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HOMOTOPY-DETERMINANT ALGORITHM FOR SOLVING 
NONSYMMETRIC EIGENVALUE PROBLEMS 

T. Y. LI AND ZHONGGANG ZENG 

ABSTRACT. The eigenvalues of a matrix A are the zeros of its characteristic 
polynomial 

f(i) = det[A - I]. 

With Hyman's method of determinant evaluation, a new homotopy continu- 
ation method, homotopy-determinant method, is developed in this paper for 
finding all eigenvalues of a real upper Hessenberg matrix. In contrast to other 
homotopy continuation methods, the homotopy-determinant method calculates 
eigenvalues without computing their corresponding eigenvectors. Like all homo- 
topy methods, our method solves the eigenvalue problem by following eigen- 
value paths of a real homotopy whose regularity is established to the extent 
necessary. The inevitable bifurcation and possible path jumping are handled by 
effective processes. 

The numerical results of our algorithm, and a comparison with its counter- 
part, subroutine HQR in EISPACK, are presented for upper Hessenberg ma- 
trices of numerous dimensions, with randomly generated entries. Although the 
main advantage of our method lies in its natural parallelism, the numerical 
results show our algorithm to be strongly competitive also in serial mode. 

1. INTRODUCTION 

Consider the eigenvalue problem 

(1.1) Ax = Ax, 

where A is an n x n nonsymmetric matrix and x = (xl, ..., xn)T By an 
orthogonal transformation, A is similar to a matrix in upper Hessenberg form. 
Hence we shall assume throughout this paper that A is an upper Hessenberg 
matrix, 

a21 * ** ..I . i 

A = (aij) a32 
.. ... 

0 an-1,n-2 * * 
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We further assume A is irreducible, that is, none of the subdiagonal entries 
aj, j-,, j = 2, ... , n, are zero; otherwise, we can consider a reduced matrix. 

The purpose of this paper is to use the homotopy continuation method to find 
all eigenvalues of A. Homotopy continuation methods have been successfully 
applied to symmetric tridiagonal eigenvalue problems with remarkable numer- 
ical results [10, 14]. The implementation of the continuation algorithm for the 
real nonsymmetric case has been discussed in detail in [ 1 3]. While the algorithm 
in [13] calculates the eigenvalue and its corresponding eigenvector simultane- 
ously, the method we propose here focuses on finding only the eigenvalues of 
A without computing the eigenvectors. Our homotopy deforms the character- 
istic equation of A into the characteristic equation of a matrix D with known 
eigenvalues. To distinguish our homotopy from the previous one in [13], we 
shall name our method the homotopy-determinant algorithm. 

For t E [0, 1], let 

A(t) = (aij(t)) = (1 - t)D + tA, 

where D = (dij) is a matrix, usually called the initial matrix, also in upper 
Hessenberg form but with known eigenvalues. Let H: C x [0, 1] C be 
defined by 

(1.2) H(A, t) = det[A(t) - AI]. 

Let HA and Ht denote the partial derivatives of H with respect to A and 
t, respectively. When -2JH = (HA, Ht) is of full rank at (AO, t0) E H-1(0), 
then locally the solution set of H(A, t) = 0 consists of a smooth 1-manifold 
(A(s), t(s)) passing through (AO, t0). We shall call such a curve (i(s), t(s)) 
an eigenvalue path. These eigenvalue paths connect the eigenvalues of D and 
those of A and satisfy the ordinary differential equation 

Hid- + Ht W- = 0. 

To effectively follow the eigenvalue paths for finding all eigenvalues of A, 
one must efficiently evaluate H, HA, and Ht. For this purpose, the method 
of Hyman [7, 18] for evaluating determinants of Hessenberg matrices and their 
derivatives will be used. The details will be discussed in ?2. 

The regularity of the eigenvalue paths needed for a general homotopy algo- 
rithm is usually achieved by random perturbation of certain parameters. To 
maintain the conjugacy of the eigenvalues of A(t) for each t, so that when a 
complex eigenvalue path (A(s), t(s)) is followed its conjugate eigenvalue path 
is obtained as a by-product without further computations, we restrict the per- 
turbation to be real. In contrast to the complex perturbation used in [2, 3, 14, 
12], the real perturbation cannot maintain complete regularity of our eigenvalue 
paths. Indeed, bifurcations on some of the eigenvalue paths are inevitable. In 
?3, we shall establish the regularity of our eigenvalue paths to an extent nec- 
essary and analyze the bifurcation behavior. It turns out that the necessary 
regularity can be obtained by the perturbation of only four entries of the initial 
matrix, regardless of the size of the matrix A. 

It is desirable to choose D as close to A as possible, so that the eigenvalue 
paths are close to straight lines and thus easy to follow. So, we employ the 
strategy of "divide and conquer." The initial matrix D = (d,j) is formed by 
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making one of the subdiagonal entries ap+l,p of A zero, namely, 

dJaijS (i, I P : (P + l, p) 
dij 0, (i, j)=(p+lp), 

and the eigenvalues of D are obtained by solving the eigenvalues of the reduced 
submatrices of D. We conquer the matrix A by following the eigenvalue paths 
of our homotopy in (1.2). The algorithm of following the eigenvalue path will 
be described in detail in ?4. 

The numerical results of our algorithm on upper Hessenberg matrices with 
randomly generated entries are presented in ? 5. The results seem very encourag- 
ing. The well-developed QR algorithm for nonsymmetric eigenvalue problems 
implemented in EISPACK [16], the subroutine HQR, is widely considered to 
be the most efficient algorithm available. Compared with HQR, our algorithm 
is strongly competitive in terms of both accuracy and speed on the examples we 
have tried. 

Scientific and engineering research is becoming increasingly dependent upon 
the development and implementation of efficient parallel algorithms on mod- 
ern high-performance computers. The search for methods of solving eigenvalue 
problems on advanced computers has produced several algorithms, such as Di- 
vide and Conquer [4, 6] and Bisection/Multisections [8, 9, 15], for symmetric 
tridiagonal matrices. Good parallel algorithms for nonsymmetric eigenvalue 
problems, however, are still in demand. The most important feature of our 
algorithm is its natural parallelism, in the sense that each eigenvalue path is 
traced independently of the others. In this respect, it stands in contrast to the 
highly serial QR algorithm. The parallel implementation using n processors 
should increase the efficiency of our algorithm by a full power of n, Mlaking 
it an excellent candidate for advanced computer architectures. Reports on this 
important aspect will be given in a separate paper. 

Concurrent and independent research on parallel computation for nonsym- 
metric eigenvalue problems has been carried out by Dongarra and Sidani [5]. 
Their approach also involves the strategy of "divide and conquer." In contrast 
to our algorithm, their method must compute the eigenvalues and associated 
eigenvectors at the same time. 

2. HYMAN'S METHOD 

For A(t) = (aij(t)) = (1 - t)D + tA and x = (XI, ..., )T, the system of 
equations (A(t) - AI)x = 0 can be written as 

(aI(t) - A)X1 + aI2(t)x2 + + aIn(t)Xn = 0 

a2l (t)xI + (a22(t) - A)X2 + + a2n(t)Xn = 0 

(2.1)~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~................ ............................................. aaaa 

(2.1) ak k-l(t)Xk-1 + (akk(t) -)L)Xk + * * * + akn(t)Xn = 0 

an, n- I(t)Xn-I + (ann (t) - )Xn = 0 . 

Given a value of A, and setting xn = 1 in the last equation, we can solve the 
last n - 1 equations recursively for xn-I, ... , x2, x1 . These values are then 
used to evaluate the left-hand side of the first equation, 

(22) F(A, t) = (aI(t) - A)Xl + a12(t)x2 + + aIn(t)xn 
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Obviously, F(A, t) = 0 precisely if A is an eigenvalue of A(t). The matrix 
A(t) - AI has the form 

/all(t) - A a12() a13 (t) ***al n M 
a2l(t) a22(t) - A a23(t) ... a2n(t) 

a32(t) a33(t) - ... a3n(t) 

0* * 
an ,n - I(t) ann(t)-A 

For j = 1, 2, ... , n we multiply the jth column by xj as found above and 
add this to the last column, thereby obtaining the matrix 

/all(t) - A a12(t) a13(t) .. A. al,nl(t) F(A, t)' 
a2l(t) a22(t) - a23(t) a2,n-I(t) 0 

a32(t) a33(t) - i a3, n-(t) 0 

0 
an,n-(t) 0 / 

We then have 
n-1 

H(A, t) = det[A(t) - 2I] = (-1)n-1F(A t) JJ aj+ ,j(t). 
j=1 

To compute HA, we need to compute Qai Differentiating (2.1) with respect 
to A, taking into account that the x;, j = 1,..., n- 1, are functions of (A, t), 
and xn = 1, yields 

(aI(t) - O) ,x, - x1 + ai2(t) Oj2 + ?* * + aln(t) OSn = 0 

a2l (t EJ0,, + (a22(t _ A) ,,2 X2 + ... + a2n(t) ,, = 

ak( k-I 
OXk + (akk(t) ,,)9Xk Xk + + ak(t) 

X f l 

ana nIt 07 = 0nn(t)-A) , -Xn = O 

With 0Xn/0A = 0, we solve (2.3) successively for Xn-1/09A, ... , 0x/0A, 
using the previously computed values of xI, ... , xn . The value of the left- 
hand side of the first equation in (2.3) is then '9, . We proceed similarly for 

rr~~~~~~~~~~~~~a 
Ht . 

The method described above, basically Gaussian elimination without piv- 
oting, is due to Hyman [7, 18]. The backward stability of this method was 
established by Wilkinson in [18]. It was proved that there is little correlation 
between the accuracy of the method and the magnitude of the subdiagonal en- 
tries of A(t), although it may seem that some subdiagonal entries with small 
magnitude would endanger the accuracy of the procedure. 
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3. REGULARITY AND BIFURCATION 

The boundedness as well as the smoothness of the eigenvalue paths are the 
essential properties needed for the homotopy method. In our case, the eigen- 
value paths are always bounded in C x [0, 1] because of the continuity of the 
eigenvalue with respect to the entries of the matrix. The smoothness of the 
homotopy paths can usually be achieved by random perturbation of certain 
parameters. To maintain our homotopy real for important practical considera- 
tions, we restrict the perturbation to real perturbation. In contrast to complex 
perturbations used in [2, 3, 11, 12], real perturbations cannot guarantee the 
smoothness of our eigenvalue paths, and bifurcations, which do not occur when 
complex perturbations are used, are inevitable. In [13], regularity and bifurca- 
tion results were obtained by using real perturbations on all the upper triangular 
entries. In our case, we will show that perturbation of as few as four entries in 
the initial matrix is sufficient to achieve the smoothness of the eigenvalue paths 
to the extent necessary, along with the simplicity of the bifurcation behavior. 

For the initial matrix D = (dij) in upper Hessenberg form, with one of 
the subdiagonal entries dp+1,p = 0 and dj+1,j :A 0 for j :$ p, we shall take 
dip, d ,n-I1 d1n , and dp+ ,,n as the only parameters subject to perturbation. 
We write 

dil I. ... 
dip .di,p+l ..dlin-I din 

d2l * - 

dp, p- dpp dp,p+ I .. dp~n-1 dpn 

D ~ D2 

D = O~~~~~ dp+,,p+l .. . dp+l,n 

dp+2,p+l 

0 dn 0n_ 1 dnnv 

D I~ 

- 0 D2J 

where 

DP h = de2l - . 

( 0 dpaps dppn 
/dp+1, p+ I dp+1, n 

D2= dp+2,p+l* -* 

0 dn~n_1 dnn 

Proposition 3.1. For the homotop~y H(A, t) = det[A(t) A I] with A(t)= 
(1 - t)D + tA there exists a subset Q in R4 with full measure, i.e., R4\Q has 
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C ~ ~ R C RR 

Paths in C x [rO 1] Paths restricted in R x [O, 1] 
FIGURE 1. Smoothness of real eigenvalue paths 

zero Lebesgoue measure, such that if (dip, dp+i ,n, d1 ,n-i, d1n) is in Q, then 
(i) the initial matrix D has no multiple eigenvalues; 

(ii) for (R, t) E H-1 (0) with complex A, HA :$ 0 holds; 
(iii) if H is considered a map from R x [0, 1) -* R, then zero is a regular 

value of H, i.e., for every (R, t) E H-I(0) with real A, (HA, Ht) is of 
rank 1. 

From (iii) above, by the Implicit Function Theorem, there exists a real eigen- 
value path passing through any (R, t) E H- (0) with real A. By a standard 
continuation argument, if H is considered a map from R x [0, 1) -* R, then 
H- I(0) consists of real one-dimensional manifolds, and no bifurcation occurs 
in R x [0, 1), as shown in Figure 1. 

In C x [0, 1), from (ii), the Implicit Function Theorem also guarantees the 
regularity of the local eigenvalue path at (R, t) E H-1(0) with complex A. 
Therefore, in C x [0, 1), bifurcation can only occur at a real point (AO, t0) E 
H-1(0) at which Ha must vanish, i.e., AO is a multiple eigenvalue of A(tO). 
Otherwise, A2?H = (HA, Ht) at (AO, t0), considered a real 2 x 3 matrix, has 
the form 

(a 0 
SO a* 

with a-- Ha 5 0, which is of rank 2 (full rank). 
In summary, at a bifurcation point (AO, t0), since AO must be real and a 

regular point in R x (0, 1), there is a real eigenvalue path passing through it. 
But no other real eigenvalue path can pass through (AO, t0), since bifurcation 
does not occur in R x [0, 1). Hence, other bifurcation branches must consist 
of complex eigenvalue paths. 

It is easy to see that the number of bifurcation branches at a bifurcation 
point (AO, t0) equals the multiplicity of AO as an eigenvalue of A(t0), because 
of the continuity of eigenvalues with respect to t and the fixed number of 
eigenvalues of A(t), counting multiplicities. We will show in Proposition 3.6 
that generically the multiplicity of AO is no more than two. Therefore, there are 
only two bifurcation branches at (AO, t0), consisting of one complex eigenvalue 
path and one real eigenvalue path, as shown in Figure 2. 
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R (R 

R x[O, 1] R x[O, 1] 

(X0, t0) (X0, t0) 

t 0 V t= I t =0 Xt= 

FIGURE 2. Bifurcation behavior 

Notice that i (= d) must vanish at (AO, t0), since HA = 0, Ht :$ 0, and 
H>AA+ Ht= 0 . When arc length is used as the parameter of the path (i(s), t(s)), 
the tangent vector (i) of the branch of the real eigenvalue path at (AO , t0) 
is (%') . Since AO is real, if (R, t) E H-'(0) is on the complex eigenvalue 
path passing through (AO, t0), then so is its conjugate (R, t). Accordingly, at 
(AO, to), 

A= = lim 
ds Asgo As 

which is purely imaginary: the tangent vector (i) of the complex eigenvalue 
path at (AO, t0) must be (ti) (also see Figure 2). 

We now proceed to prove Proposition 3.1. 

Definition. Let f(z) = ao + az + * + az' and g(z) = bo + bz + + bmzm 
be polynomials of degree n and m, respectively. The determinant of the 
(n + m) x (n + m) matrix 

ao a, a2 an 
... ... ... ....... ... 

ao a, a2 an 
bo bi b2 .. bm 

bo bi b2 bm 

is called the resultant of f and g. The resultant of a polynomial and its 
derivative is called the discriminant of the polynomial. 

The following two lemmas can be found in [17]. 

Lemma 3.2. Two polynomials have a common nonconstant factor if and only if 
their resultant is zero. 

Lemma 3.3. A polynomial has a multiple root if and only if its discriminant is 
zero. 

The next lemma yields a criterion for an n x n irreducible upper Hessenberg 
matrix to have no multiple eigenvalues. 
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Lemma 3.4. For m real numbers a,, ... , am, there exists a subset Co c R 
consisting of at most m - 1 elements such that the polynomial 

f(z) = amzm +...+aiz+ao 

has no multiple zeros if ao V Co. 
Proof. The polynomial f(z) has a multiple zero zo if and only if f(zo) = 
f '(zo) = 0. Its derivative f '(z) is a polynomial of degree m - 1 which 
is independent of ao . Let z1, ... , zn-I be the zeros of f'(z). For 
each j = 1, ..., m - 1, zj is a multiple zero of f if and only if ao= 
-(amz'+* + ai)*zj). 

Corollary 3.5. Given an in x m irreducible upper Hessenberg matrix B = (b1j), 
there is an open subset Q c R which contains all R except for at most m - 1 
real numbers such that B has no multiple eigenvalue if blm E Q. 

Proof. Let f(i) = det[B - AI]. A straightforward verification shows that the 
constant term of f (A) can be written as KbIm + c, where K = 17J72 b1,11 $ 0 
and the other terms of f (A) and c are independent of blm . il 

Proof of Proposition 3.1. (i) Both DI and D2 are irreducible upper Hessenberg 
matrices. By Corollary 3.5, there exist open subsets Qi, Q2 c R with full 
measures such that neither DI nor D2 has multiple eigenvalues if their entries 
dl,p E Q and dp+1 E Q2. In addition, we want to show that there exists 
an open subset Qi c R2 with full measure such that if (dl,p, dp+ln) E Q1, 
then DI and D2 have no common eigenvalues. Let dp+1n = aE Q2, and 
let A (a), . .. , An -p (a) be the eigenvalues of D2 considered as functions of a. 
Each Aj (a) is a continuous function of a . If Aj{(a), i E {1, ... , n - p}, is 
also an eigenvalue of DI , then d1,p must make det[DI -Aj(a)I] = 0, and it is 
clear that only one such value of d1,p E C exists for each Aj(a) (see the proof 
of Corollary 3.5). That is, there are n - p values sI (a), ... , snp (a) (possibly 
repeated) in C for dl ,p to be such that DI and D2 have common eigenvalues. 
These s, 's are continuous functions of Aj (again, see the proof of Corollary 
3.5). Thus, they are continuous functions of a. Let E be the closure of the 

~~~~~~~~~~~~~~~~~~ set {(di ,p, dp+1, n)I dP+1, n E Q2, d1 ,p E {SI (dp+1, n), * sn-p(dp+I, ,)}} n R 
which is obviously a subset of R2 with measure zero. Let Q = R2\E. If 
(d1,p, dp+ln) E Q, then DI and D2 have no common eigenvalues. Let QI = 

(QI x Q2) n Q. For every (dl,p, dp+,,n) E Qi, the matrix D has no multiple 
eigenvalues. Q, is clearly an open set with full measure. 

(ii) Split H, A, and x into their real and imaginary parts: 

A = + i, 

(3.1) x= y+zi, 

H(C d + ai, t) s F(Ra + di, t) + G(d, + v i, t)i. 

Considering C as R 2 and di,n -I and din as variables, we may rewrite equa- 
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tion (3.1) as 

H(4 + r Ii, t, d1,nI, din) EF@ + iii t, din-l1, din)1 

-C t + (tai,n-I + (I1-t) din-I)Yn-I + (tailn + (1- t) din)Ynl 

() + (tai~~ 1+ (1-t)dl n-l)zn-l +(taln - (1t) di~~n 

where C(t) = tFjn>2ajj- and 

an,n- I(t)(Yn-I + Zn- Ii) + (ann(t) - -i)(Yn + zni) = 0 

with Yn= 1 and Zn = 0. Here, an , n_ I(t) = tan, n - I + ( 1-t) dn, ni- 1 54 0. Thus, 

=-(ann(t)-)_ ___ 
an, n- I W an, n I t) 

and 
ZH- [F -GQ Ft Fd1,"1 Fdlnl [ G FE Gt Gd, n-I Gd1n 

F -G Ft FdG n C(t)(1-t) 0 J 

Gg FE Gt CM (I) -0? 
0t)C 

Since I $ 0, we have rank[?H] = 2. From Sard's Theorem (see, e.g., [1, ?2]), 
there exists a subset Q2 c R2 with full measure such that if (di n-I, din) E Q2 
then 

ZH = [HA, Ht (F, F- G) 

is of full rank for all (A, t) E H-'(0) n [(C\R) x (0, 1)]. 
(iii) Let U = R x (0, 1) and V = R. Consider din to be a variable of 

H: U x V -* R, and write 

H(A, t, din) = C(t)[(al (t) - )I)xI + al2(t)x2 + ... + (tain + (1 - t) din)xn]. 

With xn = 1, we have ?2?H = [HA, Ht, C(t)(1 - t)], which is of full rank. 
By Sard's Theorem, there exists a subset Q3 in R with full measure such 
that if din E Q3 then ?2?H = (HA, Ht) is of rank (real dimension) 1 for all 

(A, t) E H-1(0) n [R x (0, 1)]. 
To satisfy (i), (ii), and (iii) simultaneously, we let 

Q = (QI x R2) n (R2x Q2) n (R3 x Q3). El 

Proposition 3.6. There exists an open set Qo E R2 with full measure such that 
if (din-, din) E Qo, then for each t E (0, 1), any eigenvalue A of A(t) has 
multiplicity less than or equal to 2. 

Proof. Consider H = det[A(t) - AI] to be a polynomial in A with parameters 
t, dinI , and din. Let f(t, d1,n-1, din) and g(t, dI nI) be the discrimi- 
nants of H and HA, respectively, where g is independent of din . Obviously, 
both f and g are not identically zero. Consider f and g to be polynomials 
in t with parameters di n-I and din, and let k(d 1 n-I, din) be the resultant 
of f and g. Evidently, if A(t) has a triple eigenvalue at some to for fixed 
parameters d* and d* , then k(d*1 , d* ) must be zero. It is easy to 
see that k(dln-I , din) is not identically zero. Indeed, for fixed dI n-I , there 
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are only finitely many zeros t1, .. ., t, of g, and for this di ,n-I and each t1, 
i = 1, ... , 1, there are only finitely many din which make f zero. Therefore, 
we can easily choose d1,n-i and din such that f and g have no common 
zeros in t . 

The zeros of k(d1 ,n-I, din) form a one-dimensional algebraic set in R2 . We 
may choose Qo = R2\k-'(O), which is open and dense with full measure. El 

4. FOLLOWING THE EIGENVALUE PATHS 

In the previous section, we showed that, theoretically, the desired regularity 
and simple bifurcation of the eigenvalue paths can be obtained with probability 
one by choosing four entries a = (dip, dp+ln di ,n-1, din) of the initial ma- 
trix D = (dij) at random. In practice, in order to apply the strategy of "divide 
and conquer," we let 

(4.1) dij= aij if(i, j):=(p+l,p), 
* ~~~~dp+l,p = 0 if (i, j) = (p + 1, p) , 

for a certain p n/2. We intend to perturb the parameters in a when we 
encounter singularities, which, however, never occurred in our extensive numer- 
ical experiments. Apparently, the roundoff errors in solving for the eigenvalues 
of the matrix D usually provide sufficient perturbations. 

4.1. Following the real eigenvalue paths. Curve jumping is the most serious 
difficulty in following eigenvalue paths. Namely, when an eigenvalue path F1 
is followed, we may inadvertently jump to an eigenvalue path F2 which passes 
close to F1. Usually, this phenomenon only occurs in following real eigen- 
value paths. When a complex eigenvalue path is followed, the path lies in 
C x [0, 1], which has one more dimension, and there is more room for maneu- 
vering. Hence, when we trace a real eigenvalue path, special attention must be 
paid to prevent curve jumping. In the following, we first give several special 
features of our homotopy which are particularly useful in virtually eliminating 
the possibility of curve jumping occurring. 

For the choice of the initial matrix D in (4.1), 

A(t)= (1 -t)D+tA 

all 
... 

-- *-- * ain 

a21 a22 ... ... ... 

a32 

= * ~~~~app .. ... 

tap+,p * 

0 . 

an, n -I ann 

Notice that t only occurs in the (p + 1 , p) entry. From simple observations, 
the homotopy H(A, t) = det[A(t) - 2I] can be written as 

(4.2) H(A, t) = fi (A) + tf2(i), 

where fi and f2 are polynomials in A of degrees n and n - 2, respectively. 
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correction 

earlier prediction 

/(X0 to ) 

FIGURE 3. Newton iteration with fixed A =A 

The representation of H in (4.2) leads to the following very useful properties: 
(i) Given any AO E R, if f2(Ao) :$ 0, there exists a unique to E R such 

that H(Ao, to) = 0. Since f2 has at most n - 2 real zeros, any nonconstant 
component A(s) of any real eigenvalue path (A(s), t(s)) must be monotone. 
Consequently, if 

* <AO?- < Ar?< Ar < - 

are real eigenvalues of D, the eigenvalue path (A(s), t(s)) emanating from 
(A4, 0) will stay in (A4, AO) x (O, 1) if A(s) is monotonically increasing, and in 

(A X A4) x (0, 1) if A(s) is monotonically decreasing. Based on this property, 
when a real eigenvalue path is followed, we may keep the eigenvalue path to 
stay within proper boundaries to prevent jumping. 

(ii) Since H(A, t) is linear in t, for any t* E (0, 1) and any Al E R with 
f2(AI) :$ 0, the one-step Newton iteration gives 

(4.3) t=t*- HAi It*) 
( ) (Al, t*) 

for which H(AI, tI) = 0. (See Figure 3.) 
Another important property of real eigenpaths is the following degree- 

preserving property. 

Proposition 4.1. Let 

P = (A(S), t(s)) E R x [O. 1]: s E [So, Sill 

be a segment of an eigenpath which contains no bifurcation point. Then 

deg[)(s), t(s)] _ sign[HA(A(s), t(s))] = const 

for s E [So, 1S]. 
Proof. The function HA is continuous and is equal to zero only at bifurcation 
points. El 

From this proposition, and property (i) above, when tracing a real eigen- 
path, we may check its degree and keep the eigenvalue path within the proper 
boundary to prevent jumping. 

To follow a real eigenvalue path F = (A(s), t(s)), let (AO, to) be a point on 
F. We first calculate the tangent vector (A, i) at (AO, to). When arc length is 
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used as the parameter of the eigenvalue path, the tangent vector can be obtained 
by solving the following system: 

HPA+Hti= O, 
A2 + P 1. 

As described in ?2, both HA and Ht can be evaluated efficiently by Hyman's 
method. The sign of i is always chosen to be positive. 

With the tangent vector (R, i) at hand, we make the prediction (AO, t2) = 

(AO, to) +3Q.R, i) with a step size 3 > 0 . This prediction will be the initial point 
of the correction iteration. The correction can be carried out in two ways: 

1. If t? :$ 1 and JAI is not too small, say JAI > 10-4, then the slope dt/dt is 
not close to zero. That is, locally the eigenvalue path is not close to horizontal. 
Hence, the horizontal line A = AO? should intersect the eigenvalue path. In this 
case, we may perform the correction on the horizontal line A = AO. Namely, 
we use what we described in formula (4.3): 

A1 = 01 

= H(A, t2) 
Ht(AO, t?) 

The advantage of this iteration is that only one step of Newton's iteration is 
necessary to obtain t1 from t? for fixed AO for which H(Al,,tI)=O. 

2. If A11 0, the horizontal correction formula in method 1 is not applicable, 
since the horizontal line A = AO may not intersect the eigenvalue path which is 
nearly horizontal. In this case, however, the vertical line t = t? will intersect 
the eigenvalue path. Thus, we can correct AO? for fixed t = t0 by using the 
formula 

Am+1 = Am _ H(I t?) m = O. 1, .... 
1 1~~~I 

We end the iteration if IH(Am, t?)/H,7(Am, t?)l < c, where c is a preset error 
tolerance, and let (Al, tI) = (m+ +1, to). 

After obtaining (Al, tI), we must check 
(a) if (Al, tI) is in the proper region described in property (i); 
(b) if sign[H,(Ao, to)] = sign[H)(Al, tl)]. 

In (a), if (Al, tI) is out of the region, path jumping occurs. We thus discard 
(AI, ti ), repeat the prediction with half the step size, and correct again. For (b), 
if the sign of HA changes at (Al, tI), then either path jumping or bifurcation 
occurs. In this case, we shall try the bifurcation treatment first (see ?4.3). If 
there is no bifurcation between (AO, to) and (A , tI), then we conclude that 
curve jumping has taken place. We cut the step size in half and repeat the 
prediction and correction at (AO, to). 

If (Al, ti) passes both tests (a) and (b), i.e., (Al, tI) lies in the proper region 
and no sign change for HA occurs at (A, t1), we accept (i, t1) as a new point 
on the eigenvalue path F. 

4.2. Following a complex eigenvalue path. Complex eigenvalue paths appear 
in pairs. If (A(s), t(s)) is a complex eigenvalue path, so is its conjugate (A(s), 
t(s)) . We need to follow only one of them, say, the one with positive imaginary 
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part in A(s). Let (AO, to) be a point on F = (A(s), t(s)) with Im(A(s)) > 0. 
The tangent vector (R, i) at the point (AO, to) is the solution of the following 
system of equations: 

H>A + Hti 0 O 

AR + t =1 ( > 0) . 

After finding the tangent vector (R i), we make the prediction 

(AO?, to?) = (AO, to) + 6(A, t) 

with step size ( > 0. Since H(A, t) = 0 is a system of two real equations 
in three variables (counting real and imaginary parts of A), in order to apply 
Newton's method for the correction, we add one more equation. This equation 
is in the form of a plane 

(4.4) Re[iu(A - AO)] + v(t - to) = 0, 

where (U, v) E C x R. There are three options for the choice of the plane in 
(4.4): 

(i) When i 1 , we choose (u, v) = (0, 1). With this choice, the correction 
is executed for fixed t = t?. The Newton iteration has the simple form 

Am+l = Am IH(1{, t??) 
1 ( 1 ) 

and the cost is as low as 4n2 + 0(n) floating-point operations per step. 
(ii) If i .0, we choose (u, v) = (R, i). The correction in this case is in the 

plane perpendicular to the tangent vector. 
(iii) When bifurcation is suspected, i.e., Im(AO) > 0, we choose (u,) = 

(i, 0) because (i, 0) is the tangent vector at the bifurcation point. This case 
will be discussed in more detail when we treat bifurcation in the next subsection. 

We then perform Newton's iteration on the equation H(A, t) = 0 augmented 
by (4.4) with proper (u, v), starting from the initial point (AO, t?). If the 
iteration does not converge, we cut the step size in half and repeat the prediction- 
correction step again at (AO, to). If Newton's iteration converges, let (Al, tl) 
be the limit point. If Im(Al) > 0, then there is no bifurcation between (AO, to) 
and (Al, tl), and we thus accept (Al, tl) as a new point on F. If Im(Al) < 0, 
then there is bifurcation between (AO, to) and (Al, tl). We then follow the 
bifurcation treatment described in the following subsection. 

4.3. Bifurcation. Bifurcation cannot be avoided in our homotopy. Therefore, 
we must develop an efficient algorithm to identify the bifurcation point and 
continuously follow the bifurcation branches. In [1 3], a method is introduced 
to detect and pass the bifurcation point for a real homotopy. However, the 
simplicity of our homotopy and associated eigenvalue paths makes room for a 
much more efficient method. 

4.3.1. Real-to-complex bifurcation. As we mentioned before, if (AO, to) and 
(Al, tl) are two consecutive points obtained on a real eigenvalue path F = 
(i(s), t(s)), and the sign of Ha at (Al, tj) differs from the sign of Ha at 
(AO, to), then a bifurcation point (AO, to) exists between these two points, at 
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FIGURE 4. Space lifting in bifurcation situation 

which HA must vanish. We first use linear interpolation to approximate AO; 
that is, we let 

A{=)20 - Hi~) i to) = HA()o, to) - HA(A1, tl)' 

Then, we fix A and solve for i by 

H,, to) 

The point (R i) will be taken as an approximation of the bifurcation point 
(AO, t0). With the "lifting" technique described below, the accuracy of the 
approximation (R, ?) becomes much less important. 

From (R. i), we make a prediction of the complex bifurcation branch by 
lifting (R, i) into the complex space C x [0, 1]. That is, we add 10-1'0lHi to 
A and take (R + 10-101?i, i) as our prediction. Then the correction is carried 
out on the plane Im(A) = 10-101 H (option (iii) of the plane in (4.4)) (see Figure 
4). This procedure is very efficient. The real-to-complex space transition can 
be completed without computing the tangent vector at (R. i). 

Remark. Curve jumping can also cause a sign change of HA at (Al, t1), since 
two real eigenvalue paths next to each other have different degrees, i.e., +1 
and -1, among them. This situation can easily be detected. If i in (4.5) is 
outside the interval [0, 1], or the correction after "lifting" does not converge, 
then there is no bifurcation between (AO, to) and (Al, t1). Evidently, (Al, t1) 
is on the wrong eigenvalue path and must be discarded. We then cut the step 
size and repeat the prediction-correction step at (AO, to). 

4.3.2. Complex-to-real bifurcation. Let (AO, to) and (Al, t1) be two consecutive 
points obtained on a complex eigenvalue path. If Im(Ao) > 0 and Im(Al) < 
0, then a bifurcation point (AO, t0) with Im(AO) = 0 exists. We proceed by 
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basically reversing the steps in real-to-complex bifurcation. To approximate 
(AO, t0), we let 6* be the solution of 

(4.6) Im(Ao + 6A) = lO10O1Ao, 

where (l, i) is the tangent vector at (AO, to). Making a new prediction at 

(AO, to) with tangent vector (l, i) at (AO, to) and step size 3*, and carrying 
out the correction on the plane Im(A) - 10-IOIoI (i.e., option (iii) of the plane 
in (4.4)), yields an approximation (R i) of the bifurcation point (AO, t0) . We 
then project (R, i) from C x [0, 1] into R x [0, 1] by taking (Re(io), ?) as 
a prediction of the real bifurcation branch. The correction is made on the line 
A = Re(q) to obtain a point (R, t) on a real bifurcation branch. From our 
bifurcation analysis, there are two real bifurcation branches with tangent vector 
(1, 0) and (-1, 0), respectively. We thus perform prediction-correction with 
each tangent vector separately to trace both eigenvalue paths. 

4.4. Step size control. (i) Initial step size. When following an eigenvalue path 
of 

H(A, t) = det([(1 - t)D + tA] - AI) = 0 

at an initial point (AO, 0), where AO is an eigenvalue of D, our first attempt 
is to choose the initial step size ( = 1 . The point (AO, 1) will then be taken 
as a prediction point, which is followed by Newton's correction at t = 1 . This 
procedure, 0-order prediction with step size 1 followed by Newton's correction, 
is the same as applying Newton's iteration directly for solving the equation 

det(A - AI) = 0 

by using AO as a starting point. The choice of the initial matrix D in (2) makes 
the eigenvalues of D very close to the eigenvalues of A. Hence, Newton's iter- 
ation on det(A - AI) = 0 with starting point AO has great potential to converge. 
Indeed, our numerical results indicate that the vast majority (usually more than 
90%) of the eigenvalues of A can be obtained in this way. If Newton's correc- 
tion fails to converge, then we choose the step size in a standard way described 
below. In some sense, our homotopy continuation algorithm here mainly plays a 
backup role of directly applying Newton's iteration for solving det(A - AI) = 0, 
starting from the eigenvalue of D. 

When the above procedure with (5 = 1 fails, we evaluate the tangent vector 

(Ao, io) at (AO, 0) . If to is close to 1, then 'lI 0, since IoA2+O1 = 1 . So, the 
eigenvalue path is close to a straight line at (AO, 0) and can tolerate large step 
size; we take (5 = I/io in this case. When io < 1 , we let (5 = max{0.01, IiI5}. 

(ii) Cutting the step size. From a given point (AO, to) E H-1 (0) on an eigen- 
value path, we make a prediction (AO, t?) = ( to) + , i) with step size 
( . In the correction process, if the iteration does not show a "tendency to con- 
verge," we will repeat the prediction at (AO, to) with step size (5/2. As criterion 
for judging the "tendency to converge" we use 

ik+ 1 _ kik < I1Alk _ A k-1i 

(iii) Increasing the step size. When the prediction-correction step at (AO, to) 
is successful, we obtain a new point (Al, t1) on the eigenvalue path. If the angle 
between the tangent vectors at these two points is small (say, less than 15?), 
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then it appears that the eigenvalue path is quite flat and we double the step size 
in our first prediction attempt at (Al, tI). Otherwise, the last successful step 
size in achieving (Al, tI) is used for the prediction at (Al, tI). 

(iv) Adjusting the step size. If the prediction (A ,to) + 5 (A, i) gives to + 5i > 
1, then we let ( = (1 - to)/i, making the prediction reach the plane t = 1. 

5. NUMERICAL RESULTS 

The eigenvalues of the initial matrix 

D ( D2) 

consist of the eigenvalues of the submatrices DI and D2, both irreducible up- 
per Hessenberg matrices. The strategy of "divide and conquer" can certainly 
be repeated in finding the eigenvalues of DI and D2, etc. However, our expe- 
rience shows that the QR algorithm implemented in EISPACK [16], the HQR 
subroutine, is normally faster than our algorithm for n < 25. Therefore, we 
stop the "divide" procedure when the sizes of the submatrices are less than 25. 
We determine the eigenvalues of the submatrices by the QR algorithm and then 
start the "conquer" procedure consecutively. 

We first tested our algorithm on n x n upper Hessenberg matrices A = 
(ai1) with entries -1 < aij < 1 generated by a random number generator. 
The computations were done on a SPARC Station 1 in double precision. In 
comparing with HQR on a common basis of accuracy, we require the computed 
eigenvalues AI, ..., An to satisfy 

(5.1) - (jy - ajj) < io-16, 

the same trace-accuracy HQR achieves. 
For fixed matrix size n, we executed our algorithm on more than 20 differ- 

ent matrices that are consecutive in a preset random number sequence. The 
results are shown in Table 1. The efficiency of our algorithm is closely related 
to the amount of bifurcations one encounters in following the eigenvalue paths. 
Thus, for fixed n, the CPU time of each individual case varies in a relatively 
wide range. Nevertheless, the average CPU time is still quite encouraging. For 
comparison, the results for HQR on the same matrices are also listed in Table 
1. While the potential of our method lies in its natural parallelism in the sense 
that each eigenvalue path can be followed independently, it is remarkable that 
our algorithm is strongly competitive on these examples even on serial comput- 
ers. The parallel implementation of our algorithm using n processors should 
increase the efficiency by a full power of n, making it an excellent candidate 
for advanced computer architectures. In contrast, the QR iteration is inherently 
highly serial. 

In addition to testing the trace-accuracy given in (5.1), we also tested the 
difference between the corresponding eigenvalues evaluated by both methods. 
Let Ai and ),, i = 1, ... , n, be eigenvalues obtained by using HQR and our 
homotopy method, respectively. Put Al and Ai, i = 1, ... , n, in "ascending" 
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TABLE 1. Time comparison between HQR and H-D 
(H-D = Homotopy-Determinant method) 

Matrix time (seconds) Average time ratio 
order minimum maximum average HQR/H-D 

20 HQR 0.34 0.49 0.3973 
H-D 0.21 1.51 0.5609 0.708 

25 HQR 0.63 0.87 0.7388 
H-D 0.38 1.58 0.7144 1.034 

50 HQR 4.58 5.68 5.11 
H-D 2.01 7.72 3.96 1.29 

100 HQR 34.05 39.02 36.41 
H-D 11.99 40.72 22.90 1.59 

200 HQR 254.52 281.57 266.30 
H-D 72.28 340.24 142.01 2.26 

300 HQR 643.18 660.50 651.84 
H-D 208.26 579.51 320.88 2.03 

400 HQR 1536.61 1563.24 1549.40 
H-D 510.07 1779.93 689.47 2.25 

order 

where a - b means either (i) Re(a) < Re(b) or (ii) Re(a) = Re(b) but 
Im(a) < Im(b). Then we found that the estimate 

maxI <j<nlAj-R I< 1.0x 10-10 

held on all of our testing examples. Apparently, both methods have about the 
same accuracy on random matrices. 

As we discussed in the last section, 0-order prediction with step size one at 
an initial point (AO, 0), where AO is an eigenvalue of the initial matrix D, 
followed by Newton's correction at t = 1, or equivalently, applying Newton's 
iteration directly to det(A - AI) = 0 with starting point AO, has great potential 
to converge. If it converges, the corresponding eigenvalue of A is obtained with 
one step in following the eigenvalue path. We shall call such an eigenvalue path 
an "easy path." We show in Table 2 (see next page) the percentage of the "easy 

paths" we found in each category. It can be seen that the overwhelming majority 

of the eigenvalue paths are "easy paths." Bifurcations are inevitable when real 

homotopies are used. We also show in Table 2 the bifurcation frequency, that is, 

the average number of bifurcation points encountered in following all eigenvalue 

paths for each matrix. It appears that the choice of the special form of the 

initial matrix D and using the strategy of "divide and conquer" minimize the 

occurrence of the bifurcation points. In all our computations, curve jumping 
was never a problem before the final results were reached, and was effectively 

prevented by adjusting the step size. 

Usually, eigenvalues of random matrices are well-conditioned. To test the 

accuracy of our algorithm on ill-conditioned eigenvalues, we constructed testing 
matrices with some ill-conditioned eigenvalues in the following way. 
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TABLE 2. Rates of "easy" paths and bifurcations 

Percentage Bifurcation frequency 
Matrix order of (total bifurcation points on 

n "easy" paths all paths per matrix) 
25 87.1% 0.92 
50 92.3% 1.27 

100 93.4% 2.08 
200 95.7% 2.78 
300 98.1% 0.92 
400 96.0% 1.56 

Let A be a matrix in the block form 
'J 0 0 

A= 0 J0 , 
<0 0 A, 

where J is a 5 x 5 Jordan block with multiple eigenvalue 0 and A is a 90 x 90 
matrix of the following form: O ~ ~ J O x ** , 

OOx x * * * * - * * 
0 0 x x * * 

0 0 x x 
... 

*.* 

0 0 00 xx *.. .. 
A= 0 0 0 0 xx * * 

0 0 0 0 X X 
00 0... 0 x x 

where the diagonal blocks consist of 2 x 2 matrices (x x) with known and 
evenly distributed eigenvalues, and the *'s above the diagonal blocks are ran- 
domly generated numbers. Thus, the matrix A is a 100 x 100 matrix with a 
1 0-fold ill-conditioned eigenvalue 0 and 90 well-conditioned simple eigenvalues. 
Now we use a randomly chosen orthogonal dense matrix U to make UTAU 
a dense matrix. Then a standard algorithm is applied to reduce it to upper 
Hessenberg form. Let the resulting upper Hessenberg matrix be B on which 
we perform both HQR and the homotopy method. The results for the ten 
ill-conditioned eigenvalues are listed in Table 3. 

For the 90 known well-conditioned eigenvalues 

A1 -<A2 <...Ago 

of A, let 
A1 <).2 Ag-o- /9 and AI <2 * 90 

be eigenvalues obtained by HQR and the homotopy method, respectively. The 
respective accuracies are shown in Table 4. These results clearly show that our 
method achieves about the same accuracy as HQR. 
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TABLE 3. Results for ill-conditioned eigenvalues 

exact corresponding HQR corresponding homotopy 
eigenvalue results results 

0 -0.000880 -0.000903 
0 -0.000730 ? i 0.000530 -0.000694 ? i 0.000506 
0 -0.000272 ? i 0.000837 -0.000276 ? i 0.000852 
0 0.000278 ? i O.000859 0.000273 ? i 0.000841 
0 0.000712 ? i 0.000517 0.000727 ? i O.000529 
0 0.000803 0.000817 

TABLE 4. Results for well-conditioned eigenvalues 

max1<1<90l1-A|| 9.5300 x 10-11 

max1<<90g IA - AjI| 7.6840 x 101l 

Mayo~<9 I; - AI i.8460 X10- 
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