-, +), and seminorm || - ||, defined by

(1, )0 = b w00 (6) + () (50) + U0 (o).

i=1
||’U||% =(v,v), Yu,veCY0,1]).
The function y from R to R* is defined by y(s) = 1s2.
We define the approximate problem (P}) as follows:

to find {U™}Y_; € (V,(b))N*!, U" >0, such that
(U™ = p(U™), on)n + Ta(U™!, 9;) =0
Vor € V(0), 0<n<N-1,

(2-1) U°=rhu0,

1
where a(p, y) =/ OV dx,
0

and where the interpolation operator r;, in ¥}, is defined by

(22)  neeVe, ne(x)=9(x), 0<i<m+1vpe ([0, 1)).
Theorem 2.1. Problem (P}) has a unique solution, and we have U > O for
I1<i<m+1and 1<n<N.
Proof. Assume that U" is known and that U'>0 for 1 <i<m+1;wewant
to find U"*! by using equation (2.1). We have to solve the following problem:
to find w € V},(b) such that
(2.3) (Y(w), ep)n + ta(w, o) = (Y(U"), on)r  You € V4(0),
where U" >0, for 1 <i<m+1, and U} =0.
With the notation w; = w(x;), equation (2.3) is equivalent to the system

h h .
(2.4 5w,~2+%(—wi+l+2w,~—w,~_l)=E(U{’)Z for 1<i<m,

W1 = b, wo = 0.

Existence and uniqueness of a positive solution for the system (2.4) is obtained
by considering a minimization problem.
Let the functional z — J(z) from R™ into R be defined by

(2.5) J(z)= —z’Az %Zm: in:szj,
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where F; = 4(Ur)? for 1 < j <m—1, Fp = 4U2)?*+ %, and z} =
max(z;, 0). The matrix A is tridiagonal, with % on the diagonal and 3 on
the upper and on the lower diagonal. The functional J(-) is strictly convex,
continuous (for the Euclidean norm |- ||, on R™), and J(z) tends to infinity

with the Euclidean norm of the vector z. Then, the minimization problem:
to find W € R such that
J(w) = zlenlkf:" J(z)

has a unique solution. The differential of the functional J(-) is given by

h
J)(2) = (42); - Fy + 5(z})7;
the solution W satisfies
(2.6) (Aw),-—ﬂ+—g-(wj+)2=0 for1<j<m.
Let the matrix B be defined by
h .
Bii = Aii + E’wf )

Bij=A;; fori#jand1<i,j<m.
Since (w;)? = w,w; , we get
(2.7) (Bw)j=F; forl<j<m.

The matrix B is monotone, and the F; are strictly positive. We deduce that
the w; are strictly positive for 1 < j < m, so that relations (2.6) become

(2.8) (Aw),-—F,~+§(w,-)2=0 for1 <j<m.

From this we conclude that the problem (2.4) has at least one solution 1 sat-
isfying w; >0 for 1 <j<m.

Starting from U°? (with UJ(.’ >0 for 1 < j < m), we get the existence of
U" by induction. To show the uniqueness of positive solutions, we assume that
there exist two positive solutions w!, w? to the problem (2.3). We have
(2.9)  ((w") = y(w?), gu)n + a(w' —w?, p) =0 Vg, € V4(0).

We may write
(r(w") —yw?), w' —w?), = §(w' —w?)(w' +w?), w' —w?), > 0.

Replacing ¢;, by w! —w? in relation (2.9), we get a(w! —w?, w! —w?) =0,
which yields w! = w?. Theorem 2.1 is thus proved. 0O

Remark 2.1. If we delete the condition U” > 0 in the definition of problem
(P},), the existence of a solution becomes an open problem. We have only an

answer in the case m=1 (h= %) . In that case, problem (2.4) becomes
w? + 872w, — b) = (U!)?,
which has both positive and negative solutions.

Remark 2.2. Another proof would have been to define the function y by y(s) =
1s|s|. In that case the problem becomes monotone, thus ensuring uniqueness
and positivity.
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Lemma 2.1. The solution {U"}Y_ of problem (P}) satisfies

(2.10) 10Mlo: 0,1 < Max(| U%lo; 0,1y, B) for 1 <n <N,
no

(2.11) Y MU 0,1 < CINULNR 0.1y Jor1<mo <N,
n=1

where the constant C is independent of h and t.
Proof. In relation (2.7), we replace w by U"t!:

h T h .
(2.12) SUMH U + Z(—U,{';ll +2Uur UMl = S(UM? for1<i<m,
urti=», urtt =o0.
Let j be an index such that
Urt'= sup UML

1<i<m+1
If j=m+1,then sup,c;c,,,; UM = b, and inequality (2.10) is thus proved.
If 1 <j<m,wehave
1 1 1
—U;’:l +2U}'+ - U;’_*l >0
and
+1 n+1\+ ny\2
Urt (Ut < (U
Since the U{’“ are strictly positive for 1 < i < m, we get

+1
U}’ SU}’S sup ur,
1<i<m

from which it follows that
sup UM! < max ( sup U, b) :
1<i<m+1 1<i<m

inequality (2.10) is thus proved. In relation (2.1), we replace ¢, by U"*'-U" ¢
V,(0) . Summing over all indices n, 0<n < ny— 1, we get

no—l

Z{(y(UnH) —y(um, yrl — U™, + ‘ca(U”“ , yrt! — U")} =0.
n=0

The first term of the left-hand side is positive, since the U” are positive for all
J and n, and

(v(a1) = v(a2))(a1 — @2) = §((a1 — @2)*(a1 +a3)) > 0 for a; and a; positive.

We then get
no—1
D AIUEME 0,0 = NUZIE. 0.1 + 102 = UPI3. 0.1} < O
n=0

and

(2.13) ||Uf°||%;(o,1) < ||U)?||%;(o,1)-

From the last inequality we deduce inequality (2.11). Lemma 2.1 is thus
proved. 0O
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3. ERROR BOUNDS

A variational technique, first developed by Nochetto [16] for the Stefan prob-
lem, and based on integration by parts, is used in this section. We also mention
two relevant works of Nochetto and Verdi [17] and Elliott [10], concerning the
effect of numerical integration in multidimensional degenerate parabolic prob-
lems.

We begin this section with recalling a numerical integration result. This result
will be used in the proof of the error estimate, because we use the lumped mass
version of the L? scalar product for the scheme (2.1). We define the quantity
Eh by

Ey(v,w)=(v,w), — /l vwdx Yv,w e C[0, 1]).
We have: ’
Lemma 3.1. The following estimate is valid for any p > 2:
|ER(vP, w)| < Ch*{|[vP~"| 200, 1 llVx 20, nllwxll 20, 1)
+[[077 2| oo 0, 0 10x 1320, plwllzoo0, 1)} VO, w € Vi(D).
Proof. The classical tools of the proof are developed, for example, in Ciarlet

[7]. For a detailed proof, we refer to Lesaint and Pousin [15]. O

We introduce the following interpolation operators:
I, V(b) — Vi(b)

v — [Iyv defined by a(v — IT,v, ¢) =0 Ve € V,(0),
I: L2(0, T'; V(b)) — Wi (b)

w— Iw defined by I w|,, 1 /ttn+l I,(-, t)dt,

| = T

n

where V(b) is the following space:
V(b)={veH(0,1); v(0)=0, v(l)=b}.

We let Y =1IIju, where u is the exact solution of problem (P). For any w €
C%Qr) , we define ¢*w € L*(0, T; C°([0, 1])) by

AW (1, 1,,) = W(5 ta1) =w"'(:) for0O<n<N-1,

(@"w)(-, 0) = w(-, 0) = w’.
Finally, we define U € W7 (b) by

Ultty g = U™,

where U™! € V,(b) is defined by the scheme (2.1).

Before stating the theorem for the error estimate, we show how a stability
inequality in L? norm can be established for the continuous version of the
problem; this will give us a better understanding of the rather long proof of this
stability inequality for the discrete problem.

In the next few lines, we assume that i is a smooth function and that 5 = 0.
A continuous version of scheme (2.1) may be written as follows:

(3.1) (y(&t);, ) +a(it, p) =0 V¢ smooth, ¢(0, ) =¢(1,?)=0.
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We now define the function ¢ by
fort<s<T,

0
(0(X,S)= L
v(x,s)=/u(x,a)da for0<s<t.
N

Integrating equation (3.1) with respect to time, we get

(3.2) /Ot (;%y(ﬂ),/Jﬂda) ds+/0ta(£¢,/slada> ds=0.

By integration by parts, the first term of the left-hand side of relation (3.2) may

be written as
/ (r(@),

(y(a) / uda)
(y(u( 0), /uda) //l~—3dxds

Since ‘3—’; = —1i1, the second term of the left-hand side of relation (3.2) may be
written as

! v Lt 8%y v v
/O—a(—,v)ds—// ot 9% dx ds —2/ ( ) (x, 0)dx,

since v(x, t) = 0. Multiplying relation (3.2) by 2, we deduce

// 3dxds+a(/ ﬁ(~,s)dS,/017(°,s)ds)
:/0 (uo(x)/o (x,s)ds) dx.

Poincaré’s inequality reads here as follows:
93, 0.1y < alp, p) Vo such that ¢(0, 1) =0
Therefore,

/01 (/Ota(x,s)ds) a’xSa(/Ota(x,s)ds, /Olﬂ(x,s)ds),

The right-hand side of relation (3.3) is controlled using the Schwarz inequality,
SO we get

(3.4) /Ot/Olawde%a (/Otzl(o,s)ds,/ola(-,s)ds> gé/c)lag(x)dx.

Using the property i(x, t) > fx for 0 <t < T and for 0 < x <1, we deduce
that for all z such that 0 < z < 1 we have

1 1 1 1 z
/fﬁdxg/ f¢3dx2ﬂz/ azdx=ﬂz/ azdx—/iz/ Wdx.
0 z z 0 0

Combining this inequality with inequality (3.4), we get the following stability
estimate in L2 norm:

ﬂz/l/lﬂz(x,s)dsdx+la (/Otzl(-,s)ds,/ota(-,s)ds>
_2/£¢ dx+ﬂz// 2(x, s)dxds.

2

(3.5)
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Theorem 3.1. Let u be the solution of problem (P), and let U € W] (b) be the
solution of problem (P}). Then

T
(3.6) IU = ullzagy < € (7 +472)

Where the constant C is independent of T and h.
Proof. First, we give a stability inequality in L? norm for the problem (P}),
analogous to inequality (3.5). This inequality allows us to control the difference
between the approximate solution and some W, (b) interpolate of the exact
solution.

For 0 < n < N -1, we may write

an | Gwopdes [ aw, grdi=
¥p € Vi(0), 2()(x, 0) = (uo)(x).

Using the notations introduced above, and summing over the indices from n =
0ton=ng—1, we get

no—1 no— |
(3'8) Z( ( n+1) ( n) ¢n+l +T Z Yn+1 n+1 O,
n=0

Vo ¢ WT(O), 1<ng< N, y(u°) = y(up).
Summing the relations (2.1) over the indices from # =0 to ny— 1, we get

no—1 no—1
(3 9) Z (V(U"'H) (Un n+1)h +1 Z Un+1 , ¢n+l) =0
) n=0

Vg € Wy (0>, 1 <ng <N, p(U° = p(ryuo).

In relations (3.8) and (3.9), we integrate by parts, in a discrete way with respect
to time. We get

=S ), ot - +rZa(Y" "= (y(0), o) + (y(u), p™*1) =0
n=1

=S U, et ="+ rZa(U”, o") = (2(U%), ")y
n=1 n=1

+(p(U™), g™, = 0.
Subtracting these equalities yields
Z[ p(U™) = y("), 9™ — 9") + 1a(U" = Y", 9]
~(r(U%) =%, ")
+ }nngh(y(U") , 9™ — 9" = Ey(»(U), 9")
n=1

— (P(U™), ")+ (y(u™), @™t
Vo € WF(0), 1<ng<N.

(3.10)
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Let ¢" be the following discrete integral:

o= ‘cz —-Y% if1<n<ng,

0 if ng+1<n<N.
It is easy to see that ¢" € V},(0), ¢"*! — p" = —7t(U" — Y"). Replacing ¢" by
its value in equality (3.10), we have

ri(w(U") "), U"-Y") + tzia (U" -Y", ioj(Uk - Yk))
n=1

n=1 k=n

(1) =t B, U= ¥ — 1Y B ((U°), U= ¥4)
n=1 k=1

no
— Ty (U — (), Uk - Y¥).
k=1
This equality may be written, with obvious notations,

(3.12) D, + Dy = D3+ Dy + Ds.

First, we estimate the term D;. To do that, we rewrite D; as the sum of two
terms:

o~ o
Dy =D;+D; =13 (2(U") - y(u"), U" — ")

n=1
ny
+1y (U™ =y, u" = Y").
We have . |
D=L . n (TR _ 12
DI_ZE/O(U +un) (U — w2 dx,

with U" > 0. The inequality u(x,?) > fx for 0 <t < T, 0 <x <1 (see
Theorem 1.1) implies u"(x) > Bh for h <x, 1 <n < N. Hence,

1 1
/(U"+u")(U”—u”)2dx2/ (U 4+ um) (U — )2 dx>/3h/ dx,
0 h

which leads to the inequality
/(U” dx <D, +—‘[Z/ —u")dx

IWTZUIU”II2 0.0+ 1115 0, 1)-
Using Theorem 1.1 and Lemma 2.1, we get

(3.13) 'BhllU g ul? <D+ &h?,

LZ(Q
where % is a constant independent of h.
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To get an estimate of 51 , we let
. { (P(U) = p(un) (U —um) i UP #
"o if U = u.
This expression is uniformly bounded in L>*°(Q7). We write
@U") —y@"), u" = 1")
= (U™ = (" )IU" = u")'?, a> (" — Y™)).

Using Schwarz’s inequality, we get

1/2
|D1|<[12 (um - ">,U"—u">}

1/2
x ltz @nlloo: o (" = Y™, u — Y”)] )
n=1
Letting 4 = max;<p<n(||anlle;0;), We get
— — A4 )
(3.14) |D| <€Dy + ZE”G’“ — Yz, 0,
for any & > 0 with Ty = ngt. Since D; > D; — |bv1| , we have
— A
D, ZDI(I_8)_:‘;”qtu_Y”%;QTO' |
Choosing ¢ = % and using inequality (3.13), we finally get |

h &1h?
(15 ENU - qruld g - FlaTu- VI g, <Dy + S0

Consider the term

no ho
Dy=1*) a (U"— Y", >y (U* - Yk)) ,

n=1 k=n

and let b, = (U" — Y"),; we have
no 1 no
D2=122/ b,,Zbkdx.
n=1 0 k=n

We easily check that

and we deduce

(3.16) D, >

2;(0,1)
Consider the term

Dy =-t) E(y(U"),U"-Y").
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Using Lemma 3.1, with p = 2, we have
[E,(y(U"), U" = Y")|
(3.17) < CR{|IUM oo 0, U ll2: 0, I (U™ = Y™k ll2; 0. 1)
+IULI3, 0, plU" = Y"loos 0,1}

Lemma 2.1 implies ||U"||o;(0,1; < C. Since
ueClQr)NLX0, T; wH>=(0, 1)),

we derive from the definition of Y that

1Y lloo; 0,1y < C.
The right-hand side of inequality (3.17) is thus bounded by
CR(1U2 12,00, yll(U™ = Y")xll2;0,1) + ||U§'||%;(0,1))

< 3Ch2{||U§'||%;(0,1) + ||Y;'||%;(o,1)} )

where C denotes various constants independent of 4. Using once more Lemma
2.1 (inequality (2.11)) and the definition of Y”, we get

(3.18) D3| < B2,
where % depends on [[U%w;0,1)5 1URlloos0.1)> Nlttllz20, 7,810, 1)) » and b
We proceed in the same way to estimate the term

no
Dy=~1) Ey(y(U%), U* - Y%),
k=1

and we get
(3.19) |D4| < B3h?,

where %3 is a constant of the same kind as % .
For the last term,

Ds = —rff(y(v") — (), Uk - YHk),
k=

we use Schwarz’s inequality to get

no

> Uk-Y*k

k=1

T
|Ds| < §||U0 + 100 0, U = 4012, 0,1y

2;(0,1)
Since u® € W1->=(0, 1), we easily check that
1U° = u0l2;0,1) < Ch; 1U° + 40|00,y < C,

where C denotes different constants independent of /. Since (U* — Y*)(0) =
0, for all 4, we may use Poincaré’s inequality, and we get

no
(3.20) IDs| < Gh 0> UK - Yk
k=1

2:;(0,1)
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Combining relations (3.12) and (3.15)-(3.20), we get

h A Ch? 1
PRy - qruld. g, ~ Sllau=Yidig, — S+ 5

Ro 2

‘cZU,’f—Yf

k=1

2;(0,1)

< (B + B + Gh

T Z Uk - vk

2;(0,1)
From this inequality we deduce a stability estimate in L? norm:
: z Uk - vk

2;(0,1)

< (2% +4% + @ 4B + 244U - Y|} g,

It remains to estimate the term ¢*u — Y . We write

BhIU — q7ul’3. o, +

(3.21)

1 Insl
qu—=Y\| @, )= = (u(+, thyr) — Hyu(-, 1) dt
tn
1 tht1
=+ [ )~ )
1" thit
= (u(-, t) = pu(-, 1)) dt
tn
= E!' + EJ.

We have
2

1 tnt1
IET3, (0,1 = _2/0 (/ u(x, tryr) —u(x, ln)dl) dx
tn
1

1 Loyt 2
=T_2 n (/l u(x’tn+l)_u(xatn)dt) d.x
1 h thtt 2
2, (/ u(x,tn+1)—u(x,zn)dt) dx.
In

For the first term of the right-hand side, we may write
2

/hl (/tm' u(x, thyr) — u(x, t,,)dt) dx
o N /l (/,tw /ltm u(x, s)ds dt)2 dx
st / /tl"+1 W2(x, t)dtdx.

For the second term of the right-hand side, we use property (i) of Theorem 1.1
to get
O0<u(x,t)<Ch foranyO0<x<h, 0<t<T,
and we obtain the estimate
2

h It .
(3.23) / </ u(x, ther) —u(x, t,,)dt) dx < Ct*h®.
0 th
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From inequalities (3.22) and (3.23) we get, by using property (ii) of Theorem

1.1 with z=#h,
no 12
S IEB0, < C (G +4)

n=1

On the other hand, it is well known that
lu(-, 6) = Tau(-, O3, 0,1y < CH 0. 7210, 1)) 5

thus we deduce
2
(3.24 = Yl,q, <% (G +4°).

Combining inequality (3.21) and (3.24), we get

12
IU - q7ul’3; o, <% (ﬁ + h)

for any Ty = npt, ng < N.
In the same way as before, we obtain

2
T
lu — qru”%,Qr <C (7 + h3) .
Finally, we get, by using the triangular inequality,
_ T
IU = ulzso, <% (5 +4"2)

so that Theorem 3.1 is proved. O

4. AN ALGORITHM TO CALCULATE THE SOLUTION OF PROBLEM (P7)

The definition of the approximate problem (equation (2.1)) implies that for
each time step, we have to solve a problem of the form:

for a given function f € C°([0, 1]), f >0 in (0, 1],
find w € V,(b), w >0 in (0, 1], such that

(41) a(wa U) + (%wz’ ’U)h = (f9 'U)h Vv € Vh(o)
Consider the following algorithm:

let wy € V,(b) be given; define the sequence {wy}, wy €
Vi(b), by

(4.2) a(Wiyr, V) + 3(Wen Wi, V)p = (f, V)i Vv € V4(0).

The proof of Theorem 2.1 shows that, for a given w* € V,(b) with wk > 0
for x > 0, the problem (4.2) has a unique solution wk*! € V},(b) satisfying
wkt! > 0 for x > 0.

Before stating the convergence result for the algorithm (4.2), we introduce
some notations, and we give some intermediate results, which will be proved at
the end of this section.
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Let' H, be the space V), (b) equipped with the maximum norm. Define the
mapping
Sh: Hy — H,
9~ 0 =S%49),
where 6 € Vj,(b) is a solution of
(4.3) a(0, v)+ 3(pb,v),=(f,v)y Yo € V4(0).
Then the following inclusion holds true.

Lemma 4.1. The domain & (Sj;) of the operator Sf} satisfies 2 (Sf}) O {p €
Hy; infg > 0}.

It is easy to check that w,,, can be expressed as

(4.4) Wiepr = SH(wy) »
and that w, the solution of problem (4.1), satisfies
(4.5) w = SH(w).

Moreover, we have w; = w(x;) >0 for 1<j<m+1.
Now, we are interested in the existence of the derivative of Sj’h Let w be
defined by
w = infw;;
Jjz1
then we have the following result.
Lemma 4.2. Let " be the neighborhood of w in H,, defined by
I'={p € Hy; ||w—9lle;0,1 <@/2}.

Then Sf((p) € CY(IN), and the differential DS? of S; is given by

(4.6) DS%p) v =—-S(p) - vSK9),
Where the linear operator y — w = S(¢) -y: H, — V,(0) is defined by
(4.7) a(y, v)+ 3(ew, v)p = 3(v, V)r Vv € V4(0).

The next lemma provides an estimate of the spectral radius of the mapping
DS (w).
S

Lemma 4.3. The spectral radius of the mapping v — DS?(w) -v from Hy into
Hy satisfies

lwlloo; 0, 1y
4.8 Dsj(w)) < o ’
45) PDS7W) < 2 ol
where

_ of a(q, q) >

K= enlo), a0 (@, D

We are now in a position to show that the algorithm (4.2) is convergent in
the following sense.
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Theorem 4.1. Let w be the solution of problem (4.1). There exists a neighbor-
hood of w in L>(0, 1), denoted by T\, such that if wqy is chosen in T, the
sequence {wk} converges towards w .
Proof. We want to show that for a certain norm on the (finite-dimensional)
space V,(b), the mapping S? is locally a contraction. To do that, we show that
the derivative of Sf} is bounded by a constant < 1 in a neighborhood of w .

It is well known (see, for example, Ciarlet [6, p. 19]) that for any ¢, there
exists a norm |||-||| on V,(0) such that for the induced norm for the operators,
we have

IIDSHw)|I| < p(DSHw)) + .
Choosing ¢ small enough, by Lemma 4.3 we get the existence of
k € R such that |||DS}(w)|]| <k<l.

Applying Lemma 4.2, we get the existence of a neighborhood I';(w) c T and
a real number k' such that

IIDSH@)I <K' <1 Vg € Da(w).

Let B be the maximum of radius R such that Br(w) C I';(w), where Bg(w)
is the ball of center w and radius R, for the norm |||]||. Set I';(w) = Bg(w).
Then, it is not difficult to check that a classical fixed point theorem applies (see,
for example, Dieudonné [8, p. 261]), so Theorem 4.1 is proved. O

Remark 4.1. For the approximate problem (2.1) we have to consider the prob-
lem (4.1) where the term ($w?, v),, is replaced by (L£w?, v),. In fact, The-
orem 4.1 still holds if the term (fw?, v), is replaced by (ew?, v), for any
a > 0. We just have to modify the definition of x. Nevertheless, let us mention
that for the approximate problem (2.1), when # is fixed, 4 depends linearly on
7. Consequently, the speed of convergence decreases with 7, since the spectral
radius of the mapping DS}(w) goes to one when 7 tends to zero.
To conclude this section, we give the proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. For ¢ € ', let 6 and 6 be the functions of V,(b)
respectively defined by

(4.9) a@, v)+ (o +v)8, v =(f, ¥,

(4.10) a0, w)+3(00, v)n = (f, ¥ Yy € V4(0),
where v € Hy. The relations (4.9) and (4.10) may also be written as
0=SKp),  6=Skp+v).

Since ¢ € I', there qxists a unique 6, with 8 > 0 for x > 0. We have the
same properties for 6, as soon as |||« (0,1) is small enough, since for such a
v, we have ¢ +v > 0.
Combining (4.9) and (4.10), we get
(4.11) a0 -0, ¥)+ 100 —0), )y =-10, ¥,
which implies
6—0=5S(p) (-v8)=—-S(p)-v0 —S(p)-v(b —6).
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The solution 6 — 6 of problem (4.11) satisfies
16 = 6llmo, 1y < Clvblln < 1Vllso; 0, 1)lIO4-
Moreover, using a discrete version of Poincaré’s inequality,
161h < 101lm10,1) < ClLAln < 1 leogo, 1y »

we get

(4.12) 16 = Blls10,1y < Cll Nl cogo. 1pllvlloos 0, 1)-

Since H!(0, 1) is included in CO([0, 1]), inequality (4.12) yields
(4.13) 16 = Olloo: 0. 1) < Cllvlloo; 0, 1S lcogo, 1)-
Relation (4.13) implies that

(4.14) DS%(p)-v = ~S(p) - v0 = —S(p) - vS(p).

The definition of the operators S%(-) and S(-) and the expression of DS}(~)
imply that S;(-) € CI(I'). Lemma 4.2 is thus proved. O

Proof of Lemma 4.3. Let A be an eigenvalue of the operator DSf}(w) and p
an associated eigenfunction,

(4.15) DSh(w) - p = Ap.
Using relations (4.6) and (4.15), we have
—S(w) - (pw) = Ap.
Let ¢ = —Ap. From equation (4.7) we derive g € V},(0) which satisfies
a(g, v)+ 3(wq, ¥)n = 5(pw, ¥)p Yy € V,(0);
if 4# 0, we may also write
a(g, v)+ 3wl +1/2)q, ¥)h =0 Yy € V,(0).

Replacing y by g (complex conjugate of g), we easily check that (1 + 4)/A
isreal and (1 +4)/A <0, thatis, -1 <A<0.
To be more precise, let

a(z, z)
dy = —2
2#0;ze%(0) (Wz, z)y
We may write
1+2 1
LN < .
7 >2d; or Ml_1+2d1

Since d; > ,u||w||;ol; (©0,1y> We deduce inequality (4.8). Lemma 4.3 is thus
proved. O

5. MISCELLANEOUS REMARKS

Remark 5.1. The approximate problem has been studied in the case where
u(l,t) = b, where b is a given real number. The results obtained are still
valid if b is replaced by a function ¢ +— b(¢).
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Remark 5.2. For b = 0, and more generally, for a dimension in space greater
than one, with homogeneous Dirichlet boundary conditions, there exists an
extinction time 7*, after which the solution is equal to zero. For more details,
we refer to Le Roux [14] and to Berryman and Holland [5].

Remark 5.3. Hypothesis HP3 is essential for obtaining the error bounds.

To generalize the problem studied in the preceding sections, we may consider
the case where y(s) = s?/p, 3 > p > 2, and (or) the case where the spatial
domain is, for example, a rectangle or a parallelepiped, located in the region
x1 > 0. For such domains, we have to replace the boundary conditions by

0 for x; =0,
u(x,t)>0 forxedQwith x; >0,

u(x, t)={

where X = (x;,...), and we have to replace the hypothesis HP3 by u,(%) >
Bx. We also assume some regularity and compatibility conditions for bound-
ary and initial conditions corresponding to the hypotheses HP1 and HP2. In
both cases, existence and uniqueness of a weak solution are still valid.

Remark 5.4. For a spatial dimension equal to two, a sufficient condition to
get the existence and uniqueness of a positive approximate solution is that the
discretization of the Laplacian satisfies the usual positiveness properties (for
example, with triangular finite elements with three nodes, with the angles of
the triangles being less than or equal to %). The proof of the error bounds is
then extended in a straightforward way: we split the domain Q in two parts
Q,={X¥eQ; 0<x;<h} and Q& ={XeQ; X¢&Q}.

Remark 5.5. For the algorithm defined in §4, with p = 2 and a spatial dimen-
sion at least 2, the results stated in Lemmas 4.1, 4.2, and 4.3 are still valid.
We have only to replace in the proof of Lemma 4.2 the inclusion of H'(0, 1)
in CO([0, 1]) by an inverse inequality,

16 = Ollos;0 < C(h)IIO — O]l (g,
and the results still hold, since, when using the algorithm, # is a fixed parameter.

Remark 5.6. For the algorithm defined in §4 with p > 2, we have to calculate
the gradient of the operator S}( .) defined by

9 — 0 =S4p) € Vy(b),
where 6 satisfies
1
a(f, v) + I—,(f/)"“@, Wih="(f, w)n Y € V4(0).

We get
DS3(9) v = —(p - 1)S(p) - 9" *vS%(9),
where y — ¥ = S(¢) -y is defined by

a(¥, z)+ %((0""‘1’, ) = })(y, 2 Vz e V(0).
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Then, for the spectral radius we get the estimate
WP oo 0, 1)
e+ 1w loos 0, 1)

where w is the fixed point of S; and u is defined as in §4. The algorithm
converges as soon as

p(DS5(w)) < (p— 1)

2
—1y-1

ullw? ”oo;(o’1) >1- E,
and, in view of the stability properties of the sequence {U”}, this sufficient
condition becomes

_ 2
cu(max(”UO”oo;(O,l)a b))l P>1- E

For more details, we refer to [15].
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