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TERMINATION CONDITIONS FOR APPROXIMATING 
LINEAR PROBLEMS WITH NOISY INFORMATION 

B. Z. KACEWICZ AND L. PLASKOTA 

ABSTRACT. We study the diameter termination criterion for approximating lin- 
ear continuous problems. It is assumed that only nonexact information about 
the problem is available. We evaluate the quality of the diameter termination 
criterion by comparing it with the theoretically best stopping condition. The 
comparison is made with respect to the cost of computing an e-approximation. 
Although the diameter termination criterion is independent of a particular prob- 
lem, it turns out to be essentially equivalent to the theoretical condition. Op- 
timal information and the best way of constructing an e-approximation are 
exhibited. 

1. INTRODUCTION 

Many problems in numerical analysis can be formulated in terms of approx- 
imating a linear continuous operator. Denoting such an operator by S, the 
problem is to approximate S(f) for elements f belonging to a certain ball K. 
To find an approximation, we gather information about the problem by suc- 
cessively computing some numbers z1, Z2, ... dependent on f. We assume 
that each zn is a noisy evaluation of a linear continuous functional at f. For 
instance, for the integration problem, where f is a function and S(f) its in- 
tegral, the numbers Zn may be given as perturbed values of f at some points. 
The noise in information may result, e.g., from measurement, representation 
or computational errors. There is a growing literature on noisy information, as 
such problems attract attention of statisticians, engineers, and numerical ana- 
lysts, see the references. 

Given e > 0, we want to produce an approximation to S(f) for all f e K, 
with error at most e. Information values are gathered until we collect n = n(f) 
numbers z1, Z2, ... , zn from which an e-approximation can be computed. 
We therefore need a criterion which allows us to decide when to terminate the 
computations. 

The stopping condition based directly on the requirement that the error does 
not exceed e (although theoretically the best) is impossible to implement, since 
the error of approximation is usually unknown. Moreover, such a criterion 
depends on a particular unknown element f. 

We study in this paper a termination criterion based on the use of the di- 
ameter of information, a quantity studied by many authors; see for instance 
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Babenko [1], Micchelli and Rivlin [5], Marchuk and Osipenko [4], Kacewicz 
and Plaskota [3], and Traub et al. [6]. This criterion (referred to as the diameter 
termination criterion) does not depend on the unknown error of approximation 
and f, but only on information used and the class K. In spite of this advan- 
tage, the diameter termination criterion may seem too strong when compared to 
the theoretical stopping condition, since it is based on a stronger inequality (see 
the relation (2.7)). One may ask if the number of steps that we have to perform 
before terminating (i.e., the number of evaluations that we have to compute) is 
not unnecessarily large, at least for some elements f . 

The main purpose of this paper is to determine the quality of the diameter ter- 
mination criterion. As the basis for the evaluation we use the cost (information 
cost) of computing an c-approximation. For the diameter termination crite- 
rion, this cost has been studied for some problems; see for instance Kacewicz 
and Plaskota [2] and the Example in ?4. We compare the cost yielded by the 
diameter termination criterion with that for the theoretical stopping condition. 
Moreover, we aim to choose the best information and the best way of combin- 
ing it, in order to obtain an e-approximation with the cost growing as slowly as 
possible as e -* 0+. 

We now outline the contents and results of the paper. In ?2 we give ba- 
sic definitions and introduce the theoretical stopping condition and the diame- 
ter termination criterion. In ?3 we define some special noisy information and 
the way of using it, and give an upper bound on the cost of obtaining an c- 
approximation. This bound is expressed in terms of the minimal cost for the 
diameter termination criterion (Theorem 3.1). In ?4 we show that the upper 
bound derived in ?3 cannot be improved. Namely, it turns out that elements 
f, for which the diameter termination criterion yields a cost much greater than 
necessary, are exceptional in the sense that they form a boundary set (Theorems 
4.1-4.3). Finally, we give an example showing what the minimal cost is for the 
problem of approximating multivariate functions. 

We conclude that the diameter termination criterion can successfully replace 
the theoretical stopping condition, as it yields essentially the same cost of com- 
puting an c-approximation. 

In this paper, we consider only nonadaptive information which uses function- 
als chosen in advance. We feel that similar results can also be obtained when 
successive information functionals are adaptively chosen based on previously 
computed information. The results on this subject are still in preparation. 

2. PRELIMINARIES 

Let S, S :# 0, be a linear continuous operator acting from a Banach space 
F to a linear normed space G. Let K = {f E F: IIfil < R}, where 0 < 
R < +oo. We wish to approximate S(f) for all f E K, based on certain 
(noisy) information about f. For f E K, information N(f) is gathered by a 
successive calculation (or observation) of certain numbers, 

(2.1) N(f) = [L1 (f), L2(f), ... ] 

where Li: F -- IR are linear continuous functionals with IIL,11 < 1 belong- 
ing to some class A, i > 1. Collecting information is continued until some 
stopping condition is fulfilled. The operator N: F -* R1?? given by (2.1) will 
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also be called information. Since the functionals Li are given in advance, the 
information N is nonadaptive. 

We assume that instead of the exact values Li(f) we can only evaluate (or 
observe) perturbed values zi such that 

(2.2) -zi -Li(f)I < Ai, 

where A > 0, i > 1. The sequence A = [A1, A2,...] E RO is called a 
precision sequence. 

The nth approximation g, to S(f) is obtained as g, = qn(zi , .. Zn) 

where On is a mapping from Rn to G. The sequence 0 = n }I=o0 is called 
an (idealized) algorithm. (By 00 we mean here a fixed element of G.) The nth 
error of 0 at f is defined as 

(2.3) en(05,NAf) 
= SuPf 11S(f) -On (oh, 5* .. ZJI1 | zi - Li(fi)l < Ais, 1 < i < n} 

We now specify the stopping condition in computing information. Given 
e > 0, we compute the values zI, Z2, ... until the error does not exceed e. 
Once such an accuracy is achieved, we want to be sure that it will not be lost if 
for some reason calculations are continued. The minimal number of steps after 
which we can terminate is thus equal to 

(2.4) n(q$, NA, f)(e) = min n >0: ej(q$, N, A, f) <?e, Vj > n} 

(with the convention min 0 = +oo ). In the sequel, we shall define a termination 
criterion which allows one to check whether the condition (2.4) is satisfied. For 
the discussion of the case when the condition 'for all j > n ' is skipped in (2.4), 
see the Remark after Theorem 4.3. 

In the model described above, the algorithm 0b, information N and the pre- 
cision sequence A do not depend on e. Consequently, the change in accuracy 
from e to eI (ce1 < e ) does not make it necessary to start computations from 
the beginning. To achieve e1 we only need to compute additionally some new 
information values zi. 

We assume that collecting information is connected with some cost, i.e., we 
are charged for each noisy evaluation (observation) of a functional. The cost 
of obtaining a value z such that Iz - L(f)I < A is equal to c(A), where 
c: [O, +oo) -* [O, +oo] is a given nonincreasing function, independent of L, 
f, and z. We assume that c(A) > 0 for sufficiently small A > 0. 

The information cost (or cost) of obtaining an e-approximation using the al- 
gorithm 0 with information N, the precision sequence A, and the termination 
criterion (2.4) is defined by 

m 

(2.5) C(Ob, N, A, f)(e) = Zc(Ai) 
i=1 

for m < +oc, and C (q, N A, Af)(e) = ?oc for m = +oo, where m = 

n(q, N, A, f)(c). (The convention Z= = 0 is used.) 
The actual cost of constructing an approximation is equal to the sum of 

the information cost and combinatory cost of calculating On (Z1, ... ., Zn) The 
combinatory cost is here neglected. It turns out that for many important linear 
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problems there always exists a 'good' algorithm with the combinatory cost small 
compared to the information cost; for examples, see Traub et al. [6]. 

One of our purposes will be to analyze the behavior of Cq(0, N, A, f)(A) 
as e -* 0+. 

Clearly, the stopping condition given by (2.4) is theoretical and cannot serve 
as a practical termination criterion. We shall now give a criterion which allows 
us to decide whether gaining new information is necessary, or an c-approxima- 
tion can already be computed using a special algorithm. To this end, we recall 
the concept of the nth diameter of information. It is given by 

(2.6) dn(N5,A) = 2sup{f IS(h)II: h E F. ,I~hI < 1, lLi(h)l < Ai? , 1 < i < n} 
(see, e.g., Micchelli and Rivlin [5], Traub et al. [6]). Furthermore, we define 
a spline (p -spline) algorithm 0* = f O}nn>0 (see Trojan [7] and Kacewicz and 
Plaskota [3]) as follows. For p > 1, n > 1 , and [zI, Z2, ... ] being perturbed 
information for some f E K, we choose an element an = an(z1, ..., ,Zn) E F 
such that 

ILi(an) -zil < Ail5 1 < i < n , 
and 

Ilano < p inf{HlfH1: ILi(f) - zil <Ai, 1 < i < n}. 
A spline algorithm is defined by 

*)0= ? 5 0*(Zi 5 ... 5 Zn) = S((Un) 5 n > 1 
It is known that 

(2.7) en(4*, N. A, f) < D(f)dn(N, A) forall f E K, 
where D(f) = max{ 1, 5 Ilfi }, see Kacewicz and Plaskota [3, Theorem 4.1]. 
Hence, if the algorithm 0* is applied, it is enough to compute nd(N, A)(e) 
pieces of information to obtain an e-approximation, where 

(2.8) nd(N, \)(e) = min{ n > 0: dn(N ) < DR} 
and DR= max{ 1 '+PR}. 

Note that the termination criterion (2.8) does not depend on a particular f, 
but only on the class K. Since for many problems the behavior of dn (N, A) 
is known (see, e.g., Babenko [1], Marchuk and Osipenko [4], and Traub et 
al. [6]), the number nd(N, A)(e) may often be computed, in contrast with 
n(b, N, A, f)(e). However, the criterion (2.8) is only useful provided that 
nd(N, A)(e) is not much greater than n(0b, N, A, f)(e). As we shall see, this 
is indeed the case. 

The information cost of obtaining an e-approximation using N, A and q* 
with the stopping criterion (2.8) is independent of f and equal to 

m 
(2.9) Cd(N A)(c) = ZcAi) 

i= 1 

for m < +oo, and Cd(N, A)(e) = +oo for m = +oo, where m = nd(N,/)(e). 
We call Cd(N, A)(e) the diameter criterion cost. Obviously, (2.7) yields 
that, for any e > 0 and f E K, one has 

{r 1 Ad at+* Ar A {Xtx< Cdz -rAz 
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A relation between the costs (2.5) and (2.9) will be discussed in the next 
sections. We shall show that the upper bound (2.10) is essentially sharp, i.e., 
the criterion (2.8) is not pessimistic. Special attention will be given to the 
choice of 0, N and A such that the cost C((0, N, A, f)(c) grows as slowly 
as possible as c -* 0+, for all f E K. In particular, we shall study a relation 
between C((0, N, A, f)(e) and the minimal diameter criterion cost defined as 

(2.11) MCd(e) = inf Cd(N,A)(c), 
N,A 

the infimum being taken with respect to information N consisting of function- 
als from A. For illustration, the cost MCd(e) for the approximation problem 
is given in the Example of ?4. 

In the next section we shall construct information N* and a precision se- 
quence A * which supply an (almost) e-approximation with cost no greater than 
MCdd(c), for all sufficiently small e. The problem that we have to face is that N 
and A minimizing (2.1 1) depend on c, so that they cannot serve immediately 
as N* and A which must be c-independent. 

3. THE CONSTRUCTION OF N* AND A * AND AN UPPER BOUND 

We first observe that MCdd(c) > 0 for sufficiently small e > 0. Indeed, let 
0 < A < 1 be such that c(A) > 0. If MCdd(c) = 0, Vc > 0, then there exist 
N, A\, and n for which d,(N, A) < 2AIIS11 and EZ=I c(Ai) < c(A). This, 
however, is impossible, since then Ai > A, 1 < i < n, and 

d,(N, A) > 2 . sup{ JjS(h)jj: 11hHl < 1, jLi(h)j < A, 1 < i < n } > 2AIIS11. 

Without loss of generality, we restrict ourselves to problems solvable with 
respect to the criterion (2.8), i.e., such that MCd(c) < +oc, Ve > 0. The case 
MCdd(c) = +oc (for small e) is considered in Theorem 4.3 (ii), which states that 
the problem is then practically not solvable, even with respect to the theoretical 
criterion (2.4). 

We assume in this section that the problem is 'hard' in the following sense: 
(A) There exist 0 < p < 1 and a > 1 such that 

MCd(a . c) < p . MCd(c) 

for all sufficiently small e > 0. E 

Note that (A) always holds with p = 1. For p < 1 it states that the minimal 
diameter criterion cost tends to infinity sufficiently fast as c decreases, see the 
Example. 

We now define N* and A*. Let w > 1 and i > 0. Choose information 
Ni = [Li, Li, ...] consisting of functionals from A, a precision sequence 
A =[Al , Al, . ..] and an integer n, > 0 such that 

1 2~~~~~~~~~~~~~~~~~~ 
(3.1) dn,(N, Al) < iD 

and 

(3.2) Zc(AS) < w * MCd(a). 
j=1 
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This selection is possible for sufficiently large i, i > /, where 1 > 0. Denoting 
by Ni, and A', the first ni' components of N' and A', respectively, we now 
define 

N*= [N' N1+1, N+2 ...] 
n /n+1' n1+2' 

and 
n nlAA nl+1 nl+2 A 

In the following theorem we show that the spline algorithm q* using informa- 
tion N' and the precision sequence A * produces an (almost) e-approximation 
with the cost proportional at most to MCd(g), even if the criterion (2.8) is ap- 
plied. 

Theorem 3.1. Let MCd(e) < +00 for all e > 0, and let the condition (A) hold. 
Then, for all f E K and all sufficiently small e > 0, we have that 

C(q$*N*AHi* f)(a. ) < Cd(N*,A*)(a ) < l C MCd(c) 

Proof. From (3.1), (3.2), and from the condition (A), we have for sufficiently 
large k that 

C (N* < - c(G) < ( : Z Mc(c1) cd(N*~ak)y k'wZ cd(k 
i=l Ij=1 

< w) MCd() Epi < l Mcd(2k) 

Now let k = k(c) E N be the minimal number such that a-k < E. Then, for 
sufficiently small e > 0, 

Cd(N* A *)(e) ? d(N*, A*) (I) 

1-p MCd Ik 
0 

1- MCd(~) < a) M: (-) < 
I? _ 

: 
(a 

e 

The inequality (2.10) finally yields that 

C(* N* *f)(a? ) < Cd(N*,A*)(ac) < 1 _ MCd(c) a 

Hence, information N* and the precision sequence A * with the termination 
criterion (2.8) (and, obviously, also with the stopping condition (2.4)) give an 
almost e-approximation with a cost at most (up to a constant) MCd(g). In the 
next section we shall show that N* and A * are almost optimal, in the sense 
that the cost of obtaining an e-approximation using arbitrary N and Ai cannot 
be much smaller that MCd(c), even if the theoretical condition (2.4) is used. 

4. LOWER BOUNDS 

In this section we provide lower bounds on the cost C(q$, N, Ai, f)(c), for 
elements f belonging to certain dense subsets of K. The main result states, 
roughly speaking, that C(q, N, A\, f)(c) is bounded from below by MCd(g). 
This will determine the sharpness of the upper bound derived in the previous 
section. 

Let us first consider fixed N and A, and start with the case Cd(N, A)(e) < 
+oo, for all e > 0. 
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Theorem 4.1. Let Cd(N, A)(e) < +oc, Ve > 0, and let q be an arbitrary 
algorithm. 

(i) If dn(N, A) > 0 Vn > 0, then for any function h: (0, +oo) 
(0, +oc) with lim,,o+ h(e) = 0, the set 

A1 f E K: 3C = C(f) > 3,6o =so(f) > 0 such thatforall 0 < e < go 

C(0q, N, A, f)(C h(e) e) <Cd(N, A)(8) } 

is a boundary set in K. 
(ii) If dn(N, A) = 0 for some n, then the set 

A2 = {f eK: 3C=C(f)>0 3]o=co(f)>Osuchthatforall0<ec<o 

C(q, N, A, f)(C *c) < Cd(N, A)(8)} 

is a boundary set in K. 

Proof. (i) Observe that there exists a subsequence {Ank } such that 

limk+oc Ank = 0. Indeed, otherwise Ai > A, Vi > n, for some n E N and 
0< A< 1. Since dn(N, A) > 0, thereisanelement h suchthat 0< IIhII < A, 
ILi(h)I < Ai, 1 < i < n, and IIS(h)II > 0. Hence, ILi(h)I < Ai, Vi > 1, 
and consequently di(N, A) > 211S(h)II > 0, Vi > 0. On the other hand, 
Cd(N, A)(g) < +o? , Ve > 0, implies that limit +,,di(N, A) = 0, which is 
a contradiction. 

Hence, we can select a subsequence {nk } in such a way that 

(4.1) c(Ank+l ) > 0, Vk > 1. 

Let 6k = dnk(N, A) * DR and Jk = h(ek), for k > 1. A slight modification 
of Theorem 4.2 from Kacewicz and Plaskota [3], which consists in replacing n 
by nk, yields that the set 

A1 = {f e K: limsup enk(, N A, N ) f) 
k-+oo (5k 8k 

is a boundary set in K. We shall show that A1 c A1. Indeed, suppose that 
f E K is not in A1. Then, for any C > 0 there exists an increasing sequence 
{k,} such that 

enkc (? N, Ai, f) > CJk,6k, = Ch(ek1)gk1 

for 1 > 1. This and (4.1) yield that 
nkl 

C(0b, N, A, f)(Ch(ek1)gk1) > (Ai) 
i=l 

Since, on the other hand, 
nk, 

Cd(N, A)(ek1) < Zc(Ai), 
i=l 

we have 
C(0), N. A, f)(Ch(gk,)gk) > G (N )(8k,) 

for 1 > 1, which implies that f is not an element of A1. Hence, A1 c A1, 
and A1 is a boundary set in K. 
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(ii) Let K(f, a) be a closed ball with center f E A2 and radius a > 0, 
contained in K. We shall show that K(f, a) contains an element which is 
not in A2. Let m = minfn > 1: d,(N, A) = 0 }. Choose h E F such that 
IIhII < a, 1Li(h)I < Ai, 1 < i < m, and jjS(h)jj > 0. Letting fi = f + h 
and zi = Li(f), Vi, we have that fi E K(f, a) and Izi - Li(fi)l < Ai, 
1 < i < m. For sufficiently small a, since f E A2 and nd(N, /\)(e) = m, we 
get that 

IIS(fi) - rm-n(zi, zm-l)11 > IIS(h)II - IIS(f) - q 1m-(Zi, * Zm-j )11 

> IIS(h) II - Cf) *> 2 IIS(h)II. 

Hence, for any D > 0 and all sufficiently small e > 0, we have that 

emi1(q, N, A, fi) > De, 

which yields 
m 

C(q$, N, A, fl)(Dc) > Zc(A,) = Cd (N. A)(e). 
i=1 

Thus, fi V A2 and the set A2 is a boundary set in K. The proof is completed. 
El 

Theorem 4.1 provides a lower bound on C(q, N, A, f)(g) on a dense set of 
elements f, for any algorithm g$. In the case (i), it shows that the upper bound 
(2.10) is sharp with respect to the choice of an algorithm. More specifically, an 
inequality of the type (2.10) cannot hold (except for a boundary set of f 's) no 
matter what 4 is, if e in the left-hand side is replaced by h(c) * e. Here, the 
function h (e) may tend to 0 arbitrarily slowly with e. The inequality (2.10) 
also shows that the function h (c) cannot be omitted in the formulation of 
Theorem 4.1. In the case (ii), the theorem states that the weak inequality (2.10) 
cannot be replaced by a sharp one. For given N and A, the spline algorithm 
q* is thus almost optimal. 

In terms of the termination criteria, the above result is somewhat surprising. 
It says that the theoretical stopping condition (2.4) yields a cost larger than the 
criterion (2.8), if the accuracy required in (2.4) is only slightly smaller than that 
in (2.8). 

Consider now the case when Cd(N, /\)(e) = +oo for sufficiently small e > 
0, i.e., when the problem cannot be solved with respect to the criterion (2.8). 

Theorem 4.2. Let Cd(N, A)(e) = +oc for sufficiently small e > 0, and let q 
be an arbitrary algorithm. 

(i) If limn+oo dn(N, A) > 0 and , c(A4) = +?0, then for any func- 
tion H: (0, +oo) - [0, +oo), the set 

A3 = {fE K: 3C = C(f) > ] 3eo = so(f) > 0 such that for all O <e <?e0 

C(Ob, N. A, f)(C * e) < H(e)} 

is a boundary set in K. 
(ii) If 

00 

lim d,(N, 2i) > 0 and Zc(A,) < +o? , 
n-+oo 



TERMINATION CONDITIONS FOR APPROXIMATING LINEAR PROBLEMS 511 

or if lim,+OO d,(N, Ai) = 0, then the set 

A4 = {f e K: C(, N. , f)(e) < +oo Ve > O} 

is a boundary set in K. 
Proof. (i) Choose a positive, nonincreasing sequence {en } such that 
limn+O en~ = 0 and 

n 

c(Ai) > H(n) 

for sufficiently large n. By a result of Kacewicz and Plaskota [3], the set 

A3={ f E K: limsup en(q, N, A, f) < + } 
n-+oo en 

is a boundary set in K. We show that A3 c A3. Let f E A3. Then for some 
C > 0 and large n one has 

n 

C(Qo, N, A, f)(C8n) < H(8n) < EC(Ai). 
i=1 

This yields that e,(0, N, A, f) < Ce,, so that f E A3, as claimed. Hence, 
A3 is a boundary set. 

(ii) Suppose first that limn,+OO dn(N, A) > 0 and ? c(A1) < +oo. Let 
K(f, a) be a closed ball with center f E A4 and radius a > 0, contained in 
K. Since Zi1c(A/) < +oo , there are m E N and A, 0 < A < a, such that 
Ai > A for all i > m. Similarly as in the proof of Theorem 4.1 (ii), we choose 
h E F satisfying lihil < A, 1Li(h)I < Ai, 1 < i < m, and IIS(h)II > 0, 
and we set fi = f + h. Then fi e K(f, a), and for _zi = Li(f) there holds 
Izi - Li(f1)l < Ai, Vi > 1. Since limi+o ei(, N, A, f ) = 0, we have for 
all sufficiently large i that 

ei(, N. A, Hi) > ||S(fi ) - Oi(zl S** zi) 1 

> IIS(h)II - IIS(f) - Oi(zi, . . . , z)Ij > 2 IIS(h)II 

which implies that C(0, N, A, fi)(8) = +oo, for sufficiently small e. Hence, 
fi ? A4, which yields that A4 is a boundary set. _ 

Now let limn,+o, dn(N, A) = 0. Since Cd(N, A)(E) = +00 for sufficiently 
small e > 0, there must be a number m E N such that c(Am) = +oo. We 
choose m to be the minimal number with this property. Let f e A4. Observe 
that dm i(N A) > 0, and take ao, h, fi, and zi, 1 < i < m, as in the 
proof of Theorem 4.1 (ii). Since qm- 1(z, .I . . , ZM- 1) = S(f ), we get that 

em- I ( t , N , A fi ) > IIS(fi) - m - I(Z, * *. , Zm- I ) II = IIS(h)I I > 0. 

This yields that for sufficiently small E we must compute Lm (fi) if we want 
to have an c-approximation to S(f1), which implies that C(q$, N, A , fil)() = 

+oo. Thus, fi } A4, and the set A4 is a boundary set in K. The proof of 
Theorem 4.2 is completed. U 

Hence, if the problem cannot be approximated with finite cost using the 
termination criterion (2.8) then, practically, it also cannot be approximated, 
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even if the idealized criterion (2.4) is applied. For any algorithm 0, the cost 
is arbitrarily large (in the case (i)), or infinite (in the case (ii)), on a dense set 
of elements f. 

Theorems 4.1, 4.2, and the obvious inequality MCd(C) < Cd(N, A)(e), for 
all N, A, , yield the following theorem. 

Theorem 4.3. Let N, A, and q be arbitrary information, precision sequence, 
and algorithm, respectively. We have: 

(i) If MCd(e) < +oo, VC > 0, then for any function h: (O, +X)D 

(O, +oo) with lim,,O+ h(e) = 0, the set 

B1 = { f E K: ]C = C(f) > ] 3co = so(f) > 0 such that for all O<e < c0 
C(k, N, A, f)(C * h(e) * e) < Md(c) } 

is a boundary set in K. 
(ii) If MCd(6) = +oo for sufficiently small e > 0, then for any function 

H: (0, +oo) -* [0, +?0), the set 

B2 = {f eK: 3C=C(f)?>0 3eo=-o(f)>0suchthatforall0<e e0 
C(q$, N.i, f)(Cc8) < H(8)} 

is a boundary set in K. a 

We now comment on the results of this paper. In the case MCd(6) < +00 
the cost C?(0, N, A, f)(e) may grow more slowly than MCd(g), as e -O+ 
only on a boundary set of elements f. If the problem satisfies the assumption 
(A), then the information N*, the precision sequence A *, and the spline al- 
gorithm b* are almost optimal, i.e., C(b*, N*, A f)(C) essentially behaves 
like MCdd(g), for all f E K. This holds up to a (not significant in practice) 
function h(c). In the case when MCd(g) = +00, the cost C(q$, N, A, f)(e) 
grows arbitrarily fast as e O+ for any g, N, and A, on a dense set of f. 

We conclude that the problem of finding the optimal N, A, and q for 
the theoretical stopping condition (2.4) can be essentially reduced to the similar 
problem with the criterion (2.8). In both cases, the minimal cost essentially 
behaves like MCd(C). Therefore, the diameter termination criterion can be rec- 
ommended when approximating linear problems. 

We end with an example showing how large the costs related to the conditions 
(2.4) and (2.8) are for an approximation problem. 

Example. For r > 1 and s > 1, let F be the space of r times continuously 
differentiable functions f: [0, 1]5 S IR with the norm 

mafil PO1rOkf(x . xs) 
O~ki--.k,=kr a4Xk ... 4C9 ~s 

where xi E [O, 11, 1 < i < s. We want to uniformly approximate functions 
f such that If II < 1, based on their noisy evaluations at some points. That 
is, G = C([O, 1S]) and S: F -- G is the embedding operator, S(f) = f. 
Information is given by 

N(f) = [f(tO), f(t2), ...] 
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where t1 E [0 1]5, i > 1. We define the cost function by 
c(A) = max{ 0, log2(1/A) }, 

which corresponds to the number of binary bits required for representing a value 
f(t) with precision A. 

From Kacewicz and Plaskota [2] we have for this problem that 

MCd(e) = E (6-Slog2 (1)), as -* 0+. 

Note that the condition (A) is now obviously satisfied. The results of this paper 
show that the cost C(Ob, N, A, f) (c) increases at least as fast as (essentially) 
,-slr * log2(1), as e -* 0+, except for a boundary set of elements f. The 
slowest possible growth is achieved by the algorithm b*, information N* and 
precision sequence A * defined in ??2 and 3. 0 

Remark. Theorem 4.3 does not hold if we drop the requirement that the in- 
equality in (2.4) hold for all j > n. Let (2.4) be replaced by 

(2.4a) h(0, N. A, f)(c) = mint n > 0: e,(O, N, A, f) <?} 
Assume that F is a separable Banach space, and let {fn }?I'O be a dense subset 
in F. Take a problem such that MCdd(C) > 0 for small c, with the cost 
function satisfying c( 1) = 0 (see for instance the Example). Let N be arbitrary 
information, An = 1 for all n and the algorithm 0 = { n} I = be given by 

O)n(zi 5 ... 5 Zn) = S(Jn) 
for all z1, ..., Zn and n > O. Then, for all f and any e > 0 ,we have 

en(q$, N, A, f) = IIS(f) - S(fn)H <? 

for some n, which yields that h(q, N, A, f) (c) < +oc and C (q, N, A, f) (c) 
= 0. Hence, the sets B1 and B2 in Theorem 4.3 are both equal to K, and the 
assertion of the theorem does not hold. E 
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