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RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS 
AND CONVOLUTION QUADRATURE 

CH. LUBICH AND A. OSTERMANN 

ABSTRACT. We study the approximation properties of Runge-Kutta time dis- 
cretizations of linear and semilinear parabolic equations, including incompress- 
ible Navier-Stokes equations. We derive asymptotically sharp error bounds and 
relate the temporal order of convergence, which is generally noninteger, to spa- 
tial regularity and the type of boundary conditions. The analysis relies on an 
interpretation of Runge-Kutta methods as convolution quadratures. In a dif- 
ferent context, these can be used as efficient computational methods for the 
approximation of convolution integrals and integral equations. They use the 
Laplace transform of the convolution kernel via a discrete operational calculus. 

1. INTRODUCTION 

The objectives of the present paper are twofold: 
* It gives an error analysis of Runge-Kutta time discretizations of parabol- 

ic equations. 
* It introduces a new class of computational methods for the approxima- 

tion of convolution integrals, based on Runge-Kutta methods. 
The reason for treating these apparently unrelated topics in a single paper is 
that they both rely on a discrete operational calculus of Runge-Kutta methods 
in such a way that separation of the second topic would only minimally reduce 
the length of the article while implying a substantial loss of perspective. 

Section 2 introduces and studies Runge-Kutta based convolution quadrature 
methods approximating integrals of the form 

t 

Jk(t - T)g(T) dT, t > 0. 

Like the multistep methods in [16], they require (only) the Laplace transform 
of the kernel k(t) to be known. The kernel may be weakly singular, may have 
components with different time scales, and need not itself be known explic- 
itly. Such an approximation of convolution integrals is important in integral 
equations arising, e.g., as feedback systems in control engineering, as bound- 
ary integral equations for various types of initial-boundary value problems, and 
in viscoelasticity. The methods proposed here can be used for the numerical 
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solution of such integral equations in much the same way as those of [16]. A 
potential advantage of the present methods is that they can combine good stabil- 
ity properties with high order' (cf. the discussion of Runge-Kutta vs. multistep 
methods in the stiff ODE case [9]). 

In ?3 we study Runge-Kutta time discretizations of linear parabolic equations. 
Of special interest here is the way in which spatial regularity and boundary con- 
ditions determine the temporal approximation properties of the method. Such 
a relationship, which is not present in multistep methods, has first been ob- 
served in the pioneering thesis of Crouzeix [3]. The approximation properties 
of Runge-Kutta methods for inhomogeneous linear differential equations with 
unbounded operators have further been studied in [4, 1]. More recently, it has 
been shown in [19] that noninteger orders of convergence are usually attained. 
In the present paper, asymptotically sharp error bounds are given both in terms 
of the data and of the solution. For example, for the inhomogeneous heat equa- 
tion, the temporal approximation order turns out to be in general higher for 
homogeneous than for time-dependent nonhomogeneous boundary conditions 
(by 1), higher for Neumann than for Dirichlet boundary conditions (by 2 )' 

and higher when the error is measured in space in the L2 norm rather than 
the maximum norm (by ). In the worst of these cases, the order of conver- 
gence equals the stage order plus 1, given sufficient temporal smoothness of the 
solution. 

In ?4 we give error bounds of Runge-Kutta methods applied to semilin- 
ear parabolic equations, under assumptions which include the incompressible 
Navier-Stokes equations. The results obtained are similar to those for the lin- 
ear case studied in ?3. As in that section, the ideas and techniques of ?2 play 
an important role throughout our analysis. We are not aware of previous work 
giving convergence estimates of Runge-Kutta time discretizations of the Navier- 
Stokes equations (except for backward Euler and Crank-Nicolson, see [1 1] and 
references therein). A convergence analysis of multistep methods for nonlin- 
ear parabolic equations under the present assumptions has been given in [17]. 
Runge-Kutta time discretizations under assumptions different from ours have 
been studied in [2, 21 ] (see further [ 12, 13] for modified Runge-Kutta methods). 

Section 5 contains proofs related to error estimates in terms of the data. 
We conclude this section by introducing some terminology. A Runge-Kutta 

method applied to an initial value problem 

y' = f(t, y), y(O) = yo, 

with a step size h > 0 yields at tn = nh an approximation Yn , given recursively 
by 

m 
Yni =Yn +hZE aijf(tn + cjh, Ynj) (i= 1, ..., m), 

(1. 1) 
j=1 
m 

Yn+1i Yn +hZbjf(tn+ cjh,5 Ynj). 

IFor example, the 12 circle condition theorem (Theorem 2.3 in [5]) for nonlinear convolution 
equations can be shown to hold for algebraically stable Runge-Kutta methods. There is no order 
barrier for such methods, in contrast to A-stable multistep methods. 
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The Runge-Kutta method has order p if the error of the method after one step, 
when applied to ordinary differential equations with sufficiently differentiable 
right-hand side, satisfies 

(1.2) y, -y(h) = O(hP1) as h - O. 

The method has stage order q if the error of the internal stages is, for all 
i = 1 , . .. , m , 

(1.3) Yoi - y(cih) = 0(hq+1 5 

or equivalently, if 
m ck 

(1.4) , aijc>' = k' for k = ... q. c~ k 
j=1 

In the following we use the notation 

(1.5) d, = (aij)m,=l bT = (b, , ... , bto, 1 =(15 ...,5 1)T. 

A Runge-Kutta method is called A(0)-stable if I - zd is nonsingular in the 
sector Iarg(-z)j < 0, and if the stability function 

(1.6) R(z) = 1 + zbT(I _ z)- 11 

is bounded by 

(1.7) JR(z)l < 1 for larg(-z)l < 0. 

The method is called strongly A(6)-stable if it is A(6)-stable and in addition 
has an invertible Runge-Kutta matrix d', and the limit of the stability function 
at infinity, 

(1.8) R(oo) = 1 - bTe- 1 

has absolute value strictly smaller than 1.2 Well-known examples are the Radau 
IIA methods (see [9]). These methods have further 

(1.9) bi=ami (i=1,...,m), 

which implies R(oo) = 0. 

2. RUNGE-KUTTA-BASED CONVOLUTION QUADRATURE METHODS 

We are interested in approximating the convolution 
t 

(2.1) u(t) = Jk(t- T)g(T)dT, t > 0. 

In many applications, it is the Laplace transform K(s) of the kernel (the transfer 
function in control engineering terminology) rather than the kernel itself which is 
known a priori, or is of a simple form. The quadrature methods to be described 
below use only K(s) and are given by a discrete block convolution, which allows 
for the use of fast Fourier transforms for an efficient approximation of (2.1) for 

21n the literature, there exist different variants of strong A(6)-stability [3, 4, 2]. The above 
definition is slightly stronger than all these and has been chosen to allow for a briefer statement of 
our results. 
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many values of t. We assume that the following sectorial condition is satisfied 
by K(s) (cf. [16]): 

(2.2) K(s) is analytic in a sector Iarg(s - c) I < Z- with b < c, C E 
R, and is bounded there by IK(s)I < M IsI- for some ,u > 0. 

Then the kernel k(t) can be represented by the Laplace inversion formula as 

(2.3) k(t) = 2 K(A)eAt dA, 

where F is a contour parallel to the boundary of the sector, oriented with 
increasing imaginary part. It follows from (2.2) that k(t) is analytic in some 
sector containing the positive real axis, exponentially bounded for t -+ oo, and 
with k(t) = O(t - 

l1) as t -+ 0, so that k(t) may be weakly singular. Conversely, 
every such kernel has a Laplace transform satisfying (2.2) for some b < 2 

Inserting (2.3) into (2.1) and interchanging integrals, we get 

(2.4) u(t) = I K(A)y(t) dA 

where yA(t) = ft eA(t-T)g(T) dz is the solution of the initial value problem 

(2.5) y' =y + g, y(O) = O. 
The basic idea now is to discretize this differential equation by a Runge-Kutta 
method, insert the approximate solution into (2.4), and use Cauchy's integral 
formula to simplify the resulting expression. We then get the following descrip- 
tion of the convolution quadrature method. 

Proposition 2.1. Consider an m-stage Runge-Kutta method satisfying (1.9), and 
suppose that all eigenvalues of the matrix d' are in the open sector largAl < 
7r - q, with q of (2.2). When yA(t) in (2.4) is replaced by the Runge-Kutta 
approximation (1. 1) of (2.5), then one gets at t = (n + 1)h the approximation 

m n 

(2.6) Un+1 = h , , Wn ,,jg(t, + cjh), 
j=O v=O 

where the quadrature weights (Wnl, ..., wnm) form the last row of the m x m 
matrix Wn given as the nth coefficient of the generating function 

(2.7) hZWn4 n=K(A5f)) 
n=O 

with 

(2.8) d() + C lb) 

As will be described below, the quadrature weights can be computed effi- 
ciently to arbitrary precision using fast Fourier transform techniques. 

Proof. We consider the generating functions 
00 00 00 

y(4) = EYn Cn y(Z) = E Yn n, G(4') = E GnCn, 
n=O n=O n=O 
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etc., with Y, = (Y_j) l and G, = (g(tn +cjh))7 1. From (1.1) with f(t, y) = 

3y+ gg(t) we have 

Y(C) = ty(C) + hGeY(4) + hWG(C), 

(C-1 - l)y(C) = hAbTY(4) + hbTG(4C). 

Inserting y(4) from the second equation into the first one gives 

(I - hAlbT 1 - hAe Y(C) = h (lbT1 T 
. +e) G(C), 

that is, 

(2.9) Y(0 )(A(4) G(-). 

If (1.9) is satisfied, then Yn+1 = Ynm, and hence y(C) is the last component of 
Y(4). Otherwise, we get 

(2.10) y(c)= 1 hb" ( G(C)_ i - h ~hJk 

Substituting the numerical solution into (2.4), we get for the approximation the 
generating function 

u (C) = 
~ f K 

Jf(A) ( 
A 
i G(C) dA, 

which by Cauchy's integral formula reduces to 

(2.11) U(C) = K ((f) ) G(4). 

It follows from (2.7) that 

n 
(2.12) Un = (Uni) l1 = h , Wn-vGv 

v=O 

If (1.9) holds, then un+1 is the last component of Un, and so un+1 is given by 
(2.6). In general, we get from (2.10) 

(2.13) u(C) = 1 hbT A(f)K (Af)) G(4). [1 

The above derivation indicates how to obtain error estimates for the approx- 
imation un of u(tn): One studies the error of the Runge-Kutta method applied 
to the linear differential equation (2.5) with A varying on the unbounded con- 
tour F, and then integrates along F over the error multiplied by K(A). This 
leads to the following result. 

Theorem 2.2 (Convergence of convolution quadrature methods). Assume (2.2), 
and consider a Runge-Kutta method of order p and stage order q which is 
strongly A(O)-stable with 0 > q. Then the error of the convolution quadrature 
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(2.6) (or that given by (2.13), if condition (1.9) is not satisfied) is bounded for 
h < ho (sufficiently small) by 

q 
Un - U(tj)l < ChP * Z(1 + ty+'-P) * jg(O)j + C(hP + hq+l+?lloghl) 

1=0 

(2.14) /P-1 

t1-ll ( )I O<,<tnl I 

If p > q + 1, the error of the internal stages Uni given by (2.12) satisfies for 
i = 1,...,m 

UniU(tN + cih)I < Ch q 
* (,(1 + tu+l-q-1) . g(')(O) + rmax Ig (T)nI 

The constants C and ho depend only on the Runge-Kutta method, on the con- 
stants in (2.2), and on the length of the time interval. In particular, they are 
independent of n and h with nh < T, and of g E CP[O, T]. If c < 0 in (2.2), 
then the bounds hold uniformly over the whole half-line [0, oo), and ho can be 
chosen arbitrarily. 

The proof of (2.14) is deferred to ?5. We omit the proof of the error estimate 
for the internal stages. 

The error is thus O(hP) + 0(hq+l+plloghl) on any finite interval bounded 
away from 0. One may thus have a noninteger order of convergence. If one 
wishes to get high convergence order also near 0, then one might add to un 
a correction term of the form h Em-1 PI njg(cjh) , where the weights ?nj are 
constructed such that the quadrature becomes exact for polynomials of degree 
q. Then the error is O(hP) + Q(hq+l+ktjlog hj) uniformly on every finite interval 
[0, T] (cf. Corollary 3.2 in [16] for an analogous construction in the multistep 
case). 

For the m-stage Radau IIA method the above assumptions are satisfied with 
p = 2m - 1, q = m, and with 0 = I (see [9]). 

Implementation and numerical example. To compute the quadrature weight ma- 
trices W,, one approximates the Cauchy integral 

hWn = ( J CI 1K(A(0)/h)d4 
27ri Il=P 

by the trapezoidal rule: 

-n L-1 

h Wn E K(A(Cjl)/h)e-27inl/L 
1=0 

with C, = pe2,il/L . Assuming-that the values of K are computed with precision 
l, one gets as in [16, ?7], that the error in hWn (0 < n < N) is O(V/i) if L = N 
and pN = \/-, and the error is O(e) if L > NIlogeI and p = e-yh , with y > c 
of (2.2). Using fast Fourier transforms, the weights are computed in O(L log L) 
operations. 
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We have used the 1-, 2-, and 3-stage Radau IIA methods to approximate the 
convolution integral 

ft 1 e dz = et . erft. 
o 7r(t -z) 

The Laplace transform of the kernel k(t) = (7rt)-1/2 is K(s) = - 1/2 . For the 1- 
and 2-stage methods, Theorem 2.2 predicts the full convergence order 1 and 3, 
respectively, while for the 3-stage method the error is bounded by O(h4 5lloghl). 
These asymptotic bounds are confirmed by numerical experiments. At t = 4 
we obtained the following results. 

For stability investigations, bounds for the coefficients W, of (2.7) are all- 
important. The following result has a multistep analogue in Lemma 7 of [17], 
or Lemma V.7.11 in [9]. 

Lemma 2.3. Under the assumptions of Theorem 2.2 (now also when ,u = 0 in 
(2.2)), the coefficients of K(A(4)/h) = h EZ 0 Wn Cn satisfy for h < ho (suffi- 
ciently small) 

11Wni < C * (nh)-u * eYnh for n > 1, 

and for n = 0 the same bound holds as for n = 1 . The constants C, y, and 
ho depend only on the method and the constants in (2.2). They can be chosen 

* 2-stage Radau IIA method: 

h relative error relative error/ h3 

1 6.41o - 3 6.41o - 3 

1/2 9.61o - 4 7.710 - 3 

1/4 1.41o - 4 8.61o - 3 

1/8 1.81o - 5 9.410 - 3 

1/16 2.41o - 6 9.91o - 3 

* 3-stage Radau IIA method: 

h relative error relative error/ h45 

1 1.41o-4 1.41o-4 

1/2 8.41o - 6 1.91o - 4 

1/4 4.510 - 7 2.31o - 4 

1/8 2.31o - 8 2.61o - 4 

1/16 .l io-9 3.01o-4 
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independent of 0 < ,u < Const. Moreover, if c < 0, then also y < 0, and the 
result holds for arbitrary ho. 

The proof uses Cauchy's integral formula 

(2.15) K (KAz)) = 21 jKCa) (A5f) -i) dA, 

the following lemma, and bounds for the stability function R(z). 

Lemma 2.4. Under the foregoing assumptions we have 
00 

(;) _ z)- = 6V7(I z)- + E R(z)n-I (I - zd))-1 IbT(I _z)-1Cn 
n=1 

Proof. By (2.8) we have 

(o (4 Z) = 
1 

d + l;b). (I _z (+ l br) 

With E = I + (I - z)-1zibT we get 

(A(W ) - z)1 = 1 ; lbT) (1 - )(I- - 4E)1- (I - ze)- , 

and we note that 
00 00 

(1- 0)(I - E)-1 = (1-0C) En, n = I + Z(EEn En-ign 
n=O n=1 

We have 

E2= I + 2(I - ze)-lz1bT + (I _ ze)-lz . [b T(I -_z')z1z] . b". 

By (1.6), the term in square brackets reduces to R(z) - 1 , and hence 

E2 = I + (I - z)-)lz1zbT(l + R(z)). 

By induction, we get 

En = I + (I - ze)-lz1bT. (1 + R(z) + + R(Z)n-1). 

This gives further 

tbTEn = lbT + 1(R(z) - 1)bT(l + . + R(z)n-1) = R(z)nlbT 

and 
e(En - En-1) = R(z)n-1 . ze(I - ze)<lIbT 

Inserting this into the above expressions for (A(C) - z)-1 gives the stated re- 
sult. El 

Proof of Lemma 2.3. With Lemma 2.4 available, the proof is now similar to 
that of Lemma 7 in [17]. We note that there exists 0 < p < 1 such that 

(2.16) IR(z)I < max(Iez/21, p) for larg(-z)l < 0' < 0, 

and 

(2.17) IR(z)I < e2jzj for lzl < r, r sufficiently small. 
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From (2.15) and Lemma 2.4 we have for n > 1 

Wn = 2 Kri jK((A) * R(hA) n- (I-hA )- l1b T(I-hA) -I * dA. 

For nh < 1 we substitute w = nhA and replace the resulting integration con- 
tour nhF by an equivalent contour FT which is independent of nh, has a 
positive distance to the origin, and, apart from a compact subset near the ori- 
gin, is again contained in a sector larg(-w)l < 0' < 0. We then have, using 
(2.2) in the second inequality, 

IlWnll < - | |K(W)| |R(W) |IdwI. 
<7 nh)l- n ll88| (1n) |( + lwlln)2 n 
(n h)I,u M'w' -. -R d . 

J7 , n (1 + IwI/n)2 

The above bounds of R(z) show that the remaining integral is bounded inde- 
pendently of n . This gives the result for nh < 1 . The result for nh > 1 follows 
directly with a contour IF which is parallel to the boundary of the sector, using 
the bounds (2.16) and (2.17). o 

We give a further lemma similar to Lemma 2.4. It is related to the explicit 
representation of the coefficients in formula (2.13). 

Lemma 2.5. If the Runge-Kutta matrix @ = (aij) is invertible, then 

bTA(C~) _0 

l _: = : R(oo)n . b Te-1 Cn 
n=O 

Proof. We write 

b_( = bT-@(I-_ (I -lb Te-I ))-I = b T@-I 
Z' - lbTd)nCn. 
n=O 

The formula 
bT@ 1 (I - bbT@-1l) = R(oo) * bT@-l 

then implies the desired result. n1 

In the present section we have tacitly assumed that K(s) is a complex-valued 
function. Obviously, all the results remain valid if K(s) is operator-valued from 
one Banach space into another, and I I I is interpreted as a suitable norm. This 
generalization will actually be used in the following sections. 

3. LINEAR PARABOLIC EQUATIONS 

In this section we derive error bounds for Runge-Kutta time discretizations of 
linear parabolic equations. Our analysis will be based on an abstract formulation 
of parabolic equations within the framework of analytic semigroups. 

For this, let X be a Banach space. We denote by 11 * 11 its norm as well as 
the induced operator norm. We consider a linear initial value problem on X: 

(3.1) y' + Ay = g(t), y(O) = Yo - 



114 CH. LUBICH AND A. OSTERMANN 

Here, -A is the generator of an analytic semigroup, i.e., A is a densely defined 
closed operator on X satisfying 

(3.2) II(s + A)-II < M for larg(s - c)I < 7r - q$, with some 0 < 2 
1+Isi2 

The real number c may be arbitrary, but it simplifies the presentation to assume 
(3.2) with c = 0. Then fractional powers of A are well defined, and the results 
below are valid uniformly over the whole half-line. All results of this section 
remain valid for arbitrary c > 0 if fractional powers of A are replaced by 
those of A + cI, and if the constants are allowed to grow exponentially with 
the length of the time interval. 

It is well known [20, ?7.3] that if P(x, a) is a strongly elliptic differential 
operator, then the partial differential equation 

au 
+ P(x,a)u =g(X, t), xE Q, t>O, 

with appropriate initial and boundary conditions, can be interpreted in the 
form (3.1)-(3.2) on X = LP(Q), for 1 < p < oo. Also, finite element or finite 
difference spatial discretizations of such equations often satisfy (3.2), uniformly 
in the meshwidth Ax.3 

Convergence results for one-step time discretizations of equations (3.1) (un- 
der varying assumptions on the unbounded operator A) were derived in [3, 4, 
1, 15], and more recently in [19]. Closely related to our results are those of [1], 
where it is assumed that -A generates (only) a C0-semigroup. The stronger 
assumption (3.2) of an analytic semigroup permits us to obtain stronger esti- 
mates. Time discretization of the homogeneous equation ((3.1) with g _ 0) 
has been studied under the assumption (3.2) in [1 5]. An important stability 
estimate of [15] is 

(3.3) IIR(-hA)nII < Const, n > 0, 

valid for the stability function R(z) of strongly A(0)-stable methods with 0 > b 
(see also Theorem 3.5 in [18]). This bound will be used repeatedly in the 
following. 

We first give a numerical analogue of the "variation of constants" formula 
rt 

(3.4) y(t) = e -tAyo +] e-(t-T)A g(Tr) d . 

We recall that the analytic semigroup {e-tA } is defined by formula (2.3) with 
K(s) = (s + A)-'. The following lemma states that the Runge-Kutta solution 
of (3.1) is identical to the convolution quadrature discretization of (3.4). This 
establishes the connection to the previous section and will serve as a basic tool 
in the sequel. 

Lemma 3.1 (Discrete variation of constants formula). Consider a Runge-Kutta 
method for the solution of (3. 1) and suppose that all eigenvalues of @ are in the 

3See, e.g., [22] for the case p = 2. We do not know of references showing (3.2) in LIP, p $- 2, 
for finite element discretizations. When taking the maximum norm, the constant M may grow like 
IlogAxI in two space dimensions (cf. [22, Chapter 5]): There, Theorem 1 is actually valid in an 
open sector containing the positive half-axis t > 0, implying (3.2) with M growing logarithmically 
with Ax. The constants appearing in our error bounds below are proportional to M . 
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sector Iarg)A < 7 - 0, with q of (3.2). Then the numerical solution Yn and the 
internal stages Yn = (Yni)71 are given by 

n 
Yn =Vnyo+hEWn-vGv 

v=O 

n k 

yn+i = R(-hA)n+lyo + bTe- E R(oo)n-kh E Wk-vGV 
k=O v=O 

with Gn = (g(tn + cih))7!1 . Here, Wn are the coefficients of (2.7) with K(s) = 

(s + A)-1, viz., Wn = TnI(-hA), with TnP(z) denoting the nth coefficient on the 
right-hand side of Lemma 2.4, and Vn = 4Dn (-hA), with 4Dn (z) = (I - z@) 1 
R(Z)n. 

Proof. Consider first the homogeneous equation (3.1) with g 0_ . Then Yn = 
R(-hA)nyo, and Yn = (I + @ ? hA)-1(1 ? I)yn = Vnyo follows from the 

definition of the method. 
Next, for zero initial values the result for the internal stages follows from 

the first part of the proof of Proposition 2.1 (down to formula (2.9)), with A 
formally replaced by -A. Lemma 2.4 (with -hA substituted for z) gives the 

above expressions of Wn. The stated formula for Yn+ I follows from (2.10) 

with Lemma 2.5. 

Linearity finally gives the general result. 5 

With the above interpretation of the Runge-Kutta solution, we can apply 

Theorem 2.2 to get an asymptotic error bound in terms of the data. This almost 

gives the following result. 

Theorem 3.2 (Error estimates in terms of the data). For an initial value problem 

(3.1)-(3.2), consider a Runge-Kutta method of stage order q and order p > q+ 1, 
which is strongly A(0)-stable with 0 > 0. Let the real numbers a > 0 and ,B > 0 
be such that yo E D(Aa) and A-Ig(l)(t) E D(Afl) for 0 < 1 < p and all t > 0. 
Then the error is bounded for h < ho by 

IYn- Y(tn) 11 < C(I + tna-p) * hP * IlAayol 

q 

+ ChP . Z(1 + tl-P+l) . jjA1-'gY)(O)jj 
1=0 

+ C(hP + hq+l+fl loghl) 

S jAfl'g()(0)jj + max Af-gP(rj 
(,1=q+1 

( 
)11O<T<tn I 

Remark. In the above formula, ,B might also depend on the order 1 of the time 

derivative. Theorem 3.2 shows mainly the influence of spatially rough data on 

the temporal approximation. We have not taken compatibility conditions into 

account, which make the solution smooth from t = 0 onwards (see Theorem 3 

in [1] for a result of that type in the context of Co-semigroups). The formula- 

tion of Theorem 3.2 has been chosen such that the result is also applicable to 

nonhomogeneous boundary conditions (see the discussion following Theorem 

3.3 below). 
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Concerning the proof of Theorem 3.2, we note that for a = 0 the result 
follows directly from Theorem 1.1 in [15] (for the homogeneous equation), and 
for 0 < ,B < 1 it follows with Theorem 2.2 of the present paper (for zero initial 
conditions), applied with K(s) = (s + A)-Al-fl, which is bounded by (see, 
e.g., [10, ?1.4]) 

11(s + A)-A'-flII < C. Isl-/, largsl <?X - 0. 

The case of f8 > 1 requires a modification in the proof of Theorem 2.2 and is 
given in ?5. 

The following result improves slightly on the bounds of [ 19], where the same 
fractional order of convergence was obtained under stronger regularity assump- 
tions. 

Theorem 3.3 (Error estimates in terms of the solution). For an initial value 
problem (3.1)-(3.2), consider a Runge-Kutta method of stage order q and order 
p > q + 1, which is strongly A(O)-stable with 0 > 0. Let ,B be a nonnegative 
real number such that q + 1 + 3 < p and y(q+1+1)(t) E D(A fl1) for 0 < 1 < ,B 
and all t. With integer T defined by pi- 1 < q + 1 +,B < p, the error is bounded 
by 

p5-q-2 

Yn-Y(tn) 11 < C S hq+l+fl E max IIAf1Y(q+ +1)(t) 1 

+ C (IIy(Po) II + IIy(P+l)(t))I dt) 

For q + 1 + /3 = p the bound remains valid with p = p and with an additional 
factor log n in front of the first term, or alternatively with II Af-ly(q+l+l) (0) 11 + 

fOn IIA6-ly(q+2+l)(t)II dt instead of the above maximum. 

Consider the heat equation, where A = -A on a smooth region Q, equipped 
with appropriate boundary conditions, is taken as an unbounded operator on 
L2 (Q)). Given sufficient smoothness of the solution, it is in general the con- 
dition y(q+l)(t) E D(Afl) which restricts the actual order of convergence. The 
attainable exponent ,B depends on the type of boundary conditions. Its deter- 
mination relies on the characterization of the domains of fractional powers of 
second-order elliptic operators given in [7] (and [8]). 

(i) Homogeneous Dirichlet boundary conditions. In the case of a smooth 
solution, the homogeneous boundary conditions are also satisfied by y(q+1)(t), 
and one has y(q+l)(t) E D(A514-e) for arbitrary e > 0, but it is not contained 
in the domain of higher powers of A, unless unnatural boundary conditions 
Ay = 0 on OQ are satisfied. Theorem 3.3 is thus applicable with ,B = 5 - E. -4 

(ii) Homogeneous Neumann boundary conditions. Here one can take ,B = 
7 - c for any e > 0. 

(iii) Nonhomogeneous Dirichlet boundary conditions. A standard technique 
in the analysis of nonhomogeneous boundary conditions consists in subtracting 
the effect of the boundary term and then considering the corresponding inhomo- 
geneous equation with homogeneous boundary conditions. Time discretization 
by a Runge-Kutta method is however not invariant under this transformation 
of the problem, because the resulting inhomogeneity involves a time derivative 
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(unless the boundary values are constant in time). An alternative way is to re- 
state the heat equation with boundary data b(t) on OQ in the form considered 
in [14]: 
(3.5) A-ly' + y = Gb(t), y(O) = yo, 
where A = -A, equipped with homogeneous Dirichlet boundary conditions, 
and G is the solution operator of the nonhomogeneous boundary value problem 

Av = O in Q, v = b on Ol. 
The solution of (3.5) is given by the semigroup formula 

rt 

(3.6) y(t) = e-tA + Ae-(tT)AGb(T) dT. 

The standard Runge-Kutta time discretization of the heat equation with nonho- 
mogeneous Dirichlet boundary conditions yields exactly the Runge-Kutta con- 
volution quadrature discretization of formula (3.6) according to Lemma 3.1. 
Since y(t) does not satisfy the homogeneous boundary conditions, the solu- 
tion derivatives are in general not in the domain of A. Assuming sufficient 
smoothness, one has y(q+l)(t) E D(A1/4-8) for c > 0, but in general it is not in 
D(A1/4). So we can use Theorem 3.3 with ,B = 4 - e. 

(iv) Nonhomogeneous Neumann boundary conditions. By a similar reasoning, 
one gets here B = 3 - e for e > O. 

The order reduction is thus considerably more severe for nonhomogeneous 
than for homogeneous boundary conditions, and more severe for Dirichlet than 
for Neumann boundary conditions. Numerical experiments (cf. [23, 19]) have 
confirmed the convergence rates given by Theorem 3.3 with the above values 
of ,B. We remark that the same exponents ,B are obtained for general second- 
order, uniformly strongly elliptic differential operators on smooth domains when 
they are considered as unbounded operators on L2(Q) [7]. However, when 
taken as operators on Lr(Q) (1 < r < oo), then /3 varies with r: Theorem 3.3 
holds with /3< I and /3< 2 + 2 in the case of time-dependent nonhomo- 
geneous Dirichlet and Neumann boundary conditions, respectively, and with a 
/3 higher by 1 for the corresponding homogeneous boundary conditions. (See 
[8, Theoreme 8.1'], and also the discussion and numerical experiments for the 
one-dimensional heat equation in [ 19].) 

Proof of Theorem 3.3. By possibly reducing p, we may assume p = p- in the 
following. 

(a) We consider first the defect when the exact solution values are inserted 
into the Runge-Kutta scheme: 

m 
dni = y(tn + cih) - y(tn) - h ,j aijy'(tn + cjh), 

j=1 
m 

dn+l = Y(tn+l) - y(tn) - h ,j bjy'(tn + cjh) . 
j=1 

By Taylor expansion and the definition of the stage order q, we have (assuming 
here for simplicity that all ci E [0, 1]) 

dni Z E (k) hk . y(k)(tn) + hP Ki( t tn) y(P+1)(t) dt, 

k=q+l1 
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where 

(k) (aijc.- _ i (k - 1)!, 

and where Ki is a bounded Peano kernel. Similarly, we have 

dn+1 = hP K ht) y(p+1)(t) dt. 

(b) For the error en = Yn - y(tn) we thus get the recursion 

en+1 = R(-hA)en - hbT ? A(I + hS 8 A)-'Dn + dn+l 

with Dn = (dni)T=l . By (3.3), the powers of R(-hA) are uniformly bounded. 
This gives immediately that the contribution from the integral remainder terms 
in dni and dn+1 is O(hP) as required. It remains to study the expressions 

n 

n+ = hk S rn )v(-hA) . y(k) (t) 
v=O 

n 
= hq+ I+f* r (k) (-hA)(hA)k-q-l-f. Aq+l+fi-k(k)(t ) 

v=O 

where 

(3.7) rkn )(z) = R(z)n * zbT(I _ z@)-13(k), 

with 3(k) = (3(k))m 
(c)For k<p-1 <q+1+f3 wehave,providedthat a:=q+1+/3-k>O, 

rnk)(-hA) * (hA)- = 21. j(Z + hA)- *R(z)n*zbT(I - z)-1(k)* (_Z)- dz 

with contour F: arg zI = 7- -. The order conditions for order p, 

bTalck-1 bTP1-lck/k, k + I < p 

(with ck = (Cj)1 ), show that 

zbT(I - zd)-<1(k) = o(zP-k+l), z - 0. 

With the arguments of the proof of Lemma 2.3 (with (s +A)-I satisfying (3.2) 
in the role of K(s)), the presence of the factor IZIp-k+l * IZI-a = IzIp-q-, for 
z near 0 gives the same power of 1/n in 

llrn(k)(-hA) * (hA)-all <5 [,? 

For q + 1 +,8 < p, it is thus majorized by an absolutely summable sequence, 
and so we get 

Ile(k) 11 < C * hq+l+fl . max Aq+1+fl-ky(k)(t) II, 

which is the desired estimate. 
If q + 1 + ,8 = p, then we only have a bound by C/n, which yields an 

additional factor log n in the bound of enk). 
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If a = 0, i.e., k = p - 1 = q + 1 +,B, then the above integral is no longer 
convergent. The remedy is to consider instead the sequence r(k)(-hA) with 
r(k) (Z) = [R(z)n - R(co)n] * zbT(I _ Z@)-3l(k), which differs from rnk)(-hA) 
by an absolutely summable sequence. One then gets a convergent integral rep- 
resentation, with R(z)n replaced by R(z)n - R(oo)n, and the result follows as 
before. 

(d) For k = p we use a trick of Brenner et al. [1]: With 

C(z) = zbT(I _ z,)-<1(p)/[l -R(z)] 

we write 
n 

ep) h* Z R(-hA)n-v[I - R(-hA)] * o(-hA) * y(p)(tv) 
v=O 

=hP * (-hA) 
~~ ~n t,, 

LY+P) (tn)+ R(-hA)n-v J y(P+")(t) dt-R(-hA)n+1y(P)(O)1 

Since v(z) is a rational function which is bounded on the sector Iarg(-z)t < 0, 
we have lki(-hA)IJ < Const. This estimate and the uniform power bounded- 
ness of R(-hA) now show that e(p) = O(hP) as required. E 

In the following section we will need an error estimate also for the internal 
stages: 

Lemma 3.4. For an initial value problem (3.1)-(3.2), consider a Runge-Kutta 
method of stage order q and order p > q + 1, which is strongly A(O)-stable with 
0 > q$. The error of the internal stages is bounded for i = 1, .I. , m by 

Yni -Y (tn + cih) I< C hq+ I ( q Y(Q+I)(O)II + j 1y(q+2)(t)l dt) 

Proof. With the notation of the previous proof, the internal error vector En = 

(Yni - Y(tn + cih))11 is given by the equation 

(I +?h@l A)En = Dn + 1 8)en 

The matrix multiplying En has a uniformly bounded inverse, and both Dn and 
en are bounded by expressions of the form of the right-hand side of the desired 
inequality (take p = q + 1 in Theorem 3.3 to see this for en). This implies the 
stated result. 5 

When equation (3.1) comes from a spatial semidiscretization of a parabolic 
PDE, then one would like to compare the completely discrete solution to the 
PDE solution rather than that of the semidiscretization. We are thus led to 
consider a perturbed equation 

(3.8) u' + Au = g(t) + d(t), u(O) = uo. 

Here, u may be a projection of the PDE solution onto the finite-dimensional 
approximation space, in which case d represents the spatial truncation error. 
To obtain an estimate of Yn - u(tn), we split 

Yn- U(tn) = (Yn - Vn) + (vn - Un) + (un -UN)), 
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where u, denotes the Runge-Kutta solution of (3.8), and v, that of the same 
perturbed differential equation, but with initial value vo = yo . Then u, - u(t,) 
can be bounded using Theorem 3.3, and v, - u, = R(-hA)n(yo - uo), which by 
(3.3) is bounded by a constant times the initial error. By linearity, e :=V -Yn 
is the Runge-Kutta solution of 

(3.9) e' + Ae = d(t), e(O) = 0. 

This is bounded in the following stability lemma. 

Lemma 3.5. Assume that A satisfies (3.2), and that the Runge-Kutta method is 
strongly A(6)-stable with 0 > 0. Then 

(i) lle ll < C * logn * maxo<t<t? IIA-1d(t)ll; 
(ii) Ilenll < c * maxo<t<t, A-A1+ed(t)II, 0 < e < 1; 

(iii) llenil < C * (IIA-ld(O)ll + fOtn IIA-1d'(t)ll dt). 
The same bounds are valid for the internal stages Eni. 
Proof. By Lemma 3.1, the internal stages En = (En i)mI satisfy, with Dn = 

(d(tn + cih))mI1 
n 

En= h E Wn-vDvD 
v=O 

We note that WnA1'- are the coefficients of (2.7) with K(s) = (s + A)-1A1`, 
which is bounded by (see, e.g., [10, ?1.4]) 

(3.10) 11(s + A)-'A1-IIl < C* IsK- largsi < 7t - 

with a constant independent of c E [0, 1]. It follows with Lemma 2.3 that 

(3.11) 1J WnA 1 ̀ J < C * [(n + I)h] - I 

and hence the bounds (i) and (ii) follow for En, and with Lemma 3.1 also for 
en . 

The proof of (iii) is obtained with a variant of the trick of [1] used already 
at the end of the proof of Theorem 3.3. We have 

hWo = h(@ X I)(I + ' X hA)-1 = 'D(-hA) *(I A-'), 

where 4>(z) = z(I - z})-1 is bounded on the sector Iarg(-z)I < 0, so that 
1V1(-hA) is uniformly bounded. It follows that 

lihWoDnII < C 11( 0(I As )DI ?D < C max IIA'd(t) I. 

For n > 1 we have Wn = Tn(-hA) with 

Tn(z) = R(z)n-I(I -z)-libT(I-Z)- = l P(z) * R(z)n- . l -R(z) 
z 

where the rational matrix-valued function 

T(z) = -R()(I - zdl1tbT(l - 

is bounded on the sector, so that T'(-hA)II < Const. We thus have 
n-I n-I 

h, Wn-vDv = T(-hA) * Z R(-hA)n-v- (I - R(-hA)) * (I ? A-')Dv, 
v=O v=O 

and rearranging the last sum leads to the desired bound. El 
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4. NONLINEAR PARABOLIC EQUATIONS 

In this section we study error estimates of Runge-Kutta methods applied 
to semilinear parabolic equations. In particular, incompressible Navier-Stokes 
equations are covered by our assumptions. 

On a Banach space X where 11 * 11 denotes the norm as well as the induced 
operator norm, we consider the initial value problem 

(4.1) y' + Ay = g(t, y), y(0) = yo 

Here, -A is the generator of an analytic semigroup, with spectrum to the left 
of the origin: 

(4.2) 11(s+A)-11 < M forlargs < -0, withsome < 2 

For the nonlinearity g, it is assumed that there exist real numbers a and y < 1 
such that the following local Lipschitz condition is satisfied for every r > 0: 
(4.3) 
IIg(t, u) - g(t, v)Ij,I_y < I(r) I Ilu - vll, for lIulII, < r, llvlI,I < r, 0 < t < T, 

where 11 * l, denotes the norm 

(4.4) llvII,a = IIAav II. 

Studies of existence, uniqueness, and regularity of solutions of semilinear prob- 
lems can be found in [20], and references therein. 

We now turn briefly to the most prominent example of such equations. For 
further examples and theory, we refer to [10]. 

Incompressible Navier-Stokes equations [6]. On a bounded two- or three- 
dimensional smooth domain Q and for positive times t > 0, we consider 

(4.5 +(u*V)u-Au+Vp =f, 

V U = 0, 

with Dirichlet boundary conditions u = 0 on aQ, and initial conditions 
u = uo at t = 0. This is to be solved for the velocity u = (ul, u2)(x, t) 
(or U = (U1, U2, U3) in three dimensions) and the pressure p = p(x, t), given 
the force term f = f (x, t) . Let X be the divergence-free subspace of L2(Q)d 
(d = 2 or 3) defined as the closure of the set of smooth functions on Q with 
vanishing divergence and support contained in Q. Let further P denote the 
orthogonal projection of L2(Q)d onto X . Applying P to the differential equa- 
tion eliminates the pressure p, and one has the differential equation on X, 

(4.6) au + P(u * V)u - PAu = Pf. 

The Stokes operator A = -PA with Dirichlet boundary conditions satisfies 
(4.2). The nonlinearity satisfies the Lipschitz condition (4.3) for any y > 2 in 
the case of two space dimensions, and for any y > 3 in the three-dimensional 
case for both a = y and a =2. Note that for a one has the Dirichlet 
norm 11V111/2 = IIVVIIL2. 
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Under time discretization by a Runge-Kutta method, equations (4.5) and 
(4.6) give identical semidiscrete solutions. This invariance is still valid for the 
analogous transformation of finite element spatial discretizations of (4.5). o 

The numerical result obtained by a Runge-Kutta time discretization will be 
compared to the solution of a perturbed equation 

(4.7) u' + Au = g(t, u) + d(t). 

This is again motivated by the situation when (4.1) is a spatial semidiscretization 
of a parabolic PDE: There, u(t) is taken as a projection of the solution of the 
PDE into the finite-dimensional approximation space, and d(t) represents the 
spatial truncation error. Another instance of (4.7) is when (4.1) does not have 
a smooth solution, but there exists a smooth function u with small defect d. 

There is the following error bound in the case that (4.7) has a solution on an 
interval [0, T] which is sufficiently smooth in time. 

Theorem 4.1 (Convergence of Runge-Kutta methods for semilinear parabolic 
equations). For an initial value problem (4.1)-(4.3), consider a Runge-Kutta 
method of stage order q and order p > q + 1, which is strongly A(0)-stable with 
0 > 0. Then there exists a unique numerical solution Yn (O < nh < T) for 
sufficiently small step sizes h < ho, whose error is bounded by 

(4.8) IYn - u(tn) Ik C(u) * hq+1 + C IIyo - u(O) II, + C * log n * max lId(t) II,-, 
o?t?tn 

with C(u) = C . (I1U(q+1) (?)lIc + fbftn IIU(q+2)(t) dt). This estimate is satisfied 
for tn = nh < T provided that the expression on the right-hand side is bounded 
by a sufficiently small constant c. The constants ho, C, and c depend only 
on the constants in (4.2) and (4.3), on T, and on maxo<t<T IIu(t)0II . They are 
otherwise independent of A, and independent of n and h with nh < T. 

We remark that the term involving d(t) could be replaced by any of the 
expressions of Lemma 3.5, taken in the norm 11 11II . 

Proof. (a) Let us first assume that the numerical solution Yn and the internal 
stages Yn = (Yni)mil exist for 0 < nh < T, with 1I Ynilla, < 2 maxo<t<T IIu(t)IIa . 
For sufficiently small step sizes, this will be verified at the end of the proof. 

By the discrete variation of constants formula (Lemma 3.1) we then have 
n 

(4.9) Yn = Vnyo + h E Wn-vg(yv) 
v=O 

where we have denoted g(Yn) = (g(tn + cih, Yni))7I 1, and Vn and Wn are 
defined as in Lemma 3.1. 

(b) For Un = (u(tn + cih))im we get the representation 
n 

(4.10) Un = Vnu(?) + h E Wn-v(g(Uv) + Dv) + En 
v=O 

with g(Un) = (g(tn + cih, Uni))m I and Dn = (d(tn + cih))m I . Here, En = 

(Eni)m I is the error of the internal stages of the Runge-Kutta method when 
applied to the linear equation 

(4.11) v' + Av = (t), with initial value u(0), 
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where the inhomogeneity is chosen such that the exact solution is u(t). This 
identity follows by applying the discrete variation of constants formula to the 
perturbed Runge-Kutta schemes obtained by inserting u(t) into the Runge- 
Kutta formulas for both equations (4.1) and (4.11). Note here that the defect, 
from inserting the exact solution values into the Runge-Kutta method, depends 
only on the solution u, but not on the form of the equation. 

(c) We observe that WnAY are the coefficients of the generating function (2.7) 
with K(s) = (s + A)-1AY, which is bounded by 

(4.12) 11(s + A)-1AYII < Const sIy1-', largsi < 7r -. 

It thus follows from Lemma 2.3 that 

(4.13) IIWnAyII < C * [(n + I)h]-Y, n > 0. 

With the Lipschitz condition (4.3) we get therefore (with r = 2 maxo<t< T 11 u(t) II,) 

n 

IIYn - Unic, < Ch * I(r) Z[(n + 1 - v)h] IIY Yv - UviAc, + IIFnIlIa, 
v=O 

where n 
Fn = Vn * (yo-u(O)) + h E Wn-vDv + En 

v=O 

Since y < 1 , a discrete Gronwall inequality gives us 

(4.14) 11Yn - Un lc, < C. max IlFv Ia. 
O<v<n 

(d) We thus have to estimate Fn. Since R(-hA) is uniformly power- 
bounded, we have 

IIVn(Yo - U(O))IIa < C IIYO - U(O)IIa. 
The error of the internal stages En of the linear problem (4.1 1) is estimated 
using Lemma 3.4 (with 11 * lic, in the role of the norm used there): 

liEn lIc < C(u) .h 

with C(u) of the same form as in (4.8). For the remaining term in Fn we note 
that Lemma 3.5 gives 

n 
h Wn-vDv| < C * log n * max lId(t) II-,. 

v=O Of-l - 
t 

With these bounds for Fn, the inequality (4.14) gives the bound (4.8) for the 
internal stages Yn . 

(e) To get the estimate also for the numerical solution Yn itself, we use again 
the variation of constants formula of Lemma 3.1 to get 

n k 

Yn+1 = R(-hA)n+lyo + bT6-1 h , R(oo)n-k E WE g(yv) 
k=O v=O 

and 
n k 

U(tn+l) = R(-hA)n+lu(O) + bT-ER(oo)n-kh E Wk-v(g(Uv) +Dv) +en+ 
k=O v=O 
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where en+1 is the error of the method applied to the linear equation (4.11), 
which by Theorem 3.3 is again bounded as En above. We now use the obtained 
error estimates of the internal stages, treat the inner convolution in (4.20) and 
(4.15) in the same way as in parts (c) and (d) above, and recall that IR(oo) I < 1 . 
This gives the desired error bound (4.8) for Yn . 

(f) It remains to prove the unique existence of the numerical solution in a 
neighborhood (with respect to the 11 * 11, norm pointwise in time) of the exact 
solution u. Using the arguments of part (c) of the proof, we see that for small 
step sizes h the mapping 

n \N 

n)N o ( h Wn-vg(yv)) (Nh < T) 
v=O n=O 

is for a sufficiently large exponent a (independent of h) a contraction in the 
exponentially weighted maximum norm 

IIIYIII:= max max Ilexp(-a (tn + Cih))Ynilla, 

with Lipschitz constant p < 1 uniformly in h in the ball 

IIIYlII < 2 max lile-atu(t)II'. 

For nII (F )N=o II sufficiently small, fixed point iteration in (4.9) with initial iter- 
ate (Un)nN gives therefore the unique existence of a numerical solution with 
the properties assumed in part (a) of the proof. o 

Under slightly stronger assumptions the order of convergence can still be 
raised. In addition to (4.3) we require for every r > 0: 

(4.15) llg(t, u) - g(t, v) - 09 g(t, y) * (u - v) 

< l'(r) * (IlY - UlIc + IIY - VlII) IIU - VIIa 
for max(IIullI, liv 11, IIYII) < r. This condition is again satisfied for the Navier- 
Stokes problem. 

Theorem 4.2 (Refined error estimate). In addition to the conditions of Theorem 
4. 1, we assume (4.15) and p > q + 2. If A < 1 is such that u(q+ 1) (t) E D(Aa+fl), 
then the error is bounded for tn < T by 

IIYn - U(tn)llc < Cg(u) * hq+l+ + Cl(u) * hq+2 

(4.16) + C * IIYo - u(O)Ic, + c * logn* n max lId(t) 11,I- 

with Cf(u) = C * maxo<t<T llU(q+1)(t) ll,>+ and C1(u) = C * (llU(q+2)(0)jlc' + 
fftn lU(q+3)(t) lic dt). For ,B = 1 the estimate is valid with an additional factor 
log n in front of the first term. The estimate holds under the assumption that the 
right-hand side of the inequality and hq *(maxtn<t<tn+? llU(q+1)(t)IIlc )2 are bounded 
by a small constant. 

Remark. For parabolic PDEs with homogeneous boundary conditions that have 
a sufficiently smooth solution, the inclusion u(t) E D(A) implies U(q+l)(t) E 
D(A), and the above estimate is thus applicable at least with ,B = 1 - a. Re- 
turning to the Navier-Stokes equation with homogeneous Dirichlet boundary 
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conditions, we have a sufficiently smooth solution u(q+l)(t) E D(A5/4-,) for 
any e > 0 (cf. [7, 8]). Theorem 4.2 can thus be applied with a I and 
/1= 3-e 4 

Proof of Theorem 4.2. We concentrate on those aspects which go beyond the 
proof of Theorem 4. 1. We therefore restrict our attention to the case d(t)-0, 
u(O) = yo in (4.7), and we ignore the dependence on t in g(t, y). 

(a) Let us denote the defect 
m 

dni = u(t, + cih) - u(t,) - h E aiju'(tn + cjh), 
j=1 

m 
dn+l = U(tn+l) - U(tN) - h bju(tn + cjh). 

j=1 

We have 

dni =dni + dn7 i-i * h q+u(q+)(tn )/q! + h"+ J Ki ( htn) u(q+2)(t) dt, 

with o5i = Em aijcJq - cq+l/(q + 1), and with a bounded Peano kernel Ki. A 
similar representation is valid for dn, with q + 2 instead of q . 

(b) We study the defect when 

Yni = u(tN + cih) - dni Yn = U(tN) 
are inserted into the Runge-Kutta method. With f(y) = -Ay + g(y) we have 

m 
Yni -Yn-h E aijf(ynj) 

j=1 
m m 

= h j aijAdn1 + h I: aij[g(u(tn + cjh)) -g(Yni) 
j=1 j=1 

m 
Yn+i ln -hZbjf(Yni) 

j=1 

m m 
= h ~ bjAdn1 + h J b;[g(u(tn + cjh)) - g(Ynj)] + I 

j=1 j=1 
By the discrete variation of constants formula, we get 

n 
Yn = Vnyo+h E Wn-vg(Yv)+Fn 

v=O 

with 
n n n 

Fn= h Wn-vADv + h Wn-v[g(Uv) - g(Yv)] + E Vn-vdv, 
v=O v=O v=1 

where Yn = (Yni)mI and Dn = (dni)n I, and the notation is otherwise that 
employed in the proof of Theorem 4.1. As in part (c) of that proof, it follows 
that the difference to the numerical solution is bounded by 

IIYn - Ynlla < C- max IIFv 11, 
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We will show that this is O(hq+l+fl) as in the bound stated in the theorem. 
(c) The difficulty in the estimation is contained in the first and second term 

in Fn, because Dn is only O(hq+l). However, with ( = (6j)m we have by 
Lemma 2.4 

Wn ( I) = Tn(-hA)(#d I), 

where again for n > 1 

Tn(z) = R(Z)n-l(I - zd)-11bT(I _ z)-l. 

Since p > q + 2, the order conditions give bT(S = 0, and therefore 

IlTnI(Z)AII < 1 II IR(z)n-. I Izi 

From the additional factor z we get with the proof of Lemma 2.3 (with 
(s + A)-1A1f in the role of K(s), and using (4.12)) the factor 1/n in 

IIhWn(t ( Al-,)II < Ch(nh)fl1 2- C h . 

For ,B < 1 we have therefore, with Dn = (dn*i)mI1 and dn* defined in part (a) 
of the proof, 

h E Wn-vAD* < C * hq+l+f . max IjU(q+1)(t)jl 
v=O at 

whereas for ,B = 1 there is an additional factor log n. 
(d) By (4.3) we have 

ag 
(u(tn))v <C . ||vllc 

for all v in the domain of Ac, and so we get as in part (c) 

h E Wnv - (u(tv))Dl < C * h q+'+f max jjU(q+l)(t) 11a+fl 
v=O a 

By condition (4.15), the Taylor remainder is bounded by 

| 
g(Un) - g(Yn) (u(tn)) n C max Ilu(t) lJ 

09Y ~~a- I tfl ?<t<tn+l/ 

and it follows from (4.13), used with y = 1 , that the discrete convolution of 
the sequence {hWn} with this remainder term is bounded in the 11 * ll,> norm 
by C * log n times the right-hand side of the above inequality. 

(e) The remaining terms in Fn are shown to be bounded as needed by the 
arguments used in the proof of Theorem 4.1. As in part (e) of that proof, the 
estimate of Yn - u(tn) = Yn - n follows with the variation of constants formula, 
once a bound of the desired type has been established for Yn - Yn E. 

Remark. The same order of convergence as in Theorem 3.3 (possibly beyond 
hq+2, if the regularity of the solution allows it) can be obtained also in the 
semilinear case, if one assumes conditions like (4.15) also for higher deriva- 
tives of g. This can be shown by studying the coefficients in the asymptotic 
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h-expansion of the internal stages of the method, of which dn*i in the forego- 
ing proof is actually the first term. We omit the details, which become very 
technical. 

5. PROOF OF ERROR ESTIMATES IN TERMS OF THE DATA 

We begin with the proof of Theorem 2.2. The proof of Theorem 3.2 will 
then follow by a slight modification at the end of the section. 

We recall the convolution quadrature 
n 

Un =h Wn-vGv, 

(5.1) 
V=0 k 

Un+= bT6- 1Z R(oo)nk kh Wk-vGvZ 
k=O v=O 

with G, = (g(tn + cih))Ti1, and quadrature weights W, defined by (2.7). 
By linearity, we may treat each of the terms in the Taylor expansion of g at 

0 separately: 
p-i 

t rt Tp-i 
(5.2) g(t) = g(l)(0) + 10(L)! g(P)(t - z) dc. 

/=0 

For the Taylor polynomial we will show below: 

Lemma 5.1. Theorem 2.2 is valid if g(t) is a polynomial of degree at most p - 1. 

To treat the remainder term in (5.2), we will again use Lemma 5.1, combined 
with the fact that the application of the quadrature method commutes with 
convolution: 

Lemma 5.2 (Peano kernel representation). If g(O) = g'(0) = = g(P-1)(0) - 
0, then the convolution quadrature (5.1) can be written in the form 

ltn 

Un = J Vh(T)g(p)(tn- T)d, 
-00 

{tn 

Un+1 = j v^(T-)g(p)(tn - T) d-c, 
-00 

where the "Peano kernels" are given by 

Vh(t) = h , WnP(t - nh), 
n>O 

n\ 

Vh(t) = hbT6 
I 

(: R(o)nkwk) P(t - nh), 
n>O k=O 

with 

P(t)- ((t+cih)P- m 

for all real t. Here, TP- 1 = (max(T,0))P'. 
Proof. The result is obtained by using the associativity of convolution. El 
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We note that Vh (tn) and Vh (tn) are just the results of the convolution quadra- 
ture method used with g(t) = tP 1/(p - 1)! . Hence, Lemma 5. 1 gives with 
V(t) = gotk(t - z)zP-I/(p - l)! d the error bound 

IVh(t) - v(t + h)I < C(hP + hq+l+,I logh ) + ChPt0+1. 

This holds in fact for all t, not only gridpoints: For t between gridpoints, 
Vh (t) can be interpreted as the result of the convolution quadrature used with a 
shifted polynomial g(t) = (t - ch)P-I/(p - 1)!, and Lemma 5.1 applies again. 
Since the exact solution can be written as 

t 
u(t) = v (T)g(P) (t- T) dz , 

the desired estimate of Theorem 2.2 follows. It remains to prove Lemma 5.1. 

Proof of Lemma 5.1. (a) A computation similar to that in part (b) of the proof 
of Theorem 3.3 shows that the error of the Runge-Kutta method, when applied 
to y' = Ay + t1/l!, y(O) = 0, is given by 

en A-/-1' (R(hA) n - enhG) 

(5.3) p n-I 1-k 
(t) - Z hkZ r (k) (h Ak-i-i S (Lt)K 

k=q+1 v=1 K=0 

with rnk) (z) of (3.7). We now treat the two terms in the above formula sepa- 
rately. 

(b) We show that 

(5.4) jK(iY)1-1(R(hiA)n - enhA ) dA < ChP (1 + t#+'-P) 

Here the integration contour T is that of (2.3), possibly replaced by an equiva- 
lent one that is bounded away from the origin. We split this contour into three 
parts: 

(i) JI2 < Const: In this situation, IR(hA)nI as well as lenhAI are uniformly 
bounded for nh < T. Using 

n-I 

R(z)n- enz = (R(z) - ez) E R(z)fn-l-evz 
v=O 

we see that the integral over this part of r is O(hP) . 

(ii) h < IhAl < 1 and largAl = 7 - 0: Here we have with z hA that 
IR(z)l < leKZI for some positive K. This implies 

IR(z)n - enzI < 
ClzpeKnzIl 

Hence the integral is bounded by a constant times 

J 1>l A -lhlPlPe KnhA IdAl < ChP(l + t# ) 
Eer: 1A> 

(iii) IhIl > 1 and largAl = 7r - 0: In this case both R(z) and ez have 
absolute value bounded strictly below 1, hence 

IR(z)n - enzI < Cpn 
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for some p < 1 . Thus, the integral is bounded by 

C f IAl-l-,lpn IdAl = 0(h4+l n), 

which is O(hPty+'p). 
(c) We finally show that 

p n~~~-1 1-k 

?S) h k K(i) Z r(k) l (G)Ak-l-I Lo (AtV)K 

k=q+1 v=O K=O 

< C(hP + hq+1+#JloghJ), 

where rnk)(z) is given by (3.7). First we note that Ak-l Z-IO(Atv)K/K! as well 
as 

n-I RZn-1 

(5.6) r k)_(Z)=R() 1 zbT (I- z@)) (k)ckli - ck)/k!I 

(once more with z = h)) are bounded on the integration contour. By the order 
conditions, we have 

bT(I _ z&)-l(kdck-i - ck) = O(zp-k) for z -- 0. 

Again we split the contour into three parts: 
(i) JI) < Const: From the foregoing formula we obtain an estimate O(hP). 
(ii) h < IhIl < 1 and largAl = X - : Here IK(A)I = O(I,AQ-), and (5.6) is 

O(ZP-q). Therefore, we get the estimate 
I 

C E: h k JA lA-#`IhAlp-k IdAl , q + I < k < I, 
k=q+l I Er: I<IAI<Ilh 

whichfor p-k-,u- I <-1 is O(hP). If p-k-u>O ,wehave 

hk X hA-8l 2p-k |dA| < hkA X 1A1-1 IdAl 

and thus the required bound is 0(hq+l+IL4logh ) . 
(iii) IhIl > 1 and largAl = X - 4: Here IK(A)I = O(I)AI-j), and therefore 

the integral is bounded by a constant times 

E: hk JAJ2-#-1 JdAJ 
k=q+ I ErF: 12A >l1 h 

which is O(hq+l+IL). O 

Proof of Theorem 3.2 (continued). Here again, it is sufficient to show the de- 
sired result for the homogeneous equation, and for the equations with zero 
initial values and polynomial inhomogeneity of degree not exceeding p - 1, 
with coefficients g(l)(0) such that A-1g(l)(0) E D(Afl). 

(a) The error for the homogeneous equation is [(R(-hA)l - e-nhA)A-a] 
Aayo . The operator in square brackets has an integral representation (5.4) with 
K(A) = (A + A)>1 (so that ,u = 1 by (3.2)), and with a in the role of 1 + 1. 
The bound in (5.4) then gives the result. 
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(b) The error of the method applied to the equation with inhomogeneity 
g(l) (0) *-till! is 

AAfl A lgl0) 
en = (9n(h, -A)A1* 

where (Pn(h, A) is given by the right-hand side of formula (5.3). The operator 
(Pn(h, -A)A1-9 is the sum of two terms which have an integral representation 
as in (5.4) and (5.5), with K(A) = (A + A)-AI-fi. Hence the bounds of the 
previous proof apply, with ,u = ,B. o 
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