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RUNGE-KUTTA METHODS 
FOR PARTIAL DIFFERENTIAL EQUATIONS 

AND FRACTIONAL ORDERS OF CONVERGENCE 

A. OSTERMANN AND M. ROCHE 

ABSTRACT. We apply Runge-Kutta methods to linear partial differential equa- 
tions of the form ut(x, t) = Y?(x, 0) u(x, t) +f(x, t). Under appropriate as- 
sumptions on the eigenvalues of the operator Y and the (generalized) Fourier 
coefficients of f, we give a sharp lower bound for the order of convergence of 
these methods. We further show that this order is, in general, fractional and 
that it depends on the Lr-norm used to estimate the global error. The analysis 
also applies to systems arising from spatial discretization of partial differential 
equations by finite differences or finite element techniques. Numerical examples 
illustrate the results. 

1. INTRODUCTION 

In this paper we study the order behavior of Runge-Kutta methods applied 
to certain classes of partial differential equations. As the order of the method 
will play an essential role throughout this paper, we start by summarizing some 
basic results related to this concept. 

Consider the initial value problem (ODE) 

(1.1) y' = f(t, y), y(to) = yo, 
and a so-called one-step method for its numerical solution. Starting from the 
initial value Yo, such a method constructs an approximation, say Yi, to the 
exact solution y(to + h) for some step size h (for Runge-Kutta methods, see 
(2.2) below). The local error LE is defined as the difference between numerical 
and exact solution after one step 

(1.2) LE = yl - y(to + h). 

A method is said to have (classical) order p if 

(1.3) LE = &(hP+l) for h -- 0. 

Suppose that f in (1.1) as well as the numerical method satisfy a Lipschitz con- 
dition. Then the difference between the exact and numerical solution is seen 
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to be 6(hP), uniformly on bounded intervals for sufficiently small h. In this 
case we call the method convergent of order p. Estimates (1.3) are obtained 
by expanding the local error as a Taylor series in h, which implies that p is 
an integer. For stiff problems the behavior LE - ChP+1 is observed for very 
small values of h only. This is due to the Lipschitz constant of (1.1), which 
is large in the presence of stiffness and which is involved in the estimate (1.3). 
Uniform convergence results can however be obtained for certain subclasses of 
(1.1 ) containing problems of arbitrary stiffness. This is the case for stiff differ- 
ential equations satisfying a one-sided Lipschitz condition (B-convergence, see 
[3, 4, 8]) or for singularly perturbed problems [9]. 

The aim of the present paper is to give sharp orders of convergence for im- 
plicit Runge-Kutta methods applied to certain classes of partial differential equa- 
tions. As differential operators are unbounded, equations of this type can be 
considered as infinitely stiff. Convergence results for such equations were de- 
rived in [1, 2, 6, 7, and 12]. Our approach, however, differs significantly and 
allows us to prove uniform convergence of order c(ha), where a is not nec- 
essarily an integer. Order results for Rosenbrock-type methods can be obtained 
by similar techniques. The authors elaborated this in [15]. The order of mul- 
tistep methods applied to nonlinear parabolic problems has been investigated 
by Le Roux [13] and more recently by Lubich [14]. Order results for explicit 
Runge-Kutta methods are given in [18]. 

A short overview of the present paper is as follows: 
In ?2 we apply Runge-Kutta methods to linear partial differential equations 

(PDE) and summarize some basic properties of these methods. Section 3 con- 
tains the main result of the paper. Its proof will be given in ?4. We will show 
that the order of Runge-Kutta methods, applied to the PDE (2.1) is, in general, 
fractional and q + 2 at least ( q denoting the stage order of the method). In ? 5, 
we prove covergence in sequence spaces, which leads to a deeper understand- 
ing why fractional orders occur. In addition, we generalize to nonhomogeneous 
boundary conditions. In ?6 we will give a nice geometrical interpretation of 
fractional orders as superposition phenomena and thus reinterpret the results 
of ??3 and 5. We finally discuss the implications of our results to ODE systems 
coming from semidiscretization of parabolic differential equations. 

2. RUNGE-KUTTA METHODS FOR LINEAR PDE's 

We consider the following linear partial differential equation 

(2.1) Ut(X, t) =Y(x, a)u(x, t) +f(x, t), x E Q 0< t < T 
(21) u(x, 0) = uO(x), x EQ 

with homogeneous boundary conditions. Here, Q is an open and bounded 
subset of Rd with sufficiently smooth boundary a0 Q, and Y (x, 0) denotes 
a differential operator, densely defined in L2 (Q) with spectrum contained in 
{z E C; Rez < 0}. In order to put (2.1) into the more general framework of 
an abstract initial value problem in L2 (Q), we consider the (unbounded) linear 
operator Y : L2(Q) r-* L2(Q) 

Ya = Y(., )a for a E D(Y) 

with its domain 

D(Y) = {a E L2(Q); Y(., a)a E L2(Q) and ?4a = 0}. 
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The derivative Y(., a)a as well as the boundary condition Ma are understood 
in the distributional sense. For example, for an elliptic differential operator of 
order 2m with homogeneous Dirichlet boundary conditions we have (in the 
standard notation of Sobolev spaces) 

D(Y) = H2m (Q) n Ho (Q) 

Considering u and f as functions of t with values in the Hilbert space L2(Q) 
equation (2.1) may be rewritten as 

(2.1' u(t)=5fu(t)+f(t) 0< t< T 
(2') u(O) = uO. 

The unknown function u(t) will be approximated for t = t, := nh by a Runge- 
Kutta method, step by step through the recursion 

S 

(2.2a) un+I = Un +h bi(5Ui +rf(tn +cih)), 
i=1 

where the internal stages U/2 (i = 1, .. , s ) are defined by 

s 

(2.2b) Un = Un + h E aij(Y Ujn + f(tn + cjh)). 
j=1 

Here, h > 0 is the step size, s the number of stages, and bi, aij, ci the 
(real) coefficients of the Runge-Kutta method. For notational convenience, we 
introduce some well-known abbreviations: 

b T = ( b, . . bs ), Ck =(Clk csk )T 

(2.3) (all .1 als 1 

The following conditions (simplifying assumptions, see [5, p. 214] or [10, p. 
203]) on the Runge-Kutta coefficients play an important role throughout the 
paper, 

(2.4) C(q): Ack-I =ck k=l,... ,q. 

The highest possible value q in (2.4) is called the stage order of the considered 
Runge-Kutta method. Condition C(q) says that the quadrature formula with 
weights ail , . .. , ais is of order q in the interval [0, ci] . Note that collocation 
methods with s stages satisfy C(s) . The stability function 

(2.5) R(z) = 1 + zbT (I- zA) 1 

associated with the Runge-Kutta method is a rational function of z. A Runge- 
Kutta method is called A-stable, if its stability function satisfies IR(z)I < 1 in 
the negative complex half-plane C- = {z e C; Re z < 0} . 

Further, consider the following rational function, depending on the coeffi- 
cients of the Runge-Kutta method and on the stage order q, 

(2.6) Wk (z)= bf _ ork> 1. 
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A similar function plays an important role for obtaining B-convergence results, 
see [3]. It is evident that the condition C(q) implies Wk(z) 0 for 1 < k < q. 
In the formulation of the convergence results we shall refer to these conditions 

(2.7) Wk(z) for I < k < q. 

For many important Runge-Kutta methods, such as Gauss, Radau, and Lobatto 
methods, q given by (2.7) is just the stage order (2.4). In general, however, 
condition (2.7) is weaker than C(q), take for example the SDIRK methods 
treated in [19]. 

Note that for q + 1 < k < p - 1 the function Wk(z) can be rewritten as 

(2.8) Wk(z) = zP-k-1 J'Vk(z), with J'Vk(0) $ 0 

This follows from the expansion (I - zA)1 = I + zA + . around z = 0, the 
order conditions 

bTAlck - kbTAl+lck-1 = o 0 < < p - k-I, 1 < k < - 1, 

and from R(z) = 1 + z + c(z2) for small z (for p > 1 ). Most convergence 
results of the paper are based on the following assumptions (cf. [4] and [7] for 
similar concepts): 

(2.9a) I - zA is regular in C-, 

(2.9b) bTz(I - zA)-1 is bounded in C-, 
(2.9c) Wk(z) isboundedinC- for q+ 1< k <p-. 

Note that condition (2.9) is satisfied for many well-known Runge-Kutta meth- 
ods, such as the implicit midpoint rule, the trapezoidal rule, or RadauIIA and 
LobattoIIIC methods. For a differential operator Y(x, 0) with spectrum con- 
tained in {z E C; Iarg(z)I > 7 - a} for a certain a with 0 < a < 7/2, 
condition (2.9) can be weakened to 

(2.10a) I- zA is regular in So =z E C arg(z)I > 7 - }, 
(2.10b) bTz(I - zA)-1 is bounded in So, 
(2.10c) Wk(z) is bounded in So for q + 1 < k < p - 1. 

Note that Gauss methods satisfy (2.10) but not (2.9) for s > 3. A condition 
similar to (2.9) has been pointed out already by Brenner et al. (formula (2.6) 
in [1]). 

For a detailed description of Runge-Kutta methods applied to ordinary dif- 
ferential equations, we refer to standard textbooks [5, 10, 11]. The application 
to partial differential equations from the ODE viewpoint is treated in [17]. A 
more abstract analysis can be found in [1]. 

3. MODEL PROBLEM AND ORDER RESULTS FOR RUNGE-KUTTA METHODS 

Our analysis relies heavily on an operational calculus involving fractional 
powers of Y. One possible setting for this is the theory of analytic semigroups. 
Such an approach was used in [1 5]. Here we will remain in a more classical 
framework based on spectral properties of the operator Y. Our point of view 
is a slight generalization of a standard assumption in spectral theory, namely 
-Y is selfadjoint, positive definite and has a compact inverse. 
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We therefore consider the class of partial differential equations given by (2. 1) 
where we assume that 

(3. la) Y (x, 0) has a pure point spectrum {)A 2, A2 )3, * } with Re 2k < 0 

and that the eigenfunctions Pk satisfy the following properties:1 
(i) They form a basis of L2(Q), so that any v E L2(Q) can be expressed by 

the (generalized) Fourier series 
00 

(3.1b) '=Z E Vk(Pk in L2(Q); 
k=1 

(ii) The mapping 

(3. 1 c) { 
L2 (Q) 12 

is a homeomorphism 
/= E Yk (k Yl ) k 

(i.e., one-to-one and continuous in both directions). By 12 we denote, as usual, 
the Hilbert space of sequences (V'k)k>1 for which E I k12 < 2 - 

Note that (3.1 c) implies the existence of two positive constants Cl and C2 
such that every qi = EZk=I V'k(k in L2(Q) satisfies 

X 0 1/2 0o 1/2 

(3.2) C1 ( Ik2) 1/2? II 'IL2(Q) < C2 Vk12 

Assumption (3.1) will mainly be used to handle functions of the operator 2. 
Given a single-valued function g(z), we may define the operator g(Y) by 
defining it on the spectrum, i.e., 

00 

(3.3a) g(Y) Y = 9gQ(k)VkPk for all Y/ E D(g(Y)) 
k=1 

with its domain 

(3.3b) D(g(Y)) = { = Z/k (Pk E L2 (Q); (g (Ak) Y/k) E l} 
k=1 

If g(z) is bounded in a sector S containing the eigenvalues of Y, then 
D(g(Y)) = L2(Q) and 

00 C2 

llg(Y)Wl = |g(Ak)v'k(Pk < C 11Vt11 SUp~g(Z)| 
k=1 E 

by (3.2). Thus, we have proved the following lemma which will be of great use 
later: 

Lemma 1. Let g(z) be bounded in a sector containing the eigenvalues of Y 
and the origin. If Y satisfies (3.1), then g(h2) is bounded, independently of 
h. O 

The above definition can easily be extended to define fractional powers of 
the operator 2': 

Some authors call such a set a Riesz basis, e.g. [22]. 
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Let v be any real number. We cut the complex plane along the positive 
real axis, represent z uniquely by r exp(ip) with 0 < p < 27r and set zv = 
rv exp(ipv). Thus, zv becomes single-valued, and the above definition (3.3) 
applies. 

A canonical example for (3.1) is the one-dimensional selfadjoint operator 
(Sturm-Liouville eigenvalue problem) 

(3.4) Y(x, a) u= a9 ((x)< ) - b(x) u. 

The reader should keep this in mind as a typical problem of the form (2.1). 
We further suppose that the solution u and the source function f of (2.1) 

satisfy the following regularity assumption: 

(3.5) ~~~u E CP+'([O, T], L2(o)), 

f E CP([O, T], L2(0)). 

We now define a property 9(v), depending on a real number v. It will serve 
to characterize the order of the Runge-Kutta method (2.2) in terms of the dif- 
ferential operator and the Fourier coefficients of the source function. Let 11 K1v 
denote the following weighted L2-norm: 

00 (1/2 

ll11 E lv= (1Ak~ lVl k 1)2) 

k=i 

Now, for Y and f of (2.1) satisfying (3.1), we say that 9(v) holds (for a real 
number v ) if and only if there exists a constant C such that for all t E [0, TI 

(3.6a) 9(v) : Hf-')(t)Hl ? C, 0< j < p. 

As the domain of 5v is just the set of all V E L2(Q) such that 11v11v < o0, we 
have the following equivalent characterization of Y(v) in terms of D(5v): 

(3.6a') Y(v): f(i)(t) E D(Yv) for all t E [0, TI and 0 < j < p. 

Note that (3.6a') implies the existence of a constant C' such that 

(3.7) 11YU~j(t)Hmin(vp-j) < C' 0 <_ < P. 

This formula, which will be very useful in the proof of Theorem 2 below, can 
be deduced from (3.6) as follows: 

(i) It holds for v = 0, since by (2.1) and (3.5), Yu(')(t) = u(i+1)(t)-f(i)(t) E 
L2(Q), for O < j < p. 

(ii) If v E (0, 1], then (3.7) holds for j = p by (i). For j < p - 1 one uses 
u(i+1)(t) E D(Y), which yields 

5u(W)(t) = u(i+1)(t) - f()(t) E D(5V). 

(iii) Similarly, if v E (1, 1 + 1], where / is a positive integer, (3.7) holds 
for j > p - I because it holds for 0 < v < 1, and for j< p - I- since 
U(j+l )(t) E D(Yl+ ). 

We also refer to the supremum of all real numbers v with 3 (v) and denote 
it by 

(3.6b) v = sup{v E R; 3(v) holds }. 
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As f(j)(t) E L2(Q), we always have 9(v) with v = 0. Further, 9(v) implies 
Y(y) as long as < vy. Note, however, that 9(v) in general does not hold. 
(This can be seen by the canonical example 'k = -7r2k2 and fk = 1/k, which 
yields Tv = 1/4.) The value of v strongly depends on the asymptotic behavior 
of the eigenvalues Ak of the operator Y(x, 0). The asymptotic distribution 
of the eigenvalues is known for many classes of operators and domains, see, 
e.g., [20, ?5.6.2]. For example, in the case of the Laplacian in the d-dimensional 
unit square, we have Ak = 6(k2/d) for the natural ordering 'IkI < IAlI if k < 1 . 

Let us illustrate the fact that v also depends on the regularity of f . Consider, 
for example, the one-dimensional heat equation with homogeneous Dirichlet 
boundary conditions, 

(3.8) ut = u~x + a(x) g(t) in Q = (0, 1). 

Here, (Ok(X) = sin(k7rx), 'k = -k272, and simple integration by part shows 
that if a is sufficiently differentiable and satisfies 

(3.9) al 2) (O) = a(2 )(I) =0, m =0,... M- 1, 

then we have 9(v) with v < = M + 1/4. These artificial boundary con- 
ditions for M > 1 have been pointed out already in [17]. Similar conditions 
(formulated in terms of the domain of the operator Y) were also noticed by 
Crouzeix [6]. For the formulation of the theorem, we introduce the following 
notation. Let E(h) be a function satisfying 

(3.10) E(h) = c(h) , 0 < a < -a., 

but eventually E(h) 7? &(h). In this case, we write 

E(h) = 6^(O) 

It is in general not possible to deduce from (3.10) a convergence rate of (h); 
as an example, consider h * logh, which is (h0) for all 6 < 1 but not c (h) . 

We now give the main result of the paper concerning the convergence in the 
L2-norm. 

Theorem 2. Consider the equation (2.1) satisfying (3.1) with solution and source 
function satisfying (3.5). Apply an A-stable Runge-Kutta method (2.2), which 
has classical order p and satisfies C(q) and (2.9). Then we have the following 
estimate for the global error (nh = const): 

(i) If p<q+2, then 

(3.1 lla) 11u(nh) - Un 11L2 = &(hP). 

(ii) Let Tv be given by (3.6b). Then 

(3.1 lb) I1u(nh) - UnllL2 - (hP) if 2 
q + 2 +2iT. 

Note that condition C(q) can be replaced by the weaker condition (2.7) 
without changing the theorem, see [1 5]. The second line in (3.1 ib) can of 
course be written as &(hq+2+v) for a v < v. From the numerical point of 
view, it is impossible to notice if the bound v = Tv is really attained or not. We 
therefore use the term order of convergence for 

(3.11') a2=min(p, q+2+2 ) 
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and write 
11u(x, nh) - Un(X)IIL2 = &h(h02 

Formula (3.1 1) shows that an order reduction from p down to q + 2 + v can 
occur, depending on the value of v. As (3.6a) holds with v = 0 for every 
function f satisfying (3.5), a lower bound for a2 is given by 

a2 > min(p, q+2). 
This was first shown by Brenner et al. [1] for a model problem similar to (2.1). 
However, for many classes of PDE'S (2.1), even fractional order can occur. For 
the important class of one-dimensional second-order parabolic differential equa- 
tions (3.8) and regular functions a (e.g., differentiable), not vanishing on aoQ, 
the value of -v in Theorem 2 is v = 1/4, hence we get the order 

(3.12) a2 = min(p, q + 9/4). 

We now study the actual form of the function ch(.) in (3.1 ib). It de- 
pends strongly on the structure of the constant C in the basic condition (3.6a), 
i.e., how C depends on v. We will illustrate this by a simple example and 
consider 

(3.13) 11fP'(t)( < C v < ' <P, 

where C is a constant. Note that (3.13) holds for the one-dimensional heat 
equation (3.8) if a is sufficiently regular. We prove the following result: 

Theorem 3. Under the assumptions of Theorem 2 and the additional condition 
(3.13), if p > q+2+V, we have 

11u(nh) - UnIL2 = &(hq+2+v log hA). 

Similar order results can also be obtained for A(i)-stable methods, i.e., meth- 
ods whose stability region contains the sector 

(3.14) So={zEC; Iarg(z)l >f- }. 

Theorem 4. Consider the equation (2.1) satisfying (3.1) with solution and source 
function satisfying (3.5). Suppose that the eigenvalues of the operator Y lie 
in the sector (3.14). Apply an A (O )-stable Runge-Kutta method (2.2), with 
classical order p and satisfying C(q) and (2.10). Then we have the following 
estimate for the global error (nh = const): 

(i) If p<q+2,then 

11u(nh) - UnlHL2 = &(hP) 

(ii) Let V be given by (3.6b). Then 
{ &(hP) if q+2 < p < q+2+v, 

Hlu(nh) - uflHL2 = 6 (hq+2+V) ifp > q + 2 +v. O 
Of course, the theorem remains valid if condition C(q) is replaced by (2.7). 
It is possible to obtain similar convergence results in the Lr-norm for r $ 2 

by defining a real number Vr as in (3.6a'), (3.6b), but with the domain D(Yv) 
taken with respect to Lr(Q). The only additional assumption concerns a sub- 
stitute for Lemma 1, i.e., an operational calculus in Lr. Such an operational 
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calculus is provided, for instance, within the theory of analytic semigroups.2 
Note that an immediate extension of Lemma 1 within our assumptions seems 
difficult, as its proof is based on property (3. 1c) which does not hold except for 
r = 2. With these ingredients one gets 

(3.15) 11u(nh) - UnflJLr 
- f A(hP) if p <q + 2 + 

L&h(h + 2 +v if p> q +2 + r. 
Further, if 1 < r < 2 and r' are conjugate indices (1 = I/r + I/r'), we have, 
owing to the continuity of the embedding Lr (Q) c Lr(Q), 

(3.16) a0? < art <_ a2 <_ ar < a 

with ao:= inf{far; 1 < r < cox and 

(3.17) ar=min(p,q+2+ iVr) forl <r<oo. 

In the simple situation of the one-dimensional heat equation (3.8) with regular 
a(x) one has for 1 < r < oc, see [20, ?4.3.3]3 

(3.18) Vr = M + 1 with M given by (3.9). 

For the generic cases a(O) $& 0 or a(l) $& 0 this gives 

(3.19) ai = min(p, q + 5/2), 5 a00 = min(p, q + 2). 

Remark. Theorem 2 (and also Theorems 3 and 4) remains valid for the local 
error ( n = 1 ) of Runge-Kutta methods applied to problem (2.1) with p re- 
placed by p + 1 in formula (3.1 1). This explains the asymptotic h3.25-behavior 
in the L2-norm of the local error of a two-stage DIRK method (p = 3, q = 1 ) 
observed by Verwer [21, formulas (4.25a), (4.27)] on a problem of class (3.8) 
with v = 1/4. Similarly, the example of [1, p. 13] can be explained by the 
equivalent formula (3.1 1) for the local error, with Tv = 1/4, q = 1 . 

The proof of Theorems 2 and 3 will be given in ?4. The proof of Theorem 4 is 
a straightforward extension of that of Theorem 2. Therefore, it will be omitted. 
The implications of the theorems to the case where the operator Y(x, 0) in 
(2.1) is discretized in space (by standard finite differences or finite elements) 
will be discussed in ?6. We will show there that the global error of Runge- 
Kutta methods (satisfying the conditions of Theorems 2, 3, or 4) applied to the 
discretized system behaves like 

{ h02 for ho < h < H, 
hP for h < ho 

with a2 given by (3.11 ') and appropriate constants ho and H. 

4. PROOFS OF THEOREM 2 AND THEOREM 3 

Proof of Theorem 2. We insert the exact solution of (2.1 ') into (2.2), expand 
into Taylor series and use the simplifying assumptions C(q) of (2.4). This 

2The case r = oc requires some modifications. We do not elaborate on this point, cf. also (3.17) 
below. 

31n our context, formula (3.18) remains valid for r = 1 (take, for instance, a(x) = 1) . 



412 A. OSTERMANN AND M. ROCHE 

yields (here, tn = nh ) 
S 

U(tn+l) = U(tn) + h E bi u'(tn + cih) + &(hP+ 
(4.1) i=I 

S 

U(tn + cih) = U(tn) + h E aij u'(tn + cjh) + 6j, 
j=1 

where the defect A = (b 1 , n )T is given by 
P hk 

(4.2) 'A = E k - (Ck-kACk-l)u(k) (tn) + c(hP+1). 
k=q+ 1 

Next we subtract (2.2) from (4.1) and denote the global error by en = u(nh) -un 
Using the abbreviations Kin = U(tn + cih) - Uin, K = (K, ...,K)T, we get 

n+1 = en + h(bT ? Y)Kn + 6(hP+') 
(4.3) (I &J-hA ?5Y)Kn = 1?&en +A. 
System (4.3) yields the following recursion formula for the global error: 
(4.4) en+1 = R(hY)en + h(bT ? y)(I?j - hA o Y)-1A + (hP+l). 
Inserting (4.2) into (4.4) and using (2.9b) and Lemma 1 gives 

P hk+1 
(4.5) en+1 = R(hY)en+(J-R(hf)) E k! Wk(hY )Yu(tn)+&(hP ). 

k=q+ 1 

We first show that the term with k = p is c(hP+l) and can thus be neglected. 
By (3.7) one has Yu(P)(t) E L2(Q). Therefore, it is sufficient to prove the 
boundedness of the operator (J - R(hY)) WpV(hY). But this follows easily 
from (2.9a,b) and Lemma 1. Thus, we have to consider instead of (4.5) the 
recursion 

p-1 hk+1 

(4.6) e1 = R(hSf)en+(J-R(h)) Z k! Wk(hf)5u(tn))+6(h ). 
k=q+1 

For p = q, q + 1 formula (4.6) simply reads 

en+1 = R(hf)en + c(hP+l ), 

hence A-stability together with Lemma 1 gives en = 6(hP). This implies 
(3.1la) for p = q, q+ 1. 

For p > q + 2, we solve the recursion (4.6) and use eo = 0 to obtain 
P-1 hk+I n-1 

(4.7) en= E k! Wk(hS) Z R(hY)n i (J - R(hY))yu(k)(t,) 
k=q+l i=O 

+ &(hP) 5 

which, by regrouping the second sum, can be rewritten as 

en = E ki Wk((h) U(k) (tn1) -R(hYf)nyu(k) (to) 
k=q+i 

n-2. 
+ ERn-i-i (hY)Y (U(k)(ti) - (ti+l)) + 

i=O 
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Using A-stability and Lemma 1, we can estimate the global error en in the 
L2-norm by 

p-i h k+1 I 

E k! ( VWk(h ) au(k) (tn-I)| + |lWk(he )& (k) (to) II 

(4.8) k=q+I 

+ j |Wk(h5)5u(+)(S)|ds) + ( (hP). 

It thus remains to estimate terms of the form 

(4.9) hkII Wk(hY)h~u(l)(t)II, 1 = k, k + 1 

for q + 1 < k < p - 1. 
If p < q + 2 + v and hence v > p - q - 2 (for v < v and sufficiently near 

to iv), condition (3.7) implies 

Yu(I)(t) ECD(yP-k-1), l=k,k+l and q+l <kp- 1. 

We rewrite (4.9) as 

(4.10) hP Wk (h&) (h&')k+ I--PY p-k U(l) (t) | 

and have to show that the operator Wk(hY)(hY)k+l-P is bounded. This is a 
consequence of (2.8), (2.9), and Lemma 1. 

Finally, for p > q + 2 + v and hence v < p - q - 2 (for v < v), condition 
(3.7) shows that 

yu(l)(t) E D(yq+l+v-k), l=k,k+l and q+l <k<p- I. 

We distinguish two cases: If k > q + 1 + v, then (4.9) can be bounded by 

(4.11) hk+l * 
IlWk(h)Il 

* 
II. u(')(t)II, 

which is &'(hk+l ) by Lemma 1. If k < q + 1 + v we rewrite (4.9) as 

(4.12) hq+ I I |k(h&) (h&)k -I7vyq+2+v-kU(l) (t) Il 

and use again (2.8), (2.9), and Lemma 1. This shows that (4.12) is of size 
&(hq+2+v), which completes the proof of Theorem 2. El 

Proof of Theorem 3. The foregoing proof gives sharp results up to (4.8). Then, 
because of (3.13), terms of the form (4.12) can be bounded by 

-hq+2+v 
(4.13) C(v - v)1/2 for all v < v. 

Therefore, they are also bounded by the infimum taken over all v < v, which 
is easily seen to be 

As2-- -Chq+2+,7 log 

This completes the proof of Theorem 3. El 

5. ADDITIONAL CONVERGENCE RESULTS 

5.1. Convergence in sequence spaces. In view of the isomorphism (3.1 c), the 
convergence results obtained in ?3 can easily be translated to convergence results 
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in the sequence space 12 . Although it is straightforward, we elaborate this point, 
since the 12-interpretation of convergence gives-in our opinion-much more 
insight why fractional order appears (see ?6.1). Further, the 12 approach easily 
extends to Pr-norms with r 54 2. 

To start, we represent the solution u(x, t) of (2.1) by the (generalized) 
Fourier series 

00 

(5.1) u(x, t) = ZUk(t)pk(X), 
k=1 

where {f (Ok} is the basis of eigenfunctions of Y satisfying (3.1). Inserting (5. 1) 
into (2.1) and comparing the coefficients of (Ok, we obtain an infinite sequence 
of ordinary differential equations 

(5.2) uk(t) = AkUk(t) + fk(t), k > 1 

where fk(t) is the Fourier coefficient of f. The initial value Uk (0) is the 
Fourier coefficient of the initial function uo(x) of (2.1). Let U(t) = (u1(t), 
u2(t), ...) denote the exact solution of (5.2). Applying n-times a Runge-Kutta 
method with step size h to (5.2) yields the numerical solution, which we denote 
by Un and which approximates U(nh) . Because of (3.1 c), the error of a Runge- 
Kutta method (which has to satisfy, of course, the assumptions of Theorem 2), 
applied to the decoupled system (5.2), has an asymptotic behavior given by 
(3.1 1). Thus, an alternative proof of Theorem 2 is the following: 

Consider first the scalar equation 

(5.3) y'(t) = Ay(t) + g(t) 

with some initial value yo. Apply a Runge-Kutta method for its solution, 
S 

Yi = Yn + h A aij(AY1 + g(tn + cjh)), 

(5.4) j=1 
S 

Yn+i = Yn + h bi(AY, + g(tn + cih)), 
i=1 

and call En(A, g, h) the global error for t = nh. Then the error of the whole 
system (5.2) is given by 

00 \1/2 

(5.5) ko U(nh) - Unl2 = (2 El(Ak, fk, h) 12 

k=1 

with Ak of (3.Ib) and fk of (5.2). It can be estimated as in the proof of 
Theorem 2. 

We like to stress the fact that the above approach does not need any opera- 
tional calculus and is therefore more elementary. The only ingredient needed is 
the following lemma whose proof is given by (4.1)-(4.7) with Y replaced by 
a complex number A. 

Lemma 5. The global error En(A, g, h) of the Runge-Kutta method (5.4) sat- 
isfying the assumptions of Theorem 2 is given by (nh = cost) 
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(5.6) 
E, (A, g, h) =y(nh) - y 

p-i hk+1 n-i 

- Z k! Wk(Z) E R(z)n-i- (1 - R(z)))y(k)(ti) + 6/(hP) 
k=q+ I i=O 

with z =hA and Wk(z) of (2.6). E1 

To estimate the global error in Pr-norms, we consider again the decoupled 
system (5.2). As in ?3, we will characterize the order of convergence with the 
help of a real number ji and the property r(,u), 

(5.7a) r(8) (|ik|f() )(t)) E 1 r, 
0 < j < p 

(5.7b) Mr = SUp{jt E R; Yr(Jt) holds} 

with Ak of (3.1b) and fk(t) given by (5.2). Recall that ir for r > 1 is the 
Banach space of sequences (qYk)k>l satisfying Z v'lI <on. For simplicity we 
assume that 

(5.8) (Uk) E CP 1([O, T], 1), (fk) c CP([O, T], 11). 

Then 3r (1) holds with pu = 0 for all r > 1, and since the embeddings ( r and 
r' denote conjugate indices, i.e., 1 = l/r + l/r' ) 

c I c 12 c p C ' c 10? 

are continuous, we have 

0 < MiI < ar < M2 < Mr' < M00. 

Using the same techniques as in the 12-case shows the following theorem: 

Theorem 6. Under the assumptions of Theorem 2 together with (5.7), (5.8) 
instead of (3.5), (3.6), the global error of a Runge-Kutta method, applied to the 
system (5.2), is given by (nh = const) 

II U(nh) - UnfIlr = { (hP ) ifpp < q + 2 + E, 

The convergence behavior is thus h (h'6) with 

(5.9) (r = min(p, q + 2 + 7ir)- 

A careful analysis of the proof (?4) shows that if the Runge-Kutta method 
satisfies additional conditions (cf. (5.15) below), then the above theorem can be 
extended to situations where 

(I4 I Yf, j(t)) X 11 for some 0 < y < 1. 

We omit details. 
In the simple situation (3.8) of the one-dimensional Laplace operator and 

fk(t) = ak * g(t) = &(k -I) one easily deduces from (5.7), (5.9) 

(5.10) al = min(p, q + 2) and KOO = min(p, q + 5/2), 

which is conjugate to (3.19), i.e., di = a,, and 6&, = a, . 
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5.2. Nonhomogeneous boundary conditions. The case of nonhomogeneous 
boundary conditions is more difficult to investigate from a theoretical point 
of view. Numerical experiments, however, indicate that the order reduction 
can be more severe than the one predicted by Theorem 2. To illustrate this, we 
consider the PDE (3.8) with nonhomogeneous boundary conditions 

u(O, t) = ?(t), u(1, t) = 6(t). 

Discretization of the Laplacian by standard 3-point finite differences leads to 
the ODE system 

(5.11) U' LNU+BN(t)+FN(t), 

where LN is the N x N matrix 

2 -1 
-1 2 -1 

(5.12) LN =-(N+ 1)j 
-1 2 -1 

i -~~~1 2, 

and BN(t) = (N + 1)2 (?(t), 0, ... , 0, @(t)) T. Introducing the affine function 

W (x, t) = X@0(t) + (I - X)?D(t) 

allows us to rewrite (5.1 1) as 

(5.13) U' = LN(U - W) + FN(t), 

where W = (wi(t), ... , wN(t)) with Wk(t) = W(Nk , t). As the eigenvec- 
tors of (5.12) are orthogonal, system (5.13) can be decoupled by an orthogonal 
transformation Q into the diagonal system ( V = QU) 

(5.14) V' = A(V - QW) + QFN(t) , 

where A = diag (Al, ..., AN) with the eigenvalues Ak of (5.12). Note that 
Runge-Kutta methods are invariant under the transformation from (5.11) to 
(5.14). System (5.14) consists of N scalar differential equations of the Prothero- 
Robinson type (see [16]), 

Vk = Ak (kak (0) + 9k W) 1 < k < N. 

Instead of (2.1 Oc) we consider the conditions 

(5.15) zWk(z) is bounded in {z c C; Iarg(z)l > j7 -6} for q + 1 < k < p. 

Many well-known Runge-Kutta methods such as Radau IIA or Lobatto IIIC 
methods fulfill (5.15). An analysis similar to that made in ?5 for the infinite 
system (5.2) is now possible, essentially with q +2 replaced by q + 1 . Suppose 
that the Runge-Kutta method satisfies the assumptions of Theorem 4, but with 
(5.15) instead of (2.1Oc), and apply it to (5.1 1). Then its global error behaves 
in the Euclidian norm like C * h82 (for h not too small) with 

(5.16) J2 = min(p, q + 1 + 7). 

Here, X (and 7) is defined by (3.6) with f,(j) replaced by ak . As Ak 7T2k2 
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and 

ak(t) k (t) + 
I 
? (t), 

we have 7 = 1/4 for general e and 'F and hence (compare with (3.12)) 

(5.17) 82 = min(p, q + 5/4). 

Note that Gauss methods with an even number of stages do not satisfy (5.15). 
As a consequence, one loses another power of h when applying these methods 
to (5.1 1) and gets 

(5.18) fl2 = min(p, q + 1/4) 

instead of (5.17). 

Remark. Formula (5.17) remains valid for the local error with p replaced by 
p + 1 . This explains perfectly the asymptotic h2_25-behavior in the L2-norm 
of the local error of a two-stage DIRK method (p = 3, q = 1) observed by 
Verwer [21, formulas (4.25b), (4.27)] on a problem of class (3.8) with nonhomo- 
geneous boundary conditions. Similarly, formula (5.17) confirms the order of 
convergence observed by Verwer for the same class of methods [21, Table 4.11. 

6. MORE ON ERROR BEHAVIOR 

6.1. Superposition. The proof of Theorem 2 leads to a nice geometrical in- 
terpretation of the encountered fractional order. We consider again equation 
(5.3). The global error of a Runge-Kutta method, applied to it, has been derived 
in Lemma 5. For a fixed value of A E {z E C; Re z < O} with I.j sufficiently 
large, this term exhibits two different h-behaviors: 

(i) For IhAI large, the function E,(A g, h) in (5.6) is (see also (4.8)) 

(6.1) En (R. g, h) F, (A)hq+2-, 
where the integer co depends on the method and is for p > q + 2 determined 
by the behavior of the rational function Wq+1(z) at infinity, i.e., Wq+1(z) = 
6(z-w) for z -- oo. Radau IIA methods (s > 3), for example, have co = 2. 
This can be seen from bi = asi , which implies cs = 1 and bTA-l (cq+l -qAcq) 
0. 

(ii) For h -O 0, (2.8) shows that Wk(z) = 6(hP-k-l), and therefore En 
behaves like 

(6.2) En (A. g, h) eF2(A)hP 
The constants F1, F2 depend on the method and on A, but not on h. Plotted 
in double-logarithmic scale, the function E, (X, g, h) consists thus essentially 
of two segments with slopes q + 2 - a) and p, respectively. 

Considering now a sequence of equations (5.3) with different values of A 
gives a sequence of self-similar curves En(A, g, h) which are, however, dis- 
placed and therefore superpose each other. The global error of the whole system 
(5.2) for different values of h is thus dominated by curves associated with dif- 
ferent components of (5.2). This is particularly evident in the l?-norm, where 
the error of the whole system is just the envelope of the set of individual curves. 

Let us illustrate this phenomenon with a picture. We consider a system of 
type (5.2), 

(6.3) Uk =-lOkuk + t5, k =,...,4, 
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1 t=1 

1 0 12 
hs h3 

10-16- 

1 0-20 

err 

h 1 02 1 0r' 1 00 1 0-2 1 0-1 1 00 

FIGURE 1. Global error of Radau IIA methods on (6.3) 
at t = 1 

with initial values on the smooth solution. In Figure 1 we have plotted the 
global error of the four components of (6.3) in dependence of h for the three- 
and four-stage Radau IIA methods. As -ar = 0 for all r, one observes the 
superposed orders 5 and 6 as the slope of the envelope of the four curves. 

6.2. Order reduction for semidiscretized PDE's. Full discretization of a prob- 
lem (2.1) gives rise to two types of errors: a space truncation error due to the 
discretization of the space variables x by finite elements or finite differences, 
and a time truncation error from the numerical integration of the resulting ODE 

by a Runge-Kutta method. The following analysis treats only the time trunca- 
tion error. 

Spatial discretization (by standard finite elements or finite differences) of the 
partial differential equation (2.1) leads to the ODE system 

(6.4) U' = LNU + FN(t), 

where LN is a constant N x N matrix whose eigenvalues tend to the N first 
eigenvalues of the operator L(x, 0) when N -- oc. The global error of Runge- 
Kutta methods is governed by a similar superposition as described above. But 
as there are just N components, the superposition takes place only for h suffi- 
ciently large. For h -- 0, we observe, of course, classical order of convergence. 
There exists thus an h-zone where the order result of Theorem 2 applies. This 
zone becomes arbitrarily large when N tends to infinity. 

We illustrate this superposition with a numerical example. Consider the PDE 

(3.8) with a(x) = x, g(t) = eat and homogeneous Dirichlet boundary con- 
ditions. We discretize by standard 3-point finite differences. In this case the 
matrix LN is given by (5.12) and the parameter Tv of Theorem 2 is Tv = 1/4. 
As the eigenvectors of (5.12) are orthogonal, system (6.4) can be decoupled by 
an orthogonal transformation into the diagonal system 

(6.5) V' = AV +F(t), 

where A = diag (AI, ... , AN) with the eigenvalues 4k of (5.12). This decou- 
pling is the perfect numerical analogue of the continuous decoupling of (3.8) 
with the eigenfunctions (Pk(X) = sin(knx). 
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TABLE 1. Observed orders of convergence 

nfl ,, a2,ob ao0 ob 6l,ob 62,ob a00o, ob 

2 6.45 6.36 6.19 6.05 6.36 6.50 

4 6.61 6.37 6.11 6.05 6.37 6.79 

8 6.57 6.32 6.06 6.04 6.32 6.43 

16 6.53 6.29 6.04 6.03 6.29 6.53 

32 6.52 6.28 6.04 6.02 6.28 6.53 

64 6.53 6.27 6.04 6.02 6.27 6.51 

128 6.55 6.28 6.03 6.03 6.28 6.53 

We denote by U, and V, the numerical solution of the four-stage Radau IIA 
method (p = 7, q = 4) applied n-times with step size h = 1/n to the systems 
(6.4) and (6.5), respectively, with initial values on the smooth solution. Un 
and Vn are approximations to the exact solutions U(t) and V(t) at t = 1. 
We computed the global errors en = Un - U(1) and en = Vn - V(1) in the 
three norms 11 * 11 I, 1H * 11 2. and c, * . The observed orders of convergence are 
obtained through the formulas 

ei,ob = log2(jenjljj/He2nl~i), i = 1, 2, 00, 

and 
iob = log2(I1enji/ije2nIi), i = 1, 2, oc. 

We display these values in Table 1 for N = 50 and n = 2, 4, 8, ..., 128. 
Table 1 nicely shows that the observed orders of convergence correspond 

to the theoretical values given in Theorems 2 and 6, in particular, the order 
reduction a2 = 6.25 predicted by (3.12) and &I = 6, &cc, = 6.5 predicted by 
(5.10), can be observed. Notice also the identities a1 = &O and a,, = aI, 
which follow from (3.19) and (5. 1 0). 
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