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VARIABLE-STEPSIZE EXPLICIT TWO-STEP 
RUNGE-KUTTA METHODS 

Z. JACKIEWICZ AND M. ZENNARO 

ABSTRACT. Variable-step explicit two-step Runge-Kutta methods for the numer- 
ical solution of ordinary differential equations are studied. Order conditions are 
derived and the results about the minimal number of stages required to attain a 
given order are established up to order five. The existence of embedded pairs of 
continuous Runge-Kutta methods and two-step Runge-Kutta methods of order 
p - 1 and p is proved. This makes it possible to estimate local discretiza- 
tion error of continuous Runge-Kutta methods without any extra evaluations 
of the right-hand side of the differential equation. An algorithm to construct 
such embedded pairs is described, and examples of (3, 4) and (4, 5) pairs are 
presented. Numerical experiments illustrate that local error estimation of con- 
tinuous Runge-Kutta methods based on two-step Runge-Kutta methods appears 
to be almost as reliable as error estimation by Richardson extrapolation, at the 
same time being much more efficient. 

1. INTRODUCTION 

In this paper we study explicit two-step Runge-Kutta (TSRK) methods for 
the numerical solution of systems of ordinary differential equations (ODE's) 

(1.1) { Y/ (x )) X E [a, b], 

Ly(a) = yo, 

where the function f: Rq - - Rq is assumed to be sufficiently smooth. Let a 
nonuniform grid a = x0 < x1 < X2 < ... < XN, XN > b, be given, and let 
hi = xi+I - xi, i = 0, 1, ... , N, 4 = hi/h,- I. We consider an m-stage explicit 
TSRK method defined on the nonuniform mesh {xi}lN by the formulas 

Yi+l = -0)yi +04yi-i1 + hi-i Em_ (vjf( Yi 1 ) + XWjf( Yi )) ( 

( 1 2) 4Ylj l i i j_l1 aj f ( Yis- I), (1.2) j Y/1 y,1? +hiIZ'S1a (7) 

= YJ + EJ_ ajsf(Yis), 

i = 1, 2, ... , N - 1. Here, Yi is an approximation to y(xi), where y is 
the unique solution to (1.1). The method (1.2) requires initial value yo and 
starting value yl . This value should be computed by some starting procedure 
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based on a self-starting method, for example, a Runge-Kutta (RK) method of 
appropriate order. 

It is convenient to represent (1.2) by the following table of coefficients of the 
TSRK method: 

C, = 0 
C2 a2l 

c A c3 a3l a32 
vT 

wT Cm am, am2 ... amm-I 

V1 V2 ... V'M- Vm 

W1 W2 * Wm-1 Wm 

where ci = _ aij . Here, 0, ci, and aij are constants, and the weights 
vi and wi depend on the ratio of stepsizes = hi/hiI . The method (1.2) is 
constructed in such a way that each step requires only m new evaluations of the 
function f associated with the computation of YJ, j= 1, 2, . .., m . Observe 
that it is not necessary to compute Yi/ I, j = 1, 2, .., m, at the current step, 
since these values have already been computed in the previous step. 

Explicit TSRK methods have found applications in the numerical solution of 
systems of ODE's arising from semidiscretizations of parabolic and hyperbolic 
partial differential equations and have been studied by Byrne and Lambert [3], 
Renaut [16, 17], and Verwer [18-20]. Related results for explicit k-step m- 
stage RK methods are given in van der Houwen and Sommeijer [7, 8] and van 
der Houwen [6]. Jackiewicz, Renaut, and Feldstein [10] investigated implicit 
TSRK methods. Order conditions were formulated and A-stable two-step two- 
stage methods of order four were found by extensive computer search. 

All the papers mentioned above deal with the methods defined on uniform 
meshes. However, to implement these methods with variable stepsizes, or to use 
these methods to estimate local discretization error of continuous RK methods 
(see ?5), it is necessary to consider nonuniform meshes. There exist TSRK 
methods whose order is lower on nonuniform meshes than on uniform meshes 
(see [11]). Therefore, we consider in this paper the order conditions for nonuni- 
form meshes. In the next section, the theorem on order conditions for variable- 
stepsize TSRK methods (1.2) is formulated. This theorem is then used to gen- 
erate order conditions up to the order five. For the rooted tree t, the order 
condition involves elementary weights WV(t) and -W(t) corresponding to v 
and w. For 0 = 0 and v = 0, this condition reduces to the order condition 
(in a slightly different representation than that in [2]) for the RK method: 

c A 
wT 

The relationship between V(t) and -Ww(t) is also investigated in ?2. The un- 
derstanding of this relationship makes it possible to construct TSRK methods 
(1.2) of any order, based on some simplifying assumptions. This is described 
in ?3. In ?4, examples of TSRK methods up to order five are presented. These 
examples are constructed in such a way that they have embedded within them 
continuous RK methods of order one less. As a consequence, they provide 
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error estimates for continuous RK methods, which do not require any extra 
evaluations of the function f. This is remarkable, since the construction of 
embedded pairs of continuous RK methods always leads to extra stages (com- 
pare [13-15]). In ?5 order barriers, i.e., results about the minimum number of 
stages required to attain a given order for variable-stepsize TSRK methods up to 
order five, are presented. These results relate the minimal number of stages for 
TSRK method (1.2) of order p to the minimal number of stages of continuous 
RK methods of order p - 1 for p = 2, 3, 4, and 5. We also prove a theorem 
about the existence of a variable-step TSRK method of order p, if a continuous 
RK method of order p - 1 is known. This theorem is of great practical value, 
since it demonstrates the possibility of estimating the local discretization error 
of continuous RK methods by TSRK methods without any extra evaluations of 
the function f. Finally, the results of some numerical experiments presented 
in the technical report [12] are discussed. These experiments indicate, among 
other things, that local error estimation of continuous RK methods by TSRK 
methods appears to be almost as reliable as error estimation by Richardson 
extrapolation, at the same time being much more efficient. 

2. STRUCTURE OF ORDER CONDITIONS 

Denote by r the unique tree of order one and by t = [t1, t2, ... , ts] the tree 
formed from the trees tl, t2, ... , ts by adding a new root and joining it with 
the roots of tl, t2, ... , ts. Let p(t) and y(t) be the order and the density of 
the tree t (compare [2]). 

To obtain order conditions corresponding to the tree t, we observe that the 
method (1.2) is a special case of general linear methods introduced by Butcher 
[2] (compare also [1]). Using the theory of order conditions for general linear 
methods presented in [5, pp. 396-399] and the composition theorem for B- 
series (compare [5, ?11. 1 1]), we obtain the following theorem. 

Theorem 1. The order condition corresponding to r is 

(VT + WT)U = ? + 4a, 

and if t = [ti, t2, ..., ts], then the order condition corresponding to it is 

JS (_ 1)(tJ) ) jS V T fij (AJV(tj) ? (01P u ? ~pM W T fJ (A-7w (tj)) 
j=1 ~~~~~~~~~j=1 

__ p(t) _ (_l )p(t)4O 

'y(t) 

where V (tj) and P7 (tj) are elementary weights corresponding to v and w 
and the trees t, j=1, 2, ...,s. 

In [12] a detailed proof of this theorem is given, based on the results of [4]. 
This theorem can be used recursively to generate conditions corresponding to 

trees of any order. For example, if t = [rP-1] (so-called primary tree of order 
p(t) = p), then y2(t) = p, and it follows from Theorem 1 and the relation 
Au = c that the order condition corresponding to this tree (so-called primary 
condition) is 

VT(C - U)P- + pw Tcp1 - (-1 )PO 
p 
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or 

(VT + XPWT)CP 
I + VT (_1 )r CP-I (-1)P 

r=1 I 

The conditions up to the order five are listed in Table 1. 

TABLE 1. Order conditions for variable step TSRK methods 

t p(t) Order condition 

t1, =IT 1 (vT?+wT)U = +0 

t2, = [T] 2 (vT + 2WT)C __VTU = 
2 

-0 
1 ~~~~~~~~~~~~~~~~2 

\I t3, = [T 2] 3 (VT + 3WT)C2-VT(2c-u) = + 4 

V~~~~~~~~~~~~~~~~~~~~ 

t3,2 = [2T]2 3 (VT + 3WT)Ac-VT (C- 
I 

U) -3 + 4 

\ii t41= [T3] 4 (V + 4wT)C3-VT(3C2 3c + u) 4 

(V T + 44WT)(C . Ac) 

t4,2 =[[T]] 4 
-VT (C2?+Ac- 3c?+ 2u) - 8 

\f t4,3 = [2T2]2 4 (VT + 4WT)AC2-VT (2AC-c I u) 44_ 0 

t4,4= [3T]3 4 (VT + ~4 WT)A2C - VT (Ac - c+ 
I 

U) 44_ 0 

t5- 

I [T4i 5 (VT + 45WT)C4-VT(4C3 -6C2 + 4C-U) = 5 

(V T + 5w5T)(C2 . Ac) 

,tS 
2 [T2[T]] 5 -VT (C3 + 2c * Ac- 2C2 - Ac + 2c- 2u) = +o 
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t p(t) Order condition 

(VT + 45wT)(c. Ac2) 

=t5 3 [T[T2]] 5 -VT (2c Ac+Ac2 -C2-2Ac?+ c- Iku) - + 

(V T + $w5T)(C . A2C) 

t5,4 [T[2T]2] 5 -VT (c Ac + A2c_ IC2 - Ac + 2 c 6 u) = 3 

k~~ccc ~~ 4 J 20 Ij 
t [[T]2] 5(VT +$w5T)(AC)2 -VT (C*A-2c+c-4U)= 2 

Y t5,6 = [2T3]2 5 (VT + 5wT)AC3 - VT (3AC2 - 3Ac +c - 
I 

20 

(1,T + x5WT)A(c . Ac) 

t7 = [2T[T]]2 5 T 2C C2 _ 3 25 8) 4 
2 2 8 ~~40 

t8 = [3T2]3 5 (V +V5wT)A c -VT (2A2c - Ac + -c - Au) - 60 

t5, 9=[4T]4 5 (VT ?~5WT )A3C -VT yA2C ~ ~A?~-5U - 10 
tS, 9 = [4T]4 5 ( ~~~~~~~2 6 24 ) 120 

Order conditions for TSRK methods can also be generated using the approach 
by Burrage [1]. 

When 0 = 0 and v = 0, these order conditions reduce to the order condi- 
tions for the m-stage RK method 

c A 
wT 

(in a slightly different representation than that in [2]). 
Denote by Tr the set of rooted trees of order r . Then T = Ur Tr. The set 

Tr has nr elements; they will be denoted by tr, 1, tr, 2 tr, nr The following 
result follows from the theorem on the composition of B-series (compare [5, 
Theorem 11.11.6, p. 245]). The details of the proof are given in [12]. 
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Theorem 2. The following relation holds: 

p(t)-1 nr 

(it) = (t) + I a( M1V"(tr a, 
r=1 1=1 

where 

E ar p(t)-r P(t) P(t)- 1) 

I 2y(trl) = 1)P~t)-ry (t) ( - 1 

r= 1, 2, ...,p(t)- 1. El 

Theorem 2 plays a fundamental role in justifying the construction of TSRK 
methods described in the next section. 

3. CONSTRUCTION OF TSRK METHODS 

Denote by Tp the set of all primary trees defined by 

Tp= {t e T: t = [,,] r = 0, 1, ...}, 

where [r]: r. The set Ts = T - Tp is called the set of secondary trees. We 
will call the order conditions corresponding to the trees t E Tp the primary 
conditions, and the order conditions corresponding to t E Ts the secondary 
conditions. Let e(1) = [1, 0, ... , 0] E Rm. We have the following theorem. 

Theorem 3. Assume that v + XPw = f(4)e(1), and that v satisfies all the sec- 
ondary conditions up to order p - 1 of the one-step RK method with modified 
right-hand side as follows: 

V T-i/w (t) = P(t)V Tcp(t-1 
2'(t) 

t E Ts, p(t) < p - 1 . Then all the secondary conditions up to order p reduce 
to primary conditions of the same order. 

Proof. The assertion follows from Theorems 1 and 2, using induction on the 
order of the trees. The details of the proof are given in [12]. U 

Theorem 3 leads to the following algorithm for constructing TSRK methods 
of order p > 2. Let 

(3.1) v + ?Pw = fp (<)e(') 

where fp (4) is a function which will be determined later. Consider the systems 

vTcp-I +?,PwTcP-I = (4)J 

(3.2) j vTcPi ? (OPwTcP - =P(1) l -1 cp r 

r= 1 

p = 1, 2, ... , p- 1, where the first equation of (3.2) is obtained by multiplying 
(3. 1) by cP- , and the second equation of (3.2) is the primary condition of order 
p. This gives 
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VTC P-P E(_l)r(P )TCP-I-r) 
~~~~~~ ~~~~r= 1 

(3.3) 

- fP(v)cP P-P+Ij (PP - 1), 

which express vTcP-1 in terms of fp(,) and VTCr for r = 0, 1, ..., p - 2. 
We can compute fp(,) substituting (3.3) into the primary condition of order 
P. 

Z(-1)r(P )V TCp-l-r = W-(-1)P4O 
r= 1I 

Substituting fp(,) computed from the above equation back into (3.3), we can 
express vTcP-1 in the form 

(3.4) V TCP- I p() 

p = 1, 2, ..., p - 1, where fp1(4) are functions of 4 only. The function 

fp(,) and the functions f1 (4) computed by the above algorithm for 0 = 0 
are listed below for p= l, 2, ...,p - 1 and p =2, 3, 4, 5. 

p = 2: 

f2(4) = 1E2(, + 
fi2(4) = 92(< 1), 

92(,, _,E2/2; 

p = 3: 
f3() = 1 g3(,2 + 1), 

Ji3(4= g3(4)(? + 2), 

f3) = g3(3)(? +) 

93(4) = _ 3/(3(? + 1)); 
p = 4: 

f4(4) = 1 4(43 + 2+ 1 ), 

f4(4) = g4(4)(42 ? 24 + 3), 

f24(4) = g4(,)(,2 +2E, + 2), 

f34() = gt(g)(42 + 4) + 4), 
94(g) = _,4/(4(,2 + 4 + 1)); 

p= 5: 

f5(4) = 5 5(44 + 43 + 42 + +) 

f = g 5(4)( +3 + 92 

f25() = g5( )(S+ 3 + 6? ? 5 + 4) 

f2) = g5(3)(&?34? + 63 2 + + 5), 
f4N) = 95(4)(V + 11l4 + 1)7(3 + 42 + 9 + 5) 

9(49 _45/(5(42 + 4 + 1)(43 + 42 + 4 + 1)). 
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4. EXAMPLES OF TSRK METHODS AND EMBEDDED PAIRS 

OF CONTINUOUS RK METHODS AND TSRK METHODS 

In this section we construct TSRK methods of order p = 2, 3, 4, and 5. It 
will always be assumed that 0 = 0. The coefficient matrix A and the vector 
c = Au are chosen to correspond to a continuous RK method of order p- 1 . As 
a result, we obtain embedded pairs of a continuous RK method of order p - 1 
and a TSRK method of order p. This pair will be denoted by the following 
table of coefficients: 

Cl = 0 
C2 a2l 

C A C3 a3l a32 

- _ - Cm am, am2 . amm-1 

O T()= bi (i) b2(7) . bm(q) 
0 - 

W T(4) V I4V V2() ... Vm 

0 

W ) W2.). Wm 

Here, bi(q), i = 1, 2,..., m, are continuous weights of RK methods, and 
vi() and wi(4), i = 1, 2, ... , m, are weights of a TSRK method. 

Consider the local solution u(t) defined by 

u' (t) = f(u(t)), t E [ti-l ti+jl ] 
U(ti) = Yi. 

Then the local error 'i+l of the RK method at ti+1 is given by li+l = u(ti+1) - 

Yi+l , where 

f Yi+1 = yi + hi EZ-1 bj(l)f(Y/j), 
(4.1) j=y 

Y/J = yi + hi si _1 ajsf(Yis) , 

j = 1, 2, ..., m. Denote by 9i+l the numerical approximation computed by 
the TSRK method 

l=Y2 + hi->I Em aI(vf(YmJ 1) + , wjf(Yj)) , 

(4.2) ?Yi- +hi-,E1 -1 ajsf(Y'J ) 

Y/i = yi + Xhi_ I i- =I as f ( Yi ) , 

j = 1, 2, ..., m. We have the following theorem. 

Theorem 4. Assume that the RK method (4.1) has order p - 1 and the TSRK 
method (4.2) has order p. Then 

li+h = -i+, - yi+r + h(hP+ h) 

as h -- 0,O where h = maxhi. 
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Proof. Define y * I by 

{ =y1?i+hi-,E'IZ (vjf(U'_l)+? wjf(Yi/)), 
U! 1 _= 

Uj =U(ti-1 ) + hi-, Esj-l ajs f(Uij~1) 

Yi/ = Yi + 4 hi_ I sEj =I ajsft( Yi ) . 

j = 1, 2, ..., m, where u(ti-1) is the local solution at tiI. In general, 
u(ti-1) : y,-i. However, we can view Yi-i as computed from yi by the 
reflection of the method (4.1), and since the reflection of an RK method of 
order p - 1 is also of order p - 1 (compare Theorem 344D in [2]), we have 
u(ti-1) = Yi-I + O(hP), h -* 0. Since, 

j-1 
Yi7 I - UJ1 = hi- I ajs(f(YJ_ 1) - f(U'J_1)) + O(hP), 

s=1 

it is easy to see that YiL L - U/J I = O(hP) and f (YiJ 1) - f (UiJ 1) = O(hP) as 
h -O 0. Hence, 

m 

Yi+ I - Yi+= hi- I E vi (f(YiJ l) - f (UIl 1)) = 0(hP+ 1) 
j=1 

as h -* 0. The TSRK method has order p, and we have also 

y* - u(ti+i) = O(hP+l) as h -O 0. 

Therefore, 

h+ - Yi+1 = h+ - y*+i + Y7+i - u(ti+i) + u(ti+i) - Yi+i 
= l1+j + O(hP+1) as h - 0, 

and the proof is complete. El 

Remark. Observe that if 0 $ 0, the above perturbation arguments are not valid. 
In this case, 

m 

Yi+I = (1 - O)Yi-I + Gyi + hi- I(vjf(Yi! 1) + wjf(yi)), 

m 

Yi+= (1 - 0)u(ti1) + Oyj + hi1 Z(v f(Ui l) + Xw f(Yi)), 
j=1 

and we can only conclude that y7*+ - = O(hP) as h -* 0. 
In what follows we will list specific examples of embedded pairs of continuous 

RK methods of order p - 1 and TSRK methods of order p, p = 2, 3, 4, and 
5, constructed using the algorithm described in ?3. 



430 Z. JACKIEWICZ AND M. ZENNARO 

Example 1. Pair of order (1, 2), m = 1: 

o o 

_1Q2 

0 
+ 2) 

Example 2. Pair of order (2, 3), m = 2: 

0 
C C 

b1 (7) b2(77) 

V1() V2(4) 
0 

Wl(4) W2(Q) 

Here, c $ 0, the bi(q) satisfy order conditions for the continuous RK method 
(see [20]), and vi(4) and wi(4) satisfy the system (3.1) and (3.4). This gives 

2 

bi(77) = - 2c' 
2 

b2(q) - 
2c~ 

6c( + 1) 

6cc( ?1) 
WI(4) 2C43 + 4CE,2 + 2(3c - 1)4 + 6c + 3 

2~~~6+ 3 1 

W2(4) = 6c(i,+ 1). 

Example 3. Pair of order (3, 4), m = 4: Consider the RK method of order 
three with three stages: 

0 
C2 a2I 
c3 a31 a32 

bi b2 b3 

a21 = C2, a31 + a32 = C3. These methods are characterized in Butcher [2]. 
Assuming that 0, c2, C3 are all different, and that c2 :& 2 , which corresponds 
to Case 1 in [2], we obtain for the coefficients of this method 

C3-2 2 _C 
b2= 3 b3=- 3C 

2C2 (C3 - C2) 2c3(c3 - c2) 

b. = I -bh2 -bh3- a3n - C3(C3 - C2) 
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This method can be extended to a 4-stage RK method with stage reuse (compare 
[5]): 

0 
C2 a21 
C3 a31 a32 
1 b1 b2 b3 

b1 b2 b3 0 

which has a continuous extension with weights given by (see [13]) 

bi(q) = (1 - 2b?) 3+ (3b, - 2) 2 + q, 

b2(q)= -b2(2q3 - 3 2), 

b3(q) = -b3(2q3- 3 2), 

b4(W) =3 _2 

Observe that this continuous extension is a Hermite interpolant at the endpoints 
t4 and ti+1. 

Choosing C2 = and c3= 1 leads to the following (3, 4) pair: 

2 
0 
1 1 

1 -1 2 
2 1 

bi (q) b2(q) b3(q) b4(q) 

Vl1(4) V2 (4) V3 (4) N4(4) 
0 

Wl(4) W2(4 W3(4 W4( 

Here, 

bi (q) = I 
q3 _ 3 q2 + q, b2WC = - 4 63+ 2q2, 

b3 (W = _ I 
q3 + Iq 2 b4WC = q 3 _ q2 

and 

vi(4) _ 
4 
4(24 + 1 ) 

1 2(42++ 1) 

3(42 + + 1) 

3(4)_ 
4(2 1+2) 1 2(42+ 4 + 1) 

44(42 + 1) 
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WI (13 + 42 + + 1) _ 

W3(4) = - 124 + 2 
1 

W4(4) = - 4(42+ 1) 

Example 4. Pair of order (4, 5), m = 6: Assuming that A and c correspond 
to the 6-stage continuous RK method of order four with stage reuse given in 
[13, Example 2.21] leads to the embedded pair 

0 

1 1 
2 2 

1 1 1 
2 4 4 

1 0 -1 2 
3 3 0 9~ 0 
4 16 16 

1 1 0 2 1 0 6 3 6 

b1(q) b2(q) b3(q) b4(q) b5(q) b6(q) 

V1 (4) V2(4) V3(4) V4(4) V5(4) V6(4) 

0 

Wl(4) W2(4) W3(4) W4(4) W5(4) W6(4) 

Here, 

bi (q) = (_ 2 -3 +?2 2- _13+ 1), 

b2(q) = 0, 

b3(q) = q2(4 2 _ 238 + 6), 

b4(q) = 2(q2 _3-+ 3), 

b5(q) = q2(_ 16 q2 + 32 _ 16) 

b6(q) = q 3(q-1) 

and 
Vi(4) = g5(4)(244 + 243 _ 142 _ 2-_ 

V2(4) = 0, 

V3(4) = g5(4)(-444 _ 2383 _142 + 84 + 10 

V4(4) =V3(4), 

V5(4) = g5(4)( 14 + 1643 + 1642 + 16) 

V6(4) = g)g5 + 244 + 43 _ 42 _ 4) 
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where 

g()=-5(42 + 4 + 1)(43 + 42 + 4 + 1 

We have also 

Wl(4) = (ff5(4) _-V v(4))g5, Wg() = _Vg()/g5, i = 2, 3, 4, 5, 6. 

5. ORDER BARRIERS FOR TSRK METHODS 

In this section we investigate the minimum number of stages of variable-step 
explicit TSRK methods required to attain a given order p. This number will be 
denoted by TVSEN(p). Obviously, TVSEN(p) < EN(p), where EN(p) is the 
minimum number of stages for a RK method of order p. It turns out that for 
low orders (p < 5) this number is closely related to the minimum number of 
stages of continuous explicit RK methods required to attain order p - 1 . This 
number will be denoted by CEN(p - 1). It was proved by Owren and Zennaro 
[15] (see also [14]) that 

CEN(1) = 1, CEN(2) = 2, CEN(3) = 4, 
CEN(4) = 6, CEN(5) = 8. 

We have the following theorem. 

Theorem 5. The minimum number of stages for a variable-step explicit TSRK 
method required to attain a given order p satisfies 

TVSEN(p) = CEN(p - 1) 

for p = 2, 3, 4, and 
TVSEN(5) < CEN(4) = 6. 

Proof. The examples of TSRK methods presented in the previous section show 
that 

TVSEN(p) < CEN(p - 1), 

p = 2, 3, 4, and 5, and obviously, 

TVSEN(2) = CEN(l) = 1. 

It is easy to check that the system of order conditions up to order three for a 
TSRK method cannot be satisfied for m = 1 . Hence, 

TVSEN(3) = CEN(2) = 2. 

Consider now the case p = 4. We have to show that TVSEN(4) = 4. Assume 
to the contrary that TVSEN(4) < 4. It can be shown that the simplifying 
assumptions v + 44w = f(,)e(1) and VTAc = IvTc2 (compare Theorem 3) 
are, in fact, necessary for a TSRK method of order four with three stages. This 
requires some tedious algebra, and for the sake of brevity the details of the 
derivation are omitted. The interested reader is referred to [12]. 
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The vector v satisfies the system of equations 

vTu= g4(4)(42+2 + 3), 
vrc = g4( )( 2 + 24 + 2), 

Ts T2 = g (4g) g2 + 5 4 + 4 ) 

v Ac = Ig4(g)(g2 + + 4) 

94 () = _44/(4(g2 + 4 + 1)), 

compare ?3. Observe that the first three equations correspond to primary con- 
ditions, and the fourth equation to the secondary condition. Let 

Vi (4) = 94 (4) (Vi, 0 + Vi, I 4 + Vi, 242) X 

i = 1, 2, 3. Then the above system of order conditions can be written in the 
form 

(5.1) [P V= {F] 

where V =[vi,X]1 2 and 

u u 3 2 1 

(C2) T ; 4 51 

Ds = (Ac)T] FS = [2 2 1] 

Multiplying (5.1) from the right by the matrix Q given by 

-Q I - Q = - 2 - 
2 -2 2j 

and putting B = VQ, leads to the system 

(5.2) []B... [FsQ] 

Since 
i1 0 0 

FpQ [0 ? O and FsQ= [O 0 

LO 0 13J 
the system (5.2) has exactly the form encountered in the theory of explicit 
continuous RK methods of order 3 (compare [13, 15]). Since it is known that 
the minimal number of stages for an explicit continuous RK method of order 
three is four (see [13-15]), it follows that the system (5.2), and as a consequence, 
the system (5.1), cannot have a solution. This completes the proof. a 

Our next result shows that, using the algorithm based on Theorem 3, we 
cannot obtain a variable-step explicit TSRK method of order five with fewer 
than six stages. 

Theorem 6. Assume that v +,5W = f(;)e(') and VTTVWe(t) - p(t)VTCP(t)-l/y(t), 
t E Ts, p(t) < 4. Then the minimal number ofstages of the TSRK method (1.2) 
of order five is m = 6. 
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Proof. The proof of this theorem is similar to the proof of Theorem 5 and is 
therefore omitted. The interested reader is referred to [12]. 0 

Remark. Theorem 6 does not rule out the existence of a TSRK method of order 
five with fewer than six stages. It only says that such methods cannot satisfy 
the simplifying conditions given in Theorem 3. 

In the report [121 we also investigated the necessity of the simplifying con- 
ditions given in Theorem 3 for TSRK methods of order five. It was proved 
that 

(5.3) v +5w =f(4)e') 

holds if and only if 

(5.4) rank(M) = m - I, 

where the matrix M is given by 

F (A2C2 - 2A3c)T 

(Ac3 + 3(Ac)2 - 3c * AC2)T 
M ((Ac)2 - 2c . Ac2 + A2C2) T 

(c4 - 4Ac c2 + 4(AC)2)T 
(2Ac 3- 6A(c ..Ac) + 3A2C2)Tj 

This matrix corresponds to a subset of conditions of order five. We also proved 
that if (5.3) is satisfied, then the conditions 

(5.5) VT )(t) = ) p 

t E Ts, p(t) < 4, are automatically satisfied. 
Summing up the above discussion, we conclude that the conditions (5.3) and 

(5.5) are necessarily satisfied for a TSRK method of order five with m < 6 if 
and only if (5.4) holds. Using this fact, and Theorem 6, we can assert that if a 
TSRK of order five with m < 6 exists, then 

rank(M) < - 1. 

Unfortunately, this condition is difficult to analyze. 
We conclude this section with the following theorem. 

Theorem 7. For each continuous m-stage RK method of order p - I > 2, there 
exists an m-stage variable-step TSRK method of order p with the same coefficient 
matrix A. * 
Proof. Put B = [bi,j]m P1 pi , where the bij are the coefficients of the contin- 
uous weight bi(iq), i.e., 

p-i 

bi (q) = Zbi, jy. 
j=1 

It was demonstrated by Owren and Zennaro [15] (see also [13]) that the order 
conditions for an m-stage continuous RK method of order p- - can be written 
in the form 

(5.6) Ds [ Gs] 
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where 

L(cp -2)T o 0 pI 

?F5 = [(ii)(t))T]tETS, p(t)<p1 I Gs = [e(P(t))/y(t)]tETsp(t)<p1, 

and e(P()) = [0, ..., 1, 0, ...., 0] with 1 in position p(t). 
Consider now the system of equations for the vector v corresponding to a 

TSRK method of order p. The first part of the system corresponds to primary 
conditions 

V TCi-1 = fiPQ( 

i = 1, 2, ..,p - I, where the functions fiP()i= 1, 2, .. p - I, can be 
computed by the algorithm based on Theorem 3 and described in ?3. These 
functions always have the form 

f(4N) = gp(4)riP(), 

where gp(g) is a rational function and the rf (4) are polynomials of degree 
k > p - 2. The second part of the system corresponding to the secondary 
conditions reads 

V Tv (t) = yPt Wfft)(4 

tETs, p(t)<p-l.Let 
k 

Vi(4) = gp(4) E Vi, jVg i = 1, 2, ... ., mI 
1=0 

k 

Hi()= g fP(4jV,j~ i = 1, 2, .... I p- 
j=0 

and denote by Jg the row vector [f1Pj ] _O . Then the system of order conditions 
can be written in the form 

(5.7) [ ]p [ Fp] 
where 

V = [vi, ]7i=1,v Fp = [fP- I ?,1=0' s [y(t) P )]tETsP(t)<P-I 

Let Gp and Gs be (p - 1) x (k + 1) matrices defined by 

Gp = [GpjO], Gs = [GsIO], 

and let us partition the matrix Fp into 

Fp = [FpIF2 

where Fp stands for the first p - 1 columns of Fp, and Fp2 for the last k -p +2 
columns of Fp. Define the matrix T by 
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T=[ I ,2 

where T1 = G- 1 Fp and T2 = G- 1 F2, and where 0 stands for the (k - p + 2) x 
(p - 1) zero matrix and I for the (k - p +2) x (k - p +2) identity matrix. Let 
B = [BIO], where 0 stands for the m x (k + 1) zero matrix. Then the system 
(5.6) can be written as 

(5.8) [ =s ] G 

We have Gp T = Fp, and since 

()e(PMt) T = yt)e(P(O)) T, | ?]= 7t PPt 

it follows that Gs T = Fs. Hence, postmultiplying (5.8) by T, this system 
reduces to (5.7) with V = BT. Therefore, if (5.8) has a solution B, then the 
system (5.7) also has a solution V = B T, and the theorem follows. EJ 

The matrices Fp, T, B, and V = BT are listed in [12] for p = 2, 3, 4, 
and 5. 

We will now discuss the necessity of the simplifying conditions given in The- 
orem 3 for TSRK methods of order p. It follows from Theorem 5 that these 
conditions are necessary for p = 2, 3, and 4. We also suspect that these con- 
ditions are necessary for p = 5 (compare the discussion following Theorem 6), 
but so far we are unable to prove this. Since in view of Theorem 7, the minimal 
number of stages for TSRK methods of order six satisfying the simplifying as- 
sumptions of Theorem 3 is CEN(5) = 8, and since there exist RK methods of 
order six with only seven stages, it follows that these simplifying assumptions 
are not necessary for p > 6. 

In the technical report [12] the results of some numerical experiments were 
presented. In these experiments we have used some of the test problems from 
the paper by Hull et al. [9]. We implemented the continuous RK methods 
of order 3 and 4 with step control strategy based on the estimation of local 
discretization error by TSRK methods of order 4 and 5, respectively, and by 
Richardson extrapolation. We have listed in [12] numerical data such as the 
number of steps, the number of rejected steps, the number of function evalua- 
tions, the percentage of steps for which the local error exceeded the tolerance, 
the maximum local truncation error in units of tolerance, and the global er- 
ror at the endpoint of integration. These results are given for three tolerances 
TOL = 10-3, 10-6, 1O-9, and for the two strategies of estimating the local 
discretization error. To obtain further insight into the reliability of error esti- 
mation based on TSRK methods, as compared with error estimation based on 
Richardson extrapolation, we also presented in [12] the percentage of steps for 
which the local error was within 1%, 5%, 10%, 25%, and 50% of the local error 
estimate computed by the above two methods. All these results indicate that the 
error estimation of continuous RK methods by TSRK methods appears to be 
almost as reliable as local error estimation based on Richardson extrapolation, 
at the same time being much more efficient. 
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