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A STOCHASTIC ROUNDOFF ERROR ANALYSIS 
FOR THE CONVOLUTION 

DANIELA CALVETTI 

ABSTRACT. We study the accuracy of an algorithm which computes the convo- 
lution via Radix-2 fast Fourier transforms. Upper bounds are derived for the 
expected value and the variance of the accompanying linear forms in terms of 
the expected value and variance of the relative roundoff errors for the elemen- 
tary operations of addition and multiplication. These results are compared with 
the corresponding ones for two algorithms computing the convolution directly, 
via Homer's sums and using cascade summation, respectively. 

1. INTRODUCTION 

In this paper we use a statistical model of error propagation to derive bounds 
on the first-order approximation of the absolute roundoff error of the algorithm 
that computes the convolution product of two vectors via Radix-2 fast Fourier 
transform (FFT). Circular convolution (CC) is a fundamental computational 
tool in many different fields where repeated computations of convolution prod- 
ucts of large vectors are needed. One such example is the implementation of 
the class of digital filters which have an impulse response of finite duration. 
The output samples of such filters are obtained from the results of convolution 
products of the filter impulse response-the kernel-and sections of the input. 
Owing to the dimensions of the vectors involved and to the need for repeated 
computations, the direct evaluation of the convolution product is usually pro- 
hibitively expensive [8]. While some studies of the rounding error for the fast 
Fourier transform can be found in the literature (see [2, 6, 7, 9, 12, 14]), the 
issue of the numerical stability of circular convolution is only briefly addressed 
in [6]. 

In the present paper we compare the numerical stability of circular convolu- 
tion using a unitary scaled Radix-2 FFT with the accuracy of two algorithms 
which compute the convolution directly. 

The model of error propagation employed, based on the usual assumptions 
of floating-point arithmetic, is both linear and stochastic. The model is linear 
in the sense that the absolute global errors are approximated by the first-order 
terms of the Taylor expansion in local relative errors. It is stochastic in the sense 
that the local relative errors are regarded as random variables, independently 
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and identically distributed (i.i.d.) for each elementary operation in which they 
arise. This method of analysis makes it possible to measure the error in the 
final output by its statistical properties, i.e., its expected value and variance, 
rather than in worst-case terms, thus yielding more realistic bounds on the size 
of the error. In fact, the relative errors are random variables taking on values at 
most as large as the constant CM used in worst-case estimates. Therefore, their 
expected value is smaller than CM or, in any case, not larger. It is common 
practice in stochastic roundoff error analyses to assume that the relative errors 
have zero mean, leaving to the root mean square the task of measuring the size 
of the error. In this paper we do not adopt the zero mean assumption for the 
relative errors in order to take into consideration the case where the expected 
value of the relative errors for different operations are different and not equal 
to zero. The statistical properties of the final output will depend in turn on the 
distributional properties of the local errors arising in elementary operations. 

The paper is organized as follows. In ?2 we describe the model of roundoff 
error propagation used and the method of error analysis used. Section 3 con- 
tains the mathematical results which make it possible to use the FFT for the 
computation of the convolution. In ?4 we describe the three algorithms and 
we derive their accompanying linear forms, estimating their expected value and 
variance. In ?5 we discuss the results of some numerical experiments testing 
the validity of the bounds found in ?4. 

2. ASSUMPTIONS AND METHODOLOGY 

The floating-point representation of a real number x :$ 0 in the machine M 
is of the form 

x =?mb, 

where b is the base of the machine, I is an integer such that -L < I < U 
and the mantissa m is a T-digit number in base b such that bhI < m < 1. 
Let x and y be elements of RM, the finite and discrete set of floating-point 
representations of the reals in the machine M, and let f be an elementary 
operation. The machine M will compute f(x, y)A, which is in RM, where 

f(x, Y)A = f(x, y)(l +8) 

with CeI < cM, the constant CM depending only on M. The quantity C is the 
local relative error associated with the operation f . Equivalently, 

f(x, y)' - f(X, y) 

f(x, y) 
The algorithms that we are going to examine start with a set of data, the 

entries of the two vectors to be convoluted, and produce a set of intermediate 
results, t1 , ... , tk, such that 

tk = A (tl, * **, tk- I; O, 5 .. *, Xn-1; AO 5 .. * *Y n-1) 5 

where fk is an elementary operation which operates on at most two of the 
values t1, ... , tk-1; Xo, ... ., Xn- ; YO5 ... 5 Yn-1 . Since in computation each 
data value xj, yj is replaced by its machine representation, kj, 9j, and each tj 
by its computed value tP, if Ck is the local relative error for the kth operation, 
then 

t = fk(t, 
A 

*,5 tki; kO, * ... *, n-1; Y * 5 n-1)(l + k) e 
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In the present paper we assume that the initial data are machine numbers, hence 
our roundoff error analysis does not take into account the effect of rounding 
the initial data on the accuracy of the output. We will also assume that in 
the course of the calculation we do not have any problems with underflow or 
overflow. Since the elementary operations in the algorithms to be considered 
are differentiable, we can write for each component of tA 

=tAc tk = tk + Ak (e) + 0( 18 112). 

The Ak's, homogeneous linear functions of the local errors e = (c1, ..., k), 

are known as the accompanying linear forms of the algorithm [ 10, 1 1]. The first- 
order absolute errors for the intermediate and final results of the algorithms to 
be considered are completely described by these forms. Since 1ek I< CM, it 
follows that 

I tk-tk < ? k (8M)I + 0(6M) 
from which worst-case type error bounds can be derived. 

In the present work we assume that the local relative errors ej are random 
variables with given distributions. The distributional properties of the first- 
order approximation of the absolute global error can be estimated by computing 
the expected value and variance of the accompanying linear forms in terms of 
the corresponding parameters for the local errors. 

The main results of this paper are the bounds on E(Aa) and E(Am) for the 
output of the circular convolution in terms of the expected values of the relative 
roundoff errors for the elementary operations of addition and multiplication. In 
the course of the rounding error analysis of the circular convolution we utilize 
the results of a similar type of analysis for the Radix-2 fast Fourier transform 
[2]. The bounds for the expected value and variance of the contribution to 
the linear approximation of the absolute roundoff error coming from additions 
and multiplications for the Radix-2 fast Fourier transform are functions of the 
expected values and variances of the relative rounding errors for addition and 
multiplication, lia, oral, /m, 2,', respectively. 

3. THE CONVOLUTION 

If x = {Xk} and y= {Yk} are two sequences in the space r1n of sequences 
of complex numbers which are periodic with period n and infinite in both 
directions, their convolution product is defined to be the sequence z = x * y in 
F1n such that 

n-1 

)Zk = * XmYk-m . 

m=O 

Each component of z is the sum of n products; since n such components 
need to be computed, the cost of direct calculation of the convolution product 
according to (1) amounts to n2 complex multiplications. 

The following theorem shows how the convolution product can be expressed 
in terms of Fourier transforms. 

Theorem 1. The discrete Fourier transform, z, of the convolution product of two 
n-dimensional vectors x and y is a scalar multiple of the componentwise product 
of their discrete Fourier transforms, that is, 

(2) 27= "nnVA 
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where 2 indicates componentwise product and w is the discrete Fourier trans- 
form of one period of w, for w = x, y, z, defined as follows: 

I n-1 / 7 2nijk 
w, = }/;wji exp(k n2 ) 

k=O 

Proof. See [5]. 

Let n = 21 and Wj be an n x n block diagonal matrix of the form 

,Ij Dj 

W X [K~ *. *. Ij Dj 

I. -Dj 
where Ii is the 2'-1 x 21-1 identity matrix and Di is the 21-1 x 2'-1 diagonal 
matrix with entries 

Dj(p, p) = exp ( 271i(p - 1)21-J) 

Corollary 2. If n is a power of 2, then 

(3) Z =x y = (F n)((FnX) El(Fn Y)) 

where Fn is the matrix Fn = ... W1, Fn is its conjugate transpose, and g 

is the componentwise product. 
Proof. If n is a power of 2, n = 21, the discrete Fourier transform of an n- 
dimensional vector z can be computed via the Radix-2 FFT algorithm, that 
is, 

z= Wl1Wlz. 

From Theorem 1 it follows that 

Fnz =-((Fnx) D (Fny)). n 

Since the matrix Fn = W... W1 is invertible and (Fn)-I = Fn, we have 

z = x * y =-Fn(FnxLRFny). D 
n 

The convolution product performed according to (3) requires three Fourier 

transforms and n complex multiplications. Since the computational cost of 

each Radix-2 FFT is only I - n 1og2 n complex multiplications, the computa- 

tional cost of the circular convolution can be reduced to (32 1og2 n + 1) * n com- 

plex multiplications. The scalar multiplication by I is not taken into account 

because it just amounts to a shift in the exponent in the binary representation 
of the number. 

4. ACCOMPANYING LINEAR FORMS 

In this section we compute the accompanying linear forms for three algo- 
rithms which compute the convolution product, and we obtain bounds for the 

mean and the variance of these forms. 
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We start with the accompanying linear forms for the algorithm which com- 
putes the convolution directly using Horner's sums. To compute recursively 

n-1 

Zk = XmYk-m, ...,n-1, 
m=O 

we define the intermediate components 
p 

Zk,p = ZXmYk-m, k=O ..., n-, 
m=O 

for p = 0, ..., n - 1 . Theoretically, 

p+1 

Zk,O=XOYk, Zk,p+l = ZXmYk-m 
m=O 

Hence,for p=0, ..., n-2 and k=O, ..., n- 1, 
(4) Zk,p+l = Zk,p + Xp+1Yk-p-1. 

In computation, if we denote by z the floating-point representation of z and 
by (xopy)A the computed value of xopy, we have 

Zk,O = (Xo * Yk)O 2k,p+l = (2k,p + (Xp+lYk-p-I)A)A 

Therefore, for each k and p, 

Zk,p+1 = (2k,p +Xp+lYk-p-1(l + rk,p+1))(l + ak,p+1) 
(5) Zk,p (1 + Ck,p+l) 

+ (Xp+lyk-p-1 + Xp+lYk-p-1 k,p+l) * (1 + ak,p+l) 

If we let 
Ak,p+l = Zk,p+l - Zk,p+1, 

then from (5) we have, to first-order terms in the local errors, 

Zk,p+l + 4k,p+l Zk,p + Ak,p + Zk,pak,p+l + Xp+lYk-p-I 

+ Xp+1yk-p-1ak,p+1 + Xp+1Yk-p-17rk,p+1 

From (4) we obtain the following recurrence relation for the accompanying 
linear forms: 

(6) 4k,p+l = Ak,p + Xp+1yk-p-17rk,p+1 + Zk,p+lak,p+l. 

Since the linear forms in (6) can be decomposed as 

Akp = (Aa)k,p + (Am)k,p 

to account separately for the contributions from additions and multiplications, 
we have 

(7) (Aa)k,p+l = (Aa)k,p + Zk, p+lck,p+l 

and 

(8) (Am)kp+l = (Am)k,p + XP+1yk-p-17rk,p+l 1 

The initial conditions for the difference equations (7) and (8) are 

(Aa)k,O = 0 and (Am)k,O = XOyklrO. 
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It immediately follows that 
n-1 

(a)k,n-1= - Zzk, ick, i 

and 
( n-1 

(M)k, n- I= E Xq * Yk-q * 7(k, q . 
q=O 

Under the assumption that the ak, i's are i.i.d. with mean Ua and variance 
Ca' we derive the following bounds on the expected value of the accompanying 
linear form for addition: 

JE((Aa)k, n-1)I <_ -a E Zk,= i H aZ (XqYk-q) 

(9) i=1 i=1 q=O 

< Ila2 (n + 1 - n)x j.1yII. 

Under the assumption that the rk, i's are i.i.d. with mean Unm and variance 
a we have the following bounds for the expected value of (Am)kn-I 

I n-1 

(10) JE((Am)k)n-I)l < -? m Z lXqyk-ql ?< /mHX11ooH1Y1oo. 
q=O 

The bounds on the variance of (Aa)kn-l and (Am)kn-l are as follows: 
2 

(11) var(()a)k n-l) ? 
n a2Z C XqYk-q n- I)f 0 

aj y0 

i=1 q=O 

and 
n-1 

(12) var((Am)k,n-l) < 12 Zm E lXqYk-q ? m 0I 
q=l 

An alternative method to compute the convolution directly is to perform a 
cascade summation. Let 

ZOJ = XjYk-i 

for j=0, ...,n- 1, and 

Zq, 2qj = Zq-, 2qj + Zq- I, 2qj+2q- 1 

for q = 1, ...,I and j=O,..., 2l1-q _ . In computation, 

Zq, 2qj + Aq,2qJ = [(Zq- 1, 2qj + Aq- 1, 2qj) 

+ (Zq- 1, 2qj+2q- I + Aq- 1, 2qj+2q-1 )](1 + aq, j) 

Zq, 2qj + Aq- I , 2qj + Aq- 1 , 2qj+2q- + Zq, 2qj aq, j 

Therefore, the accompanying linear forms Aq, 2qj must satisfy the difference 
equation 

(13) Aq,2qj = Aq-I ,2qj + Aq-I ,2qj+2q-I + Zq,2qjalq,j 
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subject to the initial condition AOJ = XjYk]j n. If we separate the contribu- 
tions to global errors from the operations of addition and multiplication, we 
find that 

2q_1 

(AM)q, 2qJ - - E X2qj+iYk-(2qj+i)7(2qj+ii 
i=0 

Therefore, the expected contribution to global roundoff error from multiplica- 
tion in the kth entry of x * y is 

2q_1 

|E(Am)l < -IYm E IXiYk-il < /mHXIoo-HY1oo 
i=O 

Consider now the contribution to global error from additions. From (13) it 
follows that 

q 2q_1 

(a),2qj =-E E Zi,2qj+iai,2qja n 
i=1 1=0 

Since 
2'-1 

Zi, 2qj E ZO,2qj+l, 
1=0 

we have 
q 2q_1 /2'-1 2 

(Aa), 2qZj ( Z, 2qj+p )i, 2qj 
i=I j=O p=O / 

The expected value of the contribution to roundoff error from addition in each 
entry of the output is therefore bounded by 

1 q 2'-1 

JE(Aa)l <? -PE E 2'J|xJJyJ 0, < log2 nl/a11X1ooHY1OO. 
i=1 j=O 

Under the assumption that the relative errors introduced at each step are inde- 
pendent, we have the following bounds for the variance of the roundoff error 
in each entry of the output: 

1 2 - k _ 1 2k- _ 

var(Aa)= a2 21 1 (1X ZO12kr+) -log2n 2 a jy112 
k= 1 r=O s=O 

and 
1 2 - k _ 1 2k_ I 

var(Am) = or E E %E ZO,2k(2r+)+s <n+ 1a 11 lll 2 IIYI 

k=1 r=O s=O 

We now turn our attention to the accompanying linear forms for the algo- 
rithm that computes the convolution via Radix-2 FFT's. In computation, 

z = n[[Fn((Fnx)A E (F1y)A)IAIA 
n 

- [Fn[(FnX)A 'R (FnY)A R (1 + 7Rn)IIA.- 
n 
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Since (Fx) - Fnx+ FAx and (Fny) F,,y +FAy, where F)w is the accom- 
panying linear form for the Radix-2 FFT of w, and 

(Fn(w))A Fn(W) + TAw 5 

where F7w is the accompanying linear form for the inverse Radix-2 FFT of w, 
it follows that 

- 1 
z 1- * Fn[(i + FA1) - (y + FAy) 1 (1 + 11n)] + - * Ticn~) 

=1 Fn (x2) +I-Fn[(fkOFAy +12FAx +12~Rl n)] + A(i 1:1 

by the linearity of the FFT. Therefore, since the accompanying linear forms for 
the convolution via Radix-2 FFT are defined by 

A z -z 

it follows that 

CiAz = Fn RfC 0FAy + y 2FAx + i E1 2 NA + A i~xy n 1 1 

Since the accompanying linear forms can be decomposed as 

I = Aa + Amm, 

we have that 

(14) c (Aa) = - * Fn [i F(Aa)y + y F (Aa)x] + - (Aa)(i 

and 

1 1 ( 15) c(m~ =-* .Ff[(xL F ()Am)y + yLGF Am)X + xLGLy ie)] + - A)iay 

The derivation of the accompanying linear forms for the Radix-2 FFT with 
scalar factor I instead of L can be found in [2]. Although the derivation of 
)a and Am is not affected by resealing, the infinity norm of the intermediate 
results changes, therefore the estimates for the expected value and variance of 
the global error change. For each k = 1, ... , / we have, with the scalar I- 

IIZk Ioo ?< VIIZk-1 Ioo, 

where Zk is the intermediate result at the kth step. From [2] it follows that 

1-2 

FiAa = A W1 Wk+I (Zk R atk) + Wl(Zl- I R al-1) + (Z1 F- al1) 
k=1 

Since each element of the matrix W has exactly two nonzero entries, each one 
of absolute value A, for each entry of JE(F)al)I we have 

(16) IE(F)al)I < ? : 2(1 k)/2 2(k+1)12 + V?. 2(/ 1)/2 + 21/2) ita lXii 

= ((2 - 2x/2) Vni + VK * i log2 n)Ila llxl00o 
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Similarly, from a simple modification of the results of [2] it follows that 
1-2 

FAll =EWl-*+-(Wk+ (bk El Zk1- l Fk) 
k=1 

+ Wl(bl-I RZ1-2LRf1-1) + (b1L z1_1 Ll1). 

Therefore, for each entry of JE(FAml)1 we have 

11-3\ 
( E(F)ml)1 < - ( E2(1-k)/2 . 2k/2 + 21/2 . 2(1-2)/2 + 2(1-1)/2) /MImXIoo 

(1l7) k=0 

= 2 (av/i(log2n-2+v'+I) ,mlxIIOO. 

The bounds for the entries of the covariance matrix of the global error for the 
particular Radix-2 FFT considered here can be found by utilizing the results of 
[2]. In particular, since 

Orl-2 coV Fal=aj WI . Wk+lZk4WkJ+l 4Vl Wl'+ Wzll1W/+z7) 
k=i 

where Z2 is the n x n diagonal matrix such that 

Z](d, d) = (zj(d))2 

we have for each entry of the matrix coV F)al 

CoV(F)Aal) i 

(18) < (2u-k)/2 .22.(k+l)/2 . 2(1-k)/2 + 21/2 2(1 1)/2 .21/2 + 21) 0a2IIXI1 

= (2n log2 n - 3n + n1/2)a HxH . 

Similarly, since 

COvFAmJ = -jm E W1 ... * k+ILZk- Wk+I .W + W1Zl 2Wl + ZlI 1 

it follows that, for each entry of the matrix cov(FAm1), 

(19) Icov(FM)LmIij < 4 * (2n log2 n - 3n + )a, HxH0. 

We now compute the bounds for the expected value and variance of the 
accompanying linear forms for the circular convolution. From (14) it follows 
that, for each entry of E(,(Aa)z), we have 

1 
IE(c(Aa)z)l < -[2V'ni(V m* 1g2 n + (2 - 2V?)V')]/aaIIXI ooIYIyoo 

(20) + 1 l[og 1092 n + (2 - 2V)X]n~ aIIXIloo lYIloo n 

= 3[ v'7(10og2n + (2 - 2 V)i)]/IaHXlo oIYIoo. 

Similarly, from (15) it follows that, for each element of E(c(Am)z), we have 

(21) IE(c(Am)z)I <? Vn[2(10g2n + I- 2) + l]iumIHxHIOO HyH.c 
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In order to find bounds for the variance of the components of the vectors 
,(Aa), and (Am), , that is, for the diagonal entries of their covariance matrices, 
we express the accompanying linear forms in matrix notation: 

1 (Dk D9 0 /F(Aa)y c(Aa)-= -(Fn In) (F(Aa) ) 

F (Am)y 

n D( D( In ) Irn0 

F T(Am).k n g 

where Dw is the n x n diagonal matrix with the entries of the vector w = 
x, y, x f y on the main diagonal. Then 

cov(c(Aa),) = \(Fn In) (0 DX 
0 

n2 01FD5 0Iln ' 
F (Awa)y &Z Dx O 

X COV F (Aa)x D9 0 I0 Fn 
F (Awa), g 0 In n 

and 

cov(c(Am)z) = (Fn In) D( o I O 0* 
fl \0 0 0 I 

F (AM)y i Dx 0 

X F (Am)x DI O Fn [n D(x i ) ? In 
1-- (AM) S' y ~L 0 In - 

Under the assumption that the components of the vectors of the local relative 
errors coming from addition and multiplication at each step of the computation 
of x, y, and x y ~ are independent, the matrices 

F (Aa)y F (AM), 
coy A) and coy f(Im) 

F ~ ~ ~~~' 

are block diagonal of the form 

F (Awa)y COV(F (Awa)y) 
COV F (Awa), COV(F (Awa)x ) 

Fo ([a)x O Y) cov(-(Ta)x O 

and 
[F (Im)y 1 [Cov(F (Am)y) 

coV F (IM)x = CoV(F (m)x) c 

Lr C() In 
F (imxgyCVF (w~ 

respectively. Therefore, 

(22) cov(c(Aa)z) = 2 {FnDk cov(F((Aa)y)D5xFn 

+ FnD cov(F (Aa)X)D9Fn + cov(F(a)> oy)} 
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and 

(23) cov(,(Am),) = n2 {FFD5 cov(F((Am)y)D&*F, + FDy cov(F((Am)X)D9F, 

+ am(FnD(k L 9)D(JZ L 9)F') + cov(T(Am)xko)} . 

Since each entry of cov(F/aX) is bounded in absolute value by 

2n(1og2n - 3n + v/-i) a2x0, 

we have for each entry of the matrix cov(,(Aa),) 

(24) Icov(c(Aa)z)ijl < 3(2n log2 n - 3n + v-)ua2 xI0Iy . 

Similarly, from (20) it follows that, for each entry of cov(c(Am)z), we have 

Icov(c(Am)z)ijI< ? - 2(2n log2 n - 3nl + v2n)n 

+ 1 n22 IIXII2 1IyII2 n 

(25) 1 [4(I v/-)] 

< {4 (2n 1og2 n - 3n + v/2) + 1} l00 I IIYIIIO 

5. NUMERICAL EXPERIMENTS 

In order to test numerically the consistency of the results of our roundoff error 
analysis for the circular convolution using a unitary Radix-2 FFT with the errors 
actually observed in computations, we generated, for each I = 5, 6, ..., 10, 
a total of 3000 pairs of n-dimensional vectors, with n = 21, with the real 
and imaginary parts independent random variables from the uniform [0, 1] 
distribution. Each component was then rounded to eight significant digits and 
the circular convolution was computed twice, once with the results of each 
operation rounded to eight digits, and once with all operations performed in 
double precision. The output vectors were compared componentwise, and the 
absolute error in each component was calculated. The infinity norms of the 
sample mean and sample variance for the different values of n are listed in 
Table 1 (see next page). 

The /l, norm of the mean and variance of the global error is a somewhat 
conservative measure of the error affecting the output, in the sense that it mea- 
sures the largest sample mean and sample variance of the global error affecting 
each individual component of the output. In order to provide, in addition, an 
overall measure of the mean and variance of the global error in the output, we 
list in Table 2 (see next page) the 12 norms of the mean and variance of the 
global error. Notice that the 12 norms are much smaller than the corresponding 
/lo norms, because instead of looking for the largest entry we average all entries 
over the full vector. 

The slow growth of the infinity norm of the variance and expected value of 
the global error predicted by the analysis are confirmed by the numerical experi- 
ment, at least when the data has real and imaginary parts uniformly distributed 
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TABLE 1. 100 norm of the mean and variance of the global 
error for circular convolution. Sample size = 3000. 

n mean variance 

32 9.17E-8 8.78E-17 

64 8.60E-8 5.00E-17 

128 1.02E-7 1.78E-17 

256 2.92E-7 1.49E-17 

512 5.48E-7 2.31E-16 

1024 4.05E-7 1.48E-16 

TABLE 2. 12 norm of the mean and variance of the global 
error for circular convolution. Sample size = 3000. 

n mean variance 

32 1.68E-8 1.88E-17 

64 1.13E-8 1.48E- 17 

128 9.27E-9 1.92E-18 

256 2.01 E-8 1.30E-17 

512 3.79E-8 1.23E-17 

1024 1.33E-8 2.54E-18 

in the interval [0, 1]. More specifically, the ratio of the bounds for the expected 
error for two successive values of / is of the order of x/2(I + 1)/i, not far from 
the ratios of the corresponding sample means. The overall trend observed in 
the numerical experiments is that of a slow growth of both mean and variance 
of the global error. The occasional reduction of either parameter as / increases 
can be attributed to the characteristics of the particular sample selected. 

Theoretical and numerical estimates of the expected value for the relative 
error for addition and multiplication of floating-point numbers uniformly dis- 
tributed in [0, 1] suggested that their values are approximately b't and 
b-2t, respectively. In view of this observation, the value of the sample mean 
for the error in circular convolution at n = 32 is very close to the theoretical 
bound, which is approximately 1.02,uIaljxjj,,Hyjj,,. 

In order to compare the accuracy of the circular convolution with the accu- 
racy of an algorithm which evaluates the convolution directly, we computed the 
convolution of the same pairs of vectors used to test the accuracy of circular 
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TABLE 3. /Zo norm of the mean and variance of the global 
error for direct convolution. Sample size = 3000. 

n mean variance 

32 4.67E-8 2.85E-17 

64 6.94E-8 4.66E- 17 

128 2.81E-7 1.77E-16 

256 4.36E-7 2.86E-17 

512 1.45E-6 2.27E- 15 

TABLE 4. 12 norm of the mean and variance of the global 
error for direct convolution. Sample size = 3000. 

n mean variance 

32 8.97E-9 7.25E-18 

64 9.35E-9 1.06E-17 

128 2.69E-8 1.98E-17 

256 2.98E-8 2.31E-17 

512 3.69E-7 1.29E-16 

convolution by means of a cascade summation. The /lo and 12 norms of the 
sample mean and sample variance of the global error, with I = 5, 6, 7, 8, 9, 
are listed in Tables 3 and 4. 

On first sight the entries in Table 3 seem to disagree with the theoretical 
bound for the expected error, which is approximately log2 nui I I xl IIIyII, since 
the /lo norm of the sample mean grows at a rate larger than (I+ 1)/1. The value 
of Jua, however, is a function of the numbers being added together, hence as 
the size of the vector increases the interval containing all terms added together 
becomes larger, thus yielding a larger value for Iua . 

A comparison of the values of the expected value and variance of the global 
error listed in Tables 1 and 3 suggests that the faster algorithm is as accurate as 
the one computing the convolution via cascade summations. We conclude by 
pointing out that the amount of work required by the two algorithms, 0(n2) 
flops for the direct calculation versus 0(n lg2 n) for the circular convolution, 
together with the results of our error analysis point to the circular convolution 
using a unitary Radix-2 FFT as the algorithm of choice. 
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