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THE ACCURACY OF CELL VERTEX FINITE VOLUME 
METHODS ON QUADRILATERAL MESHES 

ENDRE SULI 

ABSTRACT. For linear first-order hyperbolic equations in two dimensions we re- 
state the cell vertex finite volume scheme as a finite element method. On struc- 
tured meshes consisting of distorted quadrilaterals, the global error is shown to 
be of second order in various mesh-dependent norms, provided that the quadri- 
laterals are close to parallelograms in the sense that the distance between the 
midpoints of the diagonals is of the same order as the measure of the quadrilat- 
eral. On tensor product nonuniform meshes, the cell vertex scheme coincides 
with the familiar box scheme. In this case, second-order accuracy is shown with- 
out any additional assumption on the regularity of the mesh, which explains the 
insensitivity of the cell vertex scheme to mesh stretching in the coordinate di- 
rections, observed in practice. 

1. INTRODUCTION 

Over the last two decades, finite volume methods have enjoyed great popular- 
ity in the computational aerodynamics community and, since their independent 
introduction by McDonald [8] and MacCormack and Paullay [7], they have been 
widely used for the numerical simulation of transonic flows governed by conser- 
vation laws. The basic idea behind the construction of finite volume schemes is 
to exploit the divergence form of the equation by integrating it over finite vol- 
umes, and to use Gauss' theorem to convert the volume integrals into contour 
integrals, which are then discretized. Finite volume methods based on central 
differences have become particularly popular, following the work of Jameson et 
al. [5]. In this formulation, usually referred to as the cell center scheme, the flow 
variables are associated with the centers of the computational cells, which are 
quadrilaterals in two dimensions. An alternative scheme has been introduced 
by Ni [ 1 1], where the flow variables are kept at the vertices of the computational 
cells. The resulting method is called the cell vertex scheme, and it presents a 
natural generalization of the familiar box scheme to quadrilateral meshes. 

In spite of a significant progress on numerical modelling of complex fluid 
flow problems by cell center and cell vertex finite volume methods, the accuracy 
of these schemes on distorted multidimensional partitions has not been rigor- 
ously investigated. We note, however, that relevant preliminary work based on 
truncation error analysis has been carried out recently by Giles [4], Morton and 
Paisley [91, and Roe [13, 141. The practical evidence presented in [131 suggests 
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that the cell vertex finite volume scheme has a marked advantage over the cell 
center scheme in terms of accuracy on distorted quadrilateral meshes, which 
is in agreement with the findings of Morton and Paisley in [9]. For Friedrichs 
systems in the plane, Lesaint and Raviart [6] have considered a general class of 
finite element collocation methods which includes, as a special case, the cell ver- 
tex scheme. Their error analysis in the case of first-order hyperbolic equations 
is, however, restricted to regular rectangular partitions. 

In this paper, a theoretical framework is introduced which provides a new 
interpretation of the cell vertex finite volume scheme and embeds it into the class 
of finite element methods. This approach enables us to investigate its stability 
and accuracy, and to obtain optimal error bounds on distorted quadrilateral 
meshes. 

The outline of the paper is as follows. In the next section some notational 
conventions are introduced. We formulate our model hyperbolic initial bound- 
ary value problem and construct its finite volume discretization. Section 3 is 
devoted to the derivation of a discrete Garding inequality, which forms the basis 
of the stability proof. In ?4, optimal error bounds are derived on quadrilateral 
partitions under minimum smoothness requirements on the solution. Our re- 
sults indicate that both stability and accuracy depend on the distortion of the 
mesh. More specifically, the scheme is second-order accurate if the quadri- 
laterals are close to parallelograms in the sense that the distance between the 
midpoints of the diagonals is of the same order as the measure of the element 
(Theorem 4). Moreover, on rectangular partitions, the scheme is shown to be 
second-order accurate without any additional hypothesis on the regularity of 
the mesh (Theorem 5). In particular, the regularity requirements of Lesaint 
and Raviart [6] are not necessary in this instance, which explains the insensi- 
tivity of the cell vertex scheme to mesh stretching in the coordinate directions, 
observed in [13]. 

2. THE MODEL PROBLEM AND ITS DISCRETIZATION 

For a complex Banach space V, co > 0, and p E [1, oc], we denote by 
Lp,(,( V) the weighted Bochner space, consisting of all strongly measurable map- 
pings v: (0, oc) -* V such that e-wtv E Lp((O, oc); V). We equip Lp,,(V) 
with the norm 

f(fO ejPwtIjv(t)IjPIdt)l/P if 1 <p <00, 

ess supt>o e-w v(t) 11 v ifp = o?. 

We denote by Hm (V) the weighted Sobolev space of order m, m > 0, i.e., 

HiJ( V) = {vi e L2, wO (J) dtk E L2,(V), 0?k<m} 

Let Q denote the open unit square (0, 1) x (0, 1). For m, a nonnegative 
integer, and p E [1, oc], we denote by WpJ(Q) the complex Sobolev space of 
order m, equipped with the usual norm w. (Q) and seminorm w Iwmp) (cf. 
[1]). In particular, when p = 2, W2m(Q) is denoted by Hm(Q). 

For a measurable set, G, we denote by m (G) the Lebesgue measure of G and 
by XG its characteristic function; G denotes the closure of G. For two points 
in R2, P and Q, say, dist(P, Q) denotes the Euclidean distance between P 
and Q. and diam(G) = supP QC Gdist(P, Q) . 
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Suppose that a is a two-component real vector function with continuously 
differentiable entries a, and a2 defined on Q. We introduce the following 
subsets of 0U: 

OQ = {x E 0?I a(x) * n(x) < 0}, 
O+Q = {x E OQT a(x) * n(x) > 0}, 

where n(x) denotes the unit outward normal to OU at x E OQ; when x is a 
vertex of Q, n(x) is taken to be the unit vector along the axis of the normal 
cone at x E aO (see [2, Definition 4.1.3]). With a, we associate the space 
H? (Q) consisting of all v in HI(Q) whose trace on &_Q is zero. 

Given f E Hj (L2(Q)), c > 0 and Uo E HI (Q), consider the following 
initial boundary value problem: 

+ V - (au) = f in Q x (0, oo), 

(1) U= onaQx(0,oO), 
u(x, 0) = uo(x) in Q. 

With the help of semigroup theory, this initial boundary value problem can be 
shown to possess a unique strong solution (see Pazy [12, Corollary 4.2.10]). 

In order to transform (1) into its variational formulation, we introduce the 
sesquilinear form B: HI (Q) x L2(Q) - C defined by 

B(u, p) = (V - (au), p). 

Now we can restate (1) as follows: find u E H (L2(0))nL2,(HI (Q)) satisfying 

(2) (0ya p) +B(u, p)=(fp) VpEL2(Q), 

(u(., 0)-Uo, P) = V Vp E L2(Q)- 

The construction of the finite volume method is based on this formulation. 
Let 9 = {S"h}, h > 0, be a family of partitions ?fh = {Kjh}, where each 

KV is a convex open quadrilateral. We assume that, with ?Fh = {K i }, i - 

1, 2, .. ., mh, Q =U Ki , and that each pair K V, Kjh, i j, has either an 
entire side or a vertex in common, or has empty intersection. 

Let hKh denote the diameter of KV, and let PKI denote the maximum 

diameter of circles contained in Kh . We denote by PKh and QKh the midpoints 
of the diagonals of K . The family 9Y will be assumed to possess the following 
regularity properties: 

Hypothesis Hi. The family Y is structured, i.e., for each h > 0, ?Fh is 

topologically equivalent to a rectangular partition of Q. 

Hypothesis H2. The quantity h = max{hKh jK E 5qh } approximates zero, 
and there exist two constants co > 0 and cl > 0, independent of h, such that 
for all K h E gh gh E 9 

(i) dist(PKh, QKh) < com(KV), 

(ii) hKh 
< 

C1 PKh. 
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We note that hypotheses H2(i) and H2(ii) are independent of each other: 
H2(i) demands that the quadrilaterals are close to parallelograms, whereas H2(ii) 
is the usual local regularity condition (cf. [3, ? 3.1]). 

The finite volume discretization of (2) is performed on a family of partitions 
satisfying hypotheses Hi and H2. In order to introduce the relevant approxima- 
tion spaces, we define the reference square K = (0, 1) x (0, 1) and denote by 
FKh the bilinear function which maps K onto Kih . Since each Kih is convex, 
the determinant JKh of the matrix DFKh, the Jacobian matrix of FKh, can be 

assumed to be positive on the closure of K. Further, let Qi (K) be the set of 
bilinear functions on K, and Qo(K) the set of constant functions of K. We 
define 

Wh = V E H1 (Q)l| v = v o FKvE ()Ki E h} 
' ~l DE Q1 (K'-), K~e7} 

- {p E L2(Q)l P =ipoFh , i E Qo(K), Ki Efh} 

as well as -h = h n H (Q) . Let ph: L2(Q) A j h denote the orthogonal 
projector in L2 (Q) onto 1h, and let Ih: C(Q) , gh be the interpolation 
projector onto {h . For a two-component vector function, w = (w1, w2), we 
define Ihw = (IhW1, IhW2) . The discrete analogue of the sesquilinear form B 
is given by 

Bh(V, p) = (V . Ih(av) ,p) VV E /h Vp E Jh 

We define the cell vertex finite volume approximation of (2) as follows: find 
uh in Hj, (Wh) satisfying 

(3) at ,p + h(Uh, p) = (f, p) Vp E h, 

(uh(., 0)uo, p) = 0 Vp E lh. 

In particular, when p is chosen to be the characteristic function of a quadri- 
lateral K from the partition, an elementary calculation reveals that the spatial 
discretization, induced by the sesquilinear form Bh in (3), gives rise to a four- 
point finite difference scheme involving the values of the approximate solution 
at the four vertices of K. This establishes the connection between (3) and the 
usual finite difference formulation of the cell vertex scheme. 

In order to simplify the presentation, in the rest of the paper, a will be 
assumed to be a constant vector. We can also assume, without restricting gen- 
erality, that both entries of a are positive, in which case the inflow boundary 
0_Q coincides with the intersection of 0Q with the coordinate axes. Our re- 
sults can be extended, at the expense of some technical difficulties, to problems 
with variable coefficients, provided that the components of a are of constant 
sign. 

3. STABILITY ANALYSIS 

The cell vertex scheme (3) will be shown to be stable in mesh-dependent 
versions of the norms of L2(Q) and L2(+ Q) . The precise definition of these 
is given below. 
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3.1. Mesh-dependent norms. For a partition _fh E , we define 

12( ) {) v m(K)IK x) dx} 
{KEg-h 

K 

and, denoting O+K = O+Q n K, 

IIVII2(+Q) ={ Z m(O+K) 
1 

K v ds HVH/2(o~?) = 

K KEY9~ , O?K#540 m(9+K) IOK / 

Clearly, 12 A is a seminorm on L2(Q), and it is a norm on 1h* Under 
the assumption HI, 1 is also a norm on gh 

Let us note that, by virtue of H1, for each ?Fh E g7 there exists a pair of 
positive integers (M(h), N(h)) such that mh, the cardinality of 'Jh, is equal 
to M(h)N(h), and with each Kh E ?Fh we can associate a pair (i, j), 0 < i < 
M(h) - 1, 0 < j < N(h) - 1. Thus, we label Kh by the subscript ij and write 
Kkh instead. The vertices of Kh will be denoted Xh xh xh xh 

ii ii ilj ~i+1,j' ~i+l,j+l ~ i'j+1 
starting with the lower-left corner and labeling anticlockwise. 

For a partition S'h =f{KhjO<i<M(h)-1, O<j<N(h)-1},wedefine 
the sets 

k-1l1-1 

uhl = U Pr k= 1, ... ,M(h), I= 1, ..., N(h), 
i=O j=O 

uhQk = Oj~hl\O-Q' k I ,. M(h), I =I ,..... N (h). 

Clearly, QM(h), N(h) = Q and 0+QM(h) N(h) = O+Q for all h. For a continuous 

complex function v defined on Q, let 

yvij - m(K ) vdx, 
Aliij l~h ' -X i j 

I v ds, 
1+1,1 xh - J[xh h xh] 

I2 - vxl~ x~jx? vds. 

We introduce the following mesh-dependent norms: 

(k-1 1-1 } 1/2 

(h= m(Kk) Iv yV 1k2 
i=O j=O0 

{k-1 1-1 1/2 

|+ | V 
: |~ |' 

X+h I I= ||V,1|2 + E | U X j I -|2Vk}j 12 

i=O j=O 

When k = M(h) and I = N(h), these coincide with 12 AI2(Q and 11 1l2 (?+Q) 
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respectively. In addition to these, we shall also need the mesh-dependent norm 

ok-1 1-1 

|IV111?(Qh) = {E E m(Kk U K% )j|11V j12 
i=o j=1 

k-1 1-1 1/2 

+ Em(Kk U Kih1, j) 192 Vj12 
i=1 j=o 

In the definition of 11 Ill(Qh ), we adopt the convention that empty sums, cor- 
responding to k = 1 or I = 1, are equal to zero. 

3.2. Discrete Garding inequality. The main result of this subsection is the 
discrete Galrding inequality stated in Theorem 1 below. The proof of this relies 
on some technical lemmas, and proving these is our first objective. 

The following lemma establishes the connection between hypothesis H2 and 
some familiar regularity conditions from the theory of finite element methods, 
and will play an important role in the subsequent analysis. 

Lemma 1. Suppose that the family g = {p7h} satisfies H2. For K E '7h, let 
h' denote the length of the shortest side of K, and let cJ, j = 1, 2, 3, 4, 
denote the interior angles in K. Then there exist two positive constants a and 
T, independent of h, such that for all KP E Jh, ?h E 

(4) hKhl/hKh < _ 

and 

(5) cos h ? 1h -, j= 1, 2, 3, 4. 

Proof. Let us first prove (4). Consider a partition ?7h E 7 and a quadrilateral 
Kh E 1h. If h'h > PKh, then (4) immediately follows from H2(ii) with 
a = cl. If, on the other hand, h'h < PKh (and therefore co > 0), then, 
denoting by h"h the length of the side of Kh opposite the shortest, we have 
that h"h ? PKh. However, thanks to H2(i), h"h < h'h + 2com(K h) , and 
therefore 

(6) h'h < PKh < h" < h' + 2com(Ki). 

Since h = max{hK h KhE '9?h} approximates zero, we can assume, without 
restricting generality, that h < 1/(4coc1). Thus, PKh - 2com(K h) > PKh/2, 
and, according to (6), 

hKh hKh 

h~h PKh - 2com(KP) < 2c1 (=: a) 

In order to establish (5), let us denote by A, B, C, and D (labeling in the 
anticlockwise direction) the vertices of KV E '1h, and let F denote a circle 
contained in Kh with diameter equal to PKh . Let 0 denote the center of this 
circle. We can assume, without restricting generality, that the smallest interior 
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angle in the quadrilateral Kh is at vertex A. Let us construct the two pairs 
of tangents from A and C to the circle F and denote their intersections by 
B' and D'. Since ZDAB > ZD'AB' and, by assumption, the smallest interior 
angle in KV is at vertex A, we have thus obtained a lower bound on the smallest 
angle. It remains to bound the cosine of the angle ZD'AB' from below in terms 
of hKh and PKhX 

Let Z denote the point at which the tangent AB' touches the circle, and 
note that ZAZO is a right angle. Then 

cos ZOAZ = JAZ _ JAZ I 
=OA - (OZo02 + IAZ12)1/2 

and, thanks to H2(ii), it follows that cosZOAZ < 2c1/(1 + 4c2)1/2. Since 
ZDAB < 7r/2 and ZD'AB' = 2ZOAZ, this implies that 

0 < cos ZDAB < cos ZD'AB' 

/ ____2c, 
4C2 - I 

<cos 2(arccos (1 + 4c2)1/2} 4C2 + I 

Assuming, without restricting generality, that ak h< a 1 h for 1 < k < I < 4, K Kh 
we have thus proved that 

0< cos h?1- < 2 1+c 

Clearly, 4? < 27r/3 and a3 < 7r - h. Hence, 

1 3 1 2 
-2 < cosa fh < cosa h < 1 - __42 

-1 + I 4c2 2K - K< - I 4C2' 

In order to estimate cos Kh let us first note that if ak and a' are two 
interior angles at diagonally opposite vertices of KV, then, by virtue of H2, 

Cosa Kh -Cosa 1Khh I< 8com(K )(pKh 1 < 8cocih . 

Suppose that ak, k E { 1, 2, 3}, is diagonally opposite to a4 h. Then it 
follows that 

Cos ah = Cosa Kh + (COS a 4h -COS a kh) 

> -1 + ( +24 -8cocl hKh). 

We can assume, without restricting generality, that 

h 8coc, (1 + 4C2) (? 4coc> 

Then, noting that a4 > 7r/2, we obtain 

1+ 1 4 C cosahKh< <0. 

Thus, we have proved (5) for j = 1, 2, 3, 4, with T= (1 +4c4 . -1 
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Let us recall from ?3.1 that, for a partition 9h E 97, HI implies the ex- 
istence of two integers M(h) and N(h) such that ?1-h consists of M(h) 
columns and N(h) rows of quadrilaterals. Thus, each quadrilateral in the 
partition can be labeled by an index ij, and we shall write Kk , 0 < i < 

M(h) - 1, 0 < j < N(h) - 1. Let KkJ E 5Ih be a quadrilateral with vertices 

Xij, Xi+i,j, Xi+l,j+i, xjj+1, and denote by n5, nT', nl., n%- the unit outward 
normals to the East, West, North, and South side of Kb , respectively. Let us 
define 

la n, i =0 ..., M(h), j= 0,... , N(h)- 1, 
eij = -|xih j- xkl~a -ns, i=O,1 ... , M(h) - 1, j=O ***,. N(h), 

with the convention that nM(h)j = (-1, 0) for j = 0, ..., N(h) - 1, and 

i, N(h) = (0, 1) for i = 0, ..., M(h) 1 
Lemma 2. Suppose that the family 97 satisfies hypotheses HI and H2. Then 

(7) lci+1,,j - cjjI < 2colalm(Kkh), 
(8) lei,j+l - eijj < 2colalm(Kb), 

(9) Aci+ lj -ci-,,j| < 2co|a|m(Kb U K i1_j), 

( 10) lei j+e -e j-j I < 2co|a|m(Kb U Kh j- ). 
Proof. We begin by establishing (7); the proof of (8) is analogous. Thanks to 
hypothesis H2(i), 

i+1,-Cij < Il |Ii+l j+l -ih+1 ~l+1 j-xhj+1 -h~i 

= 2|a| dist(PKh I QKh) < 2colalm(Kk,). 

Inequalities (9) and (10) follow from (7) and (8) by the triangle inequality. El 

Lemma 3. Suppose that the family 97 satisfies hypotheses HI and H2. Then 

(11) InE- a -n-1 j*al < 8cOC2calh'h 
ii 

for i= 1,...,M(h) and j = 0 ...,N(h). 
Proof. Let us consider the quadrilateral Kk E _Th. Then, by H2(i), 

Enjn- j'j < h 
h, 

I 
XyX +||htj -ht | 

(12) + h 2 dist(PKh, QKh) 

I Xlhi- Xh I i Qh 

Analogously, 

(13) |nr~~~j-nE jl < lx h h dist(PKh I QK~h)- 
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Combining (12) and (13), and using hypothesis H2, we obtain 

41al dist(PKh , QKh) 

a| j x',j+1 lx, |i+j I,+ j+1l 

< 4colal m(Kb) < 4 |a|h 
P~~~~hK PKh IJ 

Ii 

Applying (4) with a = 2c, (as in the proof of Lemma 1), we obtain (1 1). El 

Lemma 4. Let Ca = min(al, a2)/Ial, and assume that hypotheses HI and H2 
hold with C2 := Ca -8CoC2(I + 2co) > 0. Then 

(14) ci+ ,j + cij > 2c21al Ix +1-x+1 ,1L 

(15) ei,j1~ + eij > 2c21al jx 1 j+1 I 

for i=0, ...,M(h)- I and j=, ..., N(h)- 1. 
Proof. We shall only prove the first of the two inequalities. It is clear that 
a . nM( = -anM(h 1and 

(16) a nE(h)l = (a1, a2) (1, 0) = al > calal (> 0). 
For 0 < i < M(h) - 2 and 0 < j < N(h) - 1, it follows from (16) and (11) 
that 

M(h)-1 

a nI = a. nM(h - E (a nklE-a nkEl j) 
k=i+l 

/ ~~~M(h)-1 I 

> jal Ca - 8CoC2 > hl h) 
< ~~~k=i+l k,/ 

Thus, using (7), we conclude that 

ci+, j + cij = 2ci+,,j - (ci+ l,j - Cij) 

> 2a * n E IXihl ~ -x~ j |- 21ajcom(K~hJ) 
/ ~~~M(h)-1I h2* 

> || X+l jt-X+l +1jl tCa IC~ E KhCh). 

By virtue of (4) with a = 2c1, the last term in the brackets can be bounded 
from below by -4coc h2h . Hence, 

,, 

ci+l ,j + cij > 2|a| Ixi~ h~ - x~ - ca8coc 2 j 
Xhj _Xh+l jl| 

\ ~~k=O/ 

However by H2(i), 
j-i 

ixh 
h 
,+ljl < Ix h _xh + ol + E |x, h+ -hl I+,_-Xh -h~l/ ix~j - Xil+iIKx0 - x i+ ,&+ x1+1 - 

-i1,+ ixi 
- 

xi+l 1 
1=0 

N(h)-1 

< ?x-xh+ + 2co E m (Kh), 
1=0 
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and therefore, 
M(h)-1 

(17) Jx |X^-Xi ~jl < I +2c,, j =O, .,N(h). 
i=O 

Employing inequality (17) yields 

(18) ci+l, + Ci; > 2 1alX1 1 8coc2 ( + 2co)) 
for i = O..., M(h) - 2, j = O, ..., N(h) - . In fact, according to (16), the 
result (18) is also valid for i = M(h) - 1 and j = 0, ..., N(h) - 1 . Setting 
c2 := ca - 8coc2(l + 2co), we obtain (14). El 

Recalling the definition of the set Qh from ?3.1, we denote by Xkl the 
characteristic function of Qh i.e., Xkl (X) = Xh (x) . The proof of the stability 
of the finite volume method (3) is based on the following discrete sharp Ga'rding 
inequality. 
Theorem 1. Let Ca = min(a1, a2)/JaJ, and assume that hypotheses HI and H2 
hold with C2 := Ca - 8coc2(l + 2co) > 0. Then, for all k and 1, 1 < k < 
M(h), I < I < N(h), 

ReBh(v, kPhV) > -4co|al |v 1(h) 

- 2Colalll vO(h) + 1122a| HV(0+h VV E g 

Proof. Let Kb E '7h, and denote by nE, niw, nN nS. the unit outward nor- 
1J 1J~~~~iI ii i1I ii 

mals to the East, West, North, and South side of Kb, respectively. 
We shall first consider the case when 2 < k < M(h), 2 < I < N(h). Recall- 

ing the definition of the sesquilinear form Bh, we can write 

Bh(V, xklPhV) - J [V. Ih(av)]Xklphv dx = J [V. Ih(av)]PhV dx 
ki 

=o j(JKh () ) ( m(}Kh) 
J v dx) 

i=O i= JJ i J 

where v denotes the complex conjugate of v . Since Ih (av) is a linear function 
along each side of the quadrilateral Kk, the contour integral appearing in the 
last expression can be evaluated by the trapezium rule, thus yielding 

B h(v, XklPV) 
k-1 1-1 J h (av) i+ 1,j+. nI5 + (av) i+i, j 

i+lj+l xi+1,j 2 
i=O j=O 

- l _h (av)i,j+l * nT' + (av)ij * n1 + XL,+1 ij ~ 2 

+ hh |(av) i+ i, j+ 1 *n & + (av) i, j+ ni 

+ l+, _ -s x| (av)i+i, j * ns + (av)ij * nX 
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where ijj = vij . Shifting the indices in the i-summation in the first term and 
in the j-summation in the third term, and noting that (av)o,1+l = (av)o,j = 

(av)i+i,o = (av)j,O = 0, nE4= -nw and nN = -nS1j, we obtain 

k-I /-I (av)ij+l + (av)ij 
Bh(V, XkPl V) = S S Ix,+- x2jI 2 ( nav) j 1 - 'i? ,j) 

i=1 j=0 

k-lI -i 

E E h h (av)X+ ,j + (av) s 
T1JLJ~iX+1,JXLIj 2 I 
i=o j=1 

1- Ixh xh (av)k, j+l + (av)kj 
/1k,j+ilkjI- 2 fkjVk 1,1 

j=0 

k-1 (av) i+ I , . n (av) j, 

i=O 

1 k-i 1-1 

= :2 : Cij2Vij(Y2Vi+Ij - 2v1-l,1j) 
i=lI j=O 

k-i I-i 

- E E eijjj ,lVj (p~,lllVij+ l - y~i i j- l) 2 i=0 j=i 
I-1 k-I 

+ 5 Ckjl2Vkjbk-1,j + 5 eili viv,v-1i. 
j=0 i=O 

Hence, shifting indices again and observing that 

MtVij = IU (Vi + vi,j+l) = ,2(Vii + Vi+lj) 

we obtain 
k-i 1-i 

Bh(v, XklPhV) = 1 E {-Cij12VijY2Vi+I,j + Ci+ij/t2Vij/2Vi+ijI} 
i=0 j=0 

Ik-i 1-i 
+ 25 J{-eijjLvjjiiijVj,?i+ + e1,j+jljVjjivtljivjj} 

i=0 j=0 

1l-1 I 1k-i1 
+ 2 ECkjI2VkjI2 + - k-eilly, - 

1=0 1=0 

Since Re(a/,) = Re(ziB), this yields 

1k-l 1-1 
ReBh (v, xklPhV) =- E 5 (ci+ i ,- Ci;) Re(12vijtu2Vi+ ,j) 

1=0 j=0 

1 k-i 1-1 

+ 2E (e,?j+1 - eij) Re(1ivjj#1jVi,j+l) 
i=O j=0 

I-1 1 k- 2 
+ 2 )CkI/L2VkI12 + 2 E ej, 

I 
It I2. 

j=0 i=O 
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Using the identity 

|a + A| Re(af3)-=2 a Ol fl11 

we obtain 

ReBh(V, XkliPhV) 
k-11-1 k-11-1 

= Z Z(C+l,j _ -Cij)IUVijl2 + Z Z(ei,j+l - eij) IuvVj12 
i=0 j=0 1=0 j=0 

k-l 1-1 

- Z Z(Ci+l,j - Cij)(L2% + 12 2Vi+l ,j12) 
i=0 j=0 

k-i 1-i 

- E (ei,j+l - ejj)( + tIVij2 + - ILV, j+l 12) 
i=0 j=0 

1-1 k k-l 

- - kj lc2Vkj 
1 + 2 E- eii ,IbviI2 

j= 0 i=O 
k-l 1-1 

= E [(ci+k,,j - Cij) + (eij+l - eij)] Ltvijl2 
i=O j=O 

1(k-I1-1 k-k1-1 ] 

?-E (c+,j - Cj-j)jY2Vij12 + E (einj+l - e4 j-l)j (vijK2f 
i=I j=O i=O j=I 0 

1-1 k-l 
+ 4 j(Ck+ + Ck-+,j)k,2Vkj912 + k (eil + ej + e i)|lyVl1v2 

tj=o i=O J 

Employing (7)-(10), we find 

Re Bh (V, Xkl phV) 
k-l 1-1 

> -d4cons o te me(Kshe)pe n n2 
i=n j=O 

{k-l 1-1 

-2 cOa (Kij l -1)|1Vj1 
(20) i=0 j= I 

k-l 1-1 

+ m(Kkh U Kh^_ jj)I/t2Vl 
12 

i= I j=o 
1-1 k-lI 

+ 4 (Ckj + Ck - I,j) 2 Vkj 
1 
2+ (eil + ej, 1- I) I IVil 12 

j =o i=O) 

Applying (I14) and (I15) to bound the last two sums in (20) from below, and 
recalling the definitions of the mesh-dependent norms (j* 12(h ) ,i 11 * 111.(jQh ) , 

and 11 * 
|112(a+Qhd , we obtain (19) for 2 < k < M(h) and 2 < I < N(h) . 
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Now let us consider the case when at least one of the two indices k and / 
equals 1. Suppose k = 1, 2 < I < N(h); the case / = 1, 2 < k < M(h) is dealt 
with similarly, and the case when both k = 1 and 1 = 1 will be considered 
separately. 

Thus, we assume that k = 1 2 < I < N(h). By the same argument as in 
the case when k > 2, we obtain 

1-1 11-1 

ReBh(v, XllPhv) = (eoj+l - eo,j)luvojl2 - 
E 
(eoj+l - eo,jil)llulvojl2 

j=O j=l 

1-1 

+ 2 ZClAjl2Vj 12 + j(eol + eO,iij)h~uIvOlj2. 
j=O 

However, 

C1j > C21a|Xl j+l- | h- 

eo,1j+l - eOjI < 2colalm(KVh), 

jeo,j+i -eO j-1 I < 2co|a|m(Kh U Kh _I) 

eol + eO, l- I > 2c2 jal 1xil _ oll 
and therefore, 

Re Bh(v, xllPhv) 
1-1 1 1-1 

> -2ca Zm(KO)vO2- co i U Koj jl)/UlVoj2 
j=O j=l 

+ C21|al { ixhO/ 
- X U 

h 
o 112 + 1: lXh j+l -Xh I |/t2Vlj i2}. 

j=o 

With the definitions of the mesh-dependent norms Il * j2h ) 11 * 111o(ah , and 

1112(a+ h ) in mind, this yields 

Re Bh(v, xllPhv) > -2co|a| |vI 12 

-2cO |aII |v| V 1 2 (Qh ) + 2C2Ia|IVIl(OQh) Vv e h 

for 2 < / < N(h). Analogously, when / = 1 and 2 < k < M(h), 

ReBh(v, XklP v) ? -2 | 

- 2 cOt|a |I|v|I|/o ( Qh ) + 2 C2 |aI|IIV |1I2(O+Qk) Vv ) 

Let us finally consider the case k = 1, / = 1. In this instance, 

Re Bh (V, x1i1iPhv ) - 2cIoju2v gh +2 

Noting that 

C10 ? c2jla| jXljl -Xo I h e(o I C21allxIl -11 VV E 

we obtain 

ReBh(v, XIIPhv) > IC2ja IIV212(,gQh ) VV E _* 5 
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3.3. Stability. In order to complete the stability proof initiated in the previous 
subsection, we need a bivariate discrete Gronwall inequality asserted in Lemma 
6 below. Its proof relies on the following univariate discrete Gronwall lemma 
which is easily proved by induction. 

Lemma 5. Suppose that (ai), (bi), (ci), and (di) are four sequences of nonneg- 
ative real numbers such that the sequence (ci) is nondecreasing, and 

i-i 

a,+bi < c+Zdjaj, i> 1, ao+bo < co. 
j=0 

Then 

ai+bi<ciexp Edj > 1z. 

As a consequence of this, we obtain the following result. 

Lemma 6. Suppose that C is a nonnegative constant, and (aij), (bj), (ci), 
(ai), and (/3i), i, i > 0, are five sequences of nonnegative real numbers such 
that 

i-i k-i 
akl + bkl + CO < C + Z ajbkj + E flicil, k I > 0 

j=0 i=o 

with the convention that empty sums are equal to zero. Then 

(21) akl + bkl + ckl < C min{exp(Al + Bk exp(Al)), exp(Bk + Al exp(Bk))} 

for k, I > 1, where 

l-l k-i 

Al=Eaj, Bk=ZE1,A klI>1. 
j=0 i=O 

Proof. Let us fix k, and apply Lemma 5 to obtain 

akl + bkl + Ck < (C + E flici) exp(Al), k I> 1 

Now fixing I in this inequality and applying Lemma 5 again, we get 

aki + bkl + Ckl < C exp(Al + Bk exp(Al)). 

Repeating the process by first fixing I and then k, we obtain 

aki + bkl + ckl < C exp(Bk + Al exp(Bk)). 

Finally, (21) is arrived at by taking the minimum of the right-hand side terms 
in the last two inequalities. 5 

Lemma 7. Suppose that the family Sfh E 7 satisfies hypotheses Hi and H2. 
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Then 

1-i m(K. U Kh.~ 
max hj i' jh < 8c2(1 + 2co), 1 < k < M(h), 

2 < I < N(h), 
k-1 m(Kh.U h 

max ij 
-i 

hj) < 8c2(1 + 2co), 2 < k < M(h), 
i1 0?1?-1 x - -k 

1 < I < N(h). 

Proof. We shall only prove the first inequality; the proof of the second is anal- 
ogous. Let us consider a partition 'rh = {KI I0 < i < M(h) - 1, 0 < j < 

N(h) - 1}. Then, by Lemma 1, 

m(KU Kh. ) 

- m(K) + m(Kj, )?< { {; +>'1 } x i+,y- x% 

1 2(|i + 1 - xhj + |x% -Xi xj-1| ) |xi^+1 j~-X;| 

M ( O<i<M(h) i + Oi<M(h) ' 

Therefore, 

O ijk- |Xi^+ ) < ixxihj| 

< a ( max |x W/ j~lX + max |X'-i j1+| 
oJ~~'i~i-i x~~11 - Ixjj 

Summingthrough 11,..., 1 - 1,we obtain 

(22) maxKI xuK h II+ mh) < 2a- N xh)1 i j 'j -XkI. 

for 2 < I < N(h) . The sum appearing on the right-hand side of this inequality 
is estimated in the same way as (17) was arrived at: 

N(h)-1 

Z 0?<Mh)1'h+ xi,1j -xi< ? 1 + 2c0. 

Substituting this into the right-hand side of (22) yields 

mi-i m(f Ph 

m ma m ij'7 ?2c2(1+2co) 

for 1 < k < M(h) and 2 < / < N(h). Since a = 2c1, this gives the desired 
inequality. O 

Now we are ready to prove the main result of this section. 
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Theorem 2. Assuming HI, problem (3) has a unique solution uh(, t) e 
If; in addition, H2 holds with c2 := Ca - 8coc2(I + 2co) > 0, then 

(23) Luh (12(Q)) + C2|a(12H((+OQ)) 
< C3 (| Uh (O) 112(Q) + IIL2 

where w)> '(1 +8colal), C3 = exp{C4+c4 exp(c4)}, and C4 = 16coC2( +2co)/c2. 

Proof. The existence of a unique solution is proved constructively. Let Kh. E 
ii 

Sfh, Sf h E 9, and choose P = XKh in (3). Then (3) becomes a single ordinary 
Ii 

differential equation involving uh(X%, t), uh(xi^+ Ij t), uh(xi+ h t), and 
uh (Xi j+1, t), the values of uh(, t) at the four vertices of Kj . 

Let us assume, to begin with, that i = j = 0. Since uh(X h, t), Uh(xhh0, t), 
and uh(XO1, t) are determined by the boundary condition for all t > 0, they 
can be eliminated, thus yielding a single linear first-order ordinary differential 
equation for uh (Xh1, t) . This uniquely determines uh (x1 , t) for all t > 0. 

In the same way, sweeping through all Kh. from left to right and bottom to 
ii 

top, we can determine uh(X%. , t) uniquely for any pair (i, j) of nonnegative 
integers, 1 < i < M(h), 1 < j < N(h). The nodal values uniquely determine 
uh on the whole of Q. 

In order to establish (23), we first note that for any k and 1 1 < k < M(h), 
1 <l<N(h), 

(24) 1phV 11L2 (Q) = 11 12 (Qkh ) VV E2 (), 

(25) Re ( , X )klP) = 2dtVll(Qh) Vv e 

Choosing p = XklPhv in (3), and employing (19), (24), and (25), we obtain 

d ||u (t)||l ) - (1 + 8co2aDhu (t)|12I(QhI) 

- co~aI|u| (t) O(QhU) + C2Ialu 1u(t)(a+Q) ?< 12(Qhl) 

Letting w > '(1 + 8co0al), multiplying by exp(-2wt), and integrating over the 
interval (0, t), gives 

e 2tHu h(t) (Qh) + c2a 
- 

j; e2 Hu h(T)U11 ( oh dT 

< Uh(O)112 (h + j e- 2 f(T) (Qh) d T 

+ co al ej e2oHu h(T)1(Qh dT. 

Now take the supremum over t > 0 to get 

- supe 2tHu h(t)h + c21 a2 e 2tHu h(t)1(a h) dt 

(26) < Ilu h(?)112(oh + j e 2tIf(t) 2 (Qho) dt 

+ colal J e2t lu h(t)i2(Qh) dt. 
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Letting 

C - 211uh(0)2H(Q) + 2j e-2wot If(t)II2(Q) dt, 

ao = 0, go = O, 

2co m(Kk1 UKkh 11) aj = max h h- C2 O<k<M(h)-1 IXk+11 -ki 

2co m(Kkh U Kk_1 1) 
I-k = C2 O<1</N(h)- 1 Xk1+1-Xkl 

akl = sup e 2 w 
Uh(t)I1IQh), 

t>Ok 

k-1 io 

bkl = C2jal Z Ix -h xI I J 2 
e 2wt 1,iuh(Xii, t) 12 dt, 

1=o 
1-1 00 

Cia = C21al E IXk+l -Xk1 ] e 2wt|,2uh(xki, t)12 dt 
j=o 0 

for 1 < k < M(h) and 1 < 1 < N(h), and setting ako = aO, = bkO = b= 

CkO = co, = 0 for 0 < k < M(h) and 0 < I < N(h), we can write (26) as 

I-1 k-1 

akl + bkl + Ckl < C + E ajbkj + E ficil, 0 < k < M(h), O < I < N(h) 
j=o i=o 

(empty sums are equal to zero). Applying Lemma 6, in tandem with Lemma 7, 
and letting C4 = 16coc2(1 + 2co)/C2 , we obtain 

akl + bkl + Ckl < C * exp{C4 + C4 exp(c4)}. 

Recalling the definition of C, akl, bkl, and Ckl, we obtain the inequality (23) 
with c3 = exp{c4 + c4 exp(c4)}. O 

On a tensor-product nonuniform mesh, HI is automatically satisfied and, 
since each V. E ?Fh is a rectangle, H2(i) also holds with co = 0. In this case, 
Theorem 2 can be improved: stability can be shown to hold without assuming 
H2(ii). More precisely, we have the following result. 

Theorem 3. Suppose that ' - {=rh} is a family of rectangular partitions of Q 
and let w > 2(1 + 8colal) (= 2). Then 

(27) <uH H,(12 (Q)) + calIuL2,.(l2(O+Q)) 

? 2 Iu'h(0)112? +2Il12 
Proof. Choosing p = Phuh in (3), noting that (20) implies 

Re Bh(v, PhV) > I CaalIVIl2(1Q) VV E _h, 

and using (24) and (25), we obtain 

dl ( t)ll2 + 
caIaIlluh(t) 

() ? 2 uh (t)Q) + 2 1 

for all t > 0. Multiplying by e-2wt and integrating, we obtain (27). O 
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4. CONVERGENCE 

In ?3, the stability of the finite volume method has been proved under the 
hypotheses H1 and H2. Here we investigate the accuracy of the scheme (3). We 
begin by stating some preliminary results. 

Lemma 8 [3, Theorem 4.3.2]. Let D and D be two bounded open subsets of 
Rn such that D = F(D), where F is a sufficiently smooth bijection with a 
sufficiently smooth inverse F-1: D -* D . 

Then, if the function v: D -* C belongs to the space WJ1 (D) for some integer 
1 > 0 and some p E [1, oo], then the function v = v o F: D -* C belongs to 
W (D), and there exists a constant C such that 

11ILP(D) ? IJF' ILOO(D)HIVIlLP(D), V E Lp(D), 

I(D) < (D) I F I v E W 1 (D) 

IV I W2(D) C 1JF-1 1L, FIw2(D)Vw(D) ) 

V e J2(D) 

I bIW3(D) 
? C IJF- I I I(D)(IF 1(V2W3(D) + FI W 2(^IV W2(D) 

L,,, "' IVIWP2(D) ~+ IF~w - IW3 (D)),~ lD) 

veJW(D) 

Lemma 9. Suppose that the family of partitions S {g9h } satisfies H2, and, 
for K e Sfh, let EK denote the bilinear isoparametric mapping from the refer- 
ence square K - (0, 1)2 onto K. Then EK is a bijection, and there exists a 
constant C = C(co, cW), independent of hK, such that 

IWD(K) - W2(K) - W. (K) 

IFK I WI (K)?< Chi ' , JFK I WI (K) < Chk, 

HIJFKILO(K^) ? Chk, ' JF~-I ILOOK) ? ChK2 
Proof. In ?4.3 of [3], the same result is stated but assuming (4) and (5) instead of 
H2. According to Lemma 1, H2 implies both (4) and (5). Hence the result. 5 

According to this lemma, a family of partitions = satisfying hypothesis H2 
is 1-strongly regular in the sense of Zkamal [17]. 

The next lemma is a simple e oneqn ofathe continuity of the trace oper- 
ator T: H1(R) -*L2(OR) (cf. [1, Lemma 5.19]). 

Lemma 10. Let K = (O0 1) x (O0 1). Then there is a positive constant C such 
that for every w e H3(R) 

|W H2(02)?C C(IW H2(K) + IWIH3(K) ) 

The main result of this section is the following theorem. 

Theorem 4. Suppose that the family of partitions K {fh } satisfies hypotheses 
Hi and H2 with C2 := ca - 8coc12(1 + 2co) > 0, and let u e HICH2(Q)) n 
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L2, (H3(Q)), where a > 2(1 + 8coal ). Then 

(28) |U- U IIL- (12(Q)) + ||U -UhIL2 ,(12(a+Q)) 
< Ch2( ||uI|U| HH(H2(Q)) + IIUIIL2 ,(H3 (Q))), 

where C = C(co, c1, c2, jal). 
Proof. Let q = u - Ihu and =Ihu uh Then u uh = q +. We begin by 
estimating 4. Clearly, 

(0t P) + Bh(4' p) = aq(0 + *(a), P) 
for all p in gjh . Thus, 4 is the solution of problem (3) with f replaced by 
-(aOq/Ot + V * (aq)) . By virtue of Theorem 2, 

<gI12 CI,22(Q) +| V. ( 12(Q) 

Noting that jj4(0) 1l2(Q) = ljj(0)jjl2(Q), and using the triangle inequality, yields 

||U- UhIL- ,(12(Q)) + IIu-U IIL2- (12(a+Q)) 

(29) < C(co, cl , c2, jal) I|qIIL ,(12(Q)) +IIqIIL2 ,(12(a+Q)) + l(0)II12(Q) 

+ a t 11+ (aV)IIL2 ,(12(Q)) 

The first four terms on the right are easily estimated by using the Bramble- 
Hilbert lemma [3, Theorem 4.1.3] and Lemma 8, together with the bounds in 
Lemma 9: 
(30) IIHIIL-,o(12(Q)) < C(co, cl)h2 IIUIIL.,.(H2(Q)), 
(31) Hl171IL2,,(l2(a+Q)) < C(co, cl)h 2HUHL2 . (H2(o+Q)) 

(32) 11 (?)jjHl2(Q) < C(co, c1)h2 ||UOH|H2(Q), 

(33) at < C(co, cl)h 2 IHu (H2 (Q) ) , 

where h = maXKES-h hK . 
The nontrivial part of the proof consists of estimating the last term on the 

right-hand side of (29). Thus, we consider 

(34) (K) 1 v (aq) dx = m(K) j JFK(DFK)a*nqvd3. 

The expression on the right-hand side of (34) can be decomposed as follows: 

m (K) f8K^JFK(DFK) a * n1 ds 

(35) =j { FK ( ) (DFK)< (g) JFK(ko)(DFK)-1(Xo)} a*n ds 

+ JFK (Ko ) (DFK)1 (xo)a * n. ds 
_T m (K) T1 + T2 , 
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where kO is an arbitrary but fixed (interior) point in K. We begin by estimating 
T1 . Let us define the following two matrices: 

_ m(K) m(K A = - (DFK) (s) B = (K) (DFK) (io). 
JFK (S) JFK(SC) 

Recalling the well-known inequality 

[A-1- B-1]l < I[A - B]I [A-1]l[B-1]l, 

where 1[.]1 denotes the matrix norm subordinate to the Euclidean norm on 
R2, and denoting by go the point s E aR at which I[A-1 - B-1]I (being a 
continuous function on AK) reaches its maximum value, we obtain 

[DEK (So) -DFK (9o) 1JFK (,O) JFK (So) 

I [ JFK (Xo) JF(So) ] m(K) 
x 1[(DFK) l(.ko)]11[(DFK) 1(9o)]IlaI 11~11L (9k^) 

{|JFK(SO) - JFK G(O))IFKIWI(K) 

+ I[DFK(Xko) -DFK(3o)]111JFK IIL.(K^ }lal m (K) K L0()}a~ m(K) 

because (DFK)> (x) = D(F,- l (x)) . Now by virtue of Lemma 9, 

|T I < C(COc) h2(O ){hK I JFK (SO) - JFK(5CO) I 

(36) + h2 h[DFK(Jco) -DFK(So)] }fjIL (o) 

< C(co, c)0al m(K) HI1I ILI(aK,) 

By H2(ii), 
|T1| < C(co, c1)aI 11)aIILI (OK) 

The application of the Bramble-Hilbert lemma to the expression on the right 
gives 

IT11 <5 C(co, cj)jaI 1f1H2(8,9_ 

and thence, by Lemma 10, 

IT1, < C(cO, cl)al (lIIH2(2) + u1H3(K)). 

Returning to the original variables, using Lemmas 8 and 9, we obtain 

(37) IT, I < C(CO, .cl) jajhKIU1IH3(K) 

which is our final bound on T1. 
Let us consider 

T2 = JFK ( _O)(DFK)-1(JXO)a. Jnrdg, 
'=m(K)K 

the second term on the right-hand side of (35). Define the vector 

A:= JFK 
G(O) (DFK)1 (XO)a A m(K) 
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Then, with Al and A2 denoting the components of A, 

IT2(8= A1 (12E 0dk2-j Cdk2) 

(38) AKE AKw 

+A2(f is ) I 
AKN AKs I 

where aKE, aKw (resp. aKN, aKS) denote the East, West (resp. North, 
South) side of K, oriented in the positive y (resp. positive x) direction. 
Applying the Bramble-Hilbert lemma, we obtain 

OKE 0Kw XlX2 L2(K) 

- f ~ dtj < C 
af 

iKN I 1 oK2 L2(K) 

where C = C(co, c c). Changing variables, using Lemmas 8 and 9, and employ- 
ing H2(ii), we get 

(39) i dEJ- ?d2 < 
Chk2HU11H3(K)' 

AKE AKw 

(40) dJNJ -S dtc1 < Chk21ulIH3(K). 

Using again Lemma 9 and hypothesis H2(ii) gives 

(41) |AI I < Clalh-1 IA21 < Clalh- K 

Thus, from (38)-(41) we obtain 

(42) IT21 < CjajhK11u11H3(K). 

Now (37) and (42) provide the desired bound for the expression appearing on 
the right-hand side of (34): 

(43) m(K) jo JFK(DFK) a a n0 ds < CjajhK11U11H3(K)- 

From (34) and (43) we get 

IM(K) 'K (aq) dx < CjajhKjIuI1H3(K), 
and so 

(44) I1V * (ad)JIj2(Q2) < Ch2Jal 11HUIH3(Q) 

where h = maxKEia hK . Substituting (30)-(33) and (44) into (29), we obtain 
(28). E 

For a family of tensor-product nonuniform partitions, hypotheses Hi and 
H2(i) are automatically fulfilled, and the error estimate (28) holds with co = 0. 
However, the constant C appearing on the right-hand side of the estimate is still 
dependent on cl , which might suggest that allowing the constituent rectangles 
in the partition to be thin and elongated damages the accuracy of the scheme. In 
the next theorem we show that this is not the case by removing the dependence 
of C on cl. 
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Theorem 5. Suppose that 7 = {19-h } is a family of rectangular partitions of Q, 
and let u E H1, (H2(Q)) n L2,,, (H3(Q)), where a > I . Then 

2 

Iu - uhIILO ,(12(Q)) + IIu - uhIIL2 (12(a+Q)) 

< C(IaI)h (IuIH1(H2(Q)) + lUlL2 ,(H3(Q))) 
Proof. Following the same route as in the beginning of the proof of Theorem 
4, but using Theorem 3 instead of Theorem 2, we conclude that 

|u - uh11L-,(12(Q)) + 1u - uh L2, (12(a+Q)) 

(46) < CQaj) 11q1L-,-(12(Q)) + 11q1HL2,.(l2(a+Q)) 

+ j1(O)j1(2 + 07 +'v 
)1ll2(n) || at L2, (a7)l 22 (l2(Q))) 

It remains to estimate the terms on the right-hand side. Consider lI 1 12 (Q) and 
note that 

m(K) 1K = 
d 

Using the Bramble-Hilbert lemma, we get 

J dx < C?CIH2(2) 

Returning to our original variables, we obtain 

J^dx| < C[m(K)]1/2 hKIUIH2(K). 

Thus, by (47) and the definition of the norm 11 II12(Q), 

(48) jjHljj2(Q) < Ch2lUlH2(Q)5 

where C is a uniform constant. Similarly, 

(49) jjqjjI2(a+Q) < Ch 2UIH2(a+Q), 

(50) |07 < Ch2| a 

The last term on the right-hand side of (46) is handled as follows: 

1 V fV(a)dx ( a, af0 dx + a2 f q d 
(Km(K (K)JK) x, m(K)JKaX2 

(51) - iOd a[0d 

(~~~~~~~~~ )1 =a K a7 Ix + (2) a ItA2x 

where h () and h 2) denote the lengths of the horizontal and vertical sides of 
the rectangle K, respectively. By virtue of the Bramble-Hilbert lemma, 

q dk < C | dx| < C 
JKX1 0~~~ H2(K) JK0c 52H2(K) 
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where C is an absolute constant. Returning to our original variables, we get 

(52) |/ ,0 dxc < C[m(K)] /2{(h 4))3 + h4()(h())2}IuIH3(K), 

(53) |/a,) ^ dxc < C[m(K)] /2 {(h ))3 + h( (h( )) IU|H3(K). 
(53) 0Xa,2 -K Kh )}IIK () 

From (51)-(53) we obtain that 

m(K) 'K V* (arj) dx < Clal[m(K)] 1/2h2kIuH3(K) 

Hence, 

(54) JIV * (arq)JI12(Q2) < Clalh2 IUI H3(Q) 
Substituting (48)-(50) and (54) into (46), we obtain (45). E 

This result is consistent with the experimental evidence presented in [13], 
which suggests that the accuracy of the cell vertex scheme is insensitive to mesh 
stretching in the coordinate directions. 

5. CONCLUSION 

We have demonstrated that the cell vertex finite volume method for a time- 
dependent linear hyperbolic equation in two spatial dimensions is second-order 
accurate on a quadrilateral partition, provided that each quadrilateral is an 
0(h2) perturbation of a parallelogram, and that the partition is regular in the 
usual sense. Moreover, it has been shown that on a tensor-product nonuniform 
partition, second-order accuracy can be maintained without assuming regular- 
ity. Similar results hold for cell center finite volume approximations of elliptic 
equations [16] and cell vertex approximations of steady hyperbolic equations 
[10, 15]. The extension of the developments presented in this paper to linear 
hyperbolic systems will be a subject of future investigation. 
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