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ON FULLY DISCRETE GALERKIN APPROXIMATIONS 
FOR PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS 

OF PARABOLIC TYPE 

NAI-YING ZHANG 

ABSTRACT. The subject of this work is the application of fully discrete Galerkin 
finite element methods to initial-boundary value problems for linear partial 
integro-differential equations of parabolic type. We investigate numerical 
schemes based on the Pade discretization with respect to time and associated 
with certain quadrature formulas to approximate the integral term. A pre- 
liminary error estimate is established, which contains a term related to the 
quadrature rule to be specified. In particular, we consider quadrature rules 
with sparse quadrature points so as to limit the storage requirements, without 
sacrificing the order of overall convergence. For the backward Euler scheme, 
the Crank-Nicolson scheme, and a third-order (1, 2) Pade-type scheme, the 
specific quadrature rules analyzed are based on the rectangular, the trapezoidal, 
and Simpson's rule. For all the schemes studied, optimal-order error estimates 
are obtained in the case that the solution of the problem is smooth enough. 
Since this is important for our error analysis, we also discuss the regularity of 
the exact solutions of our equations. High-order regularity results with respect 
to both space and time are given for the solution of problems with smooth 
enough data. 

1. INTRODUCTION 

The main purpose of this work is to formulate and study fully discrete 
Galerkin finite element approximations of solutions of initial-boundary value 
problems for linear partial integro-differential equations of parabolic type. The 
emphasis will be on discretization with respect to time. 

Let Q be a bounded domain in Rd with sufficiently smooth boundary aQ, 
and let 0 < t? < oo. We shall consider equations of the form (ut = au/lt, 
J = (0, t?]) 
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( 1.1 ) _ B~~~u(x, t) + f(x, t), (x, t) E Q x J, 

u(x, t) = , (x, t) E au x J 
u(x, O)= uo(x), x E Q. 

Here, A is an elliptic operator of the form 

A = - E < aj(x)dx + ao(x)I, 

where the matrix (aij(x))d' is symmetric and uniformly positive definite, 

and ao(x) is nonnegative on Q. Further, 

d 
aa 

d 

B(t, s)= a (bij(x; t,s) )+ ,bj(x; t, s) a+ bo(x; t, s)I 

is a partial differential operator of at most second order. We shall assume that 
the coefficients aij(x), ao(x), b1j(x; t, s), bj(x; t, s), bo(x; t, s), and f = 
f(x, t) are real-valued functions, sufficiently smooth for our purposes. 

Such problems and variants of them arise in various applications, for in- 
stance, in models for heat conduction in materials with memory, the compres- 
sion of poro-viscoelastic media, reactor dynamics, the compartment model of a 
double-porosity system, and epidemic phenomena in biology. We refer to [12, 
13, 16] for detailed lists of references. 

Denote by ( , *) the standard inner product in L2 = L2(Q) and by A(*, *) 
and B(t, s; , *) the bilinear forms on Ho' x Ho' = Ho' (Q) x Ho' (Q) correspond- 
ing to A and B(t, s), respectively. We write problem (1.1) in variational form 
as 

t 

(Ut, v) + A(u, v) = J B(t, s; u(s), v) ds + (f, v) 

_B(u(t), v) +(f, v), vEHO', tEJ, 

u(O) = uo. 

We shall now turn to Galerkin finite element approximations of problem 
(1. 1). Let {Sh } be a family of finite-dimensional subspaces of Ho' parametrized 
by a small positive parameter h. We first pose the analogue of the problem 
above on the subspace Sh to get a spatially discrete problem 

t 
(Uh, t, %) + A(Uh, %) = B(t, s; Uh(S), x) ds + (, 

(1.2)?- 
XESh, teJ, 

Uh (O) = UOh E Sh. 

We assume that {Sh } possesses the standard approximation property such that, 
for some fixed integer r > 2, we have 

(1.3) inf {Ilu - XII + hllu - XII} < Chsllulls, u E Hol n Hs, 1 < s < r, 
XESh 
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where I I and 1I I II are the usual norms in L2 and Ho', respectively, and 
HS = HS(Q) is the standard L2 Sobolev space of order s with norm 11 Ils . 

It was shown in Thomee and Zhang [14] that, for the semidiscrete problem 
(1.2) with properly chosen approximate initial data UOh, we have the error 
estimate 

(1.4) Uh(t) -lu(t)H ? Chr {HUOHr+ j UtllrdS} , t E J, 

which is formally the same as that for the corresponding purely parabolic prob- 
lem (B _ 0) . 

The main purpose of this paper is to further discretize equation (1.2) with 
respect to time. A natural way to do this is to replace Uh t by a backward 
difference quotient and apply a quadrature rule to the integral term. We consider 
such a scheme first. 

Let k > 0 be the stepsize in time and tn = nk. Further, let atU^ = 

(Uhn - Uhn-,)/k and let {cony I 0 < < n, tn E J} be a family of quadrature 
weights such that, for (0] = (p(tj), we have 

n-I tn 

(Jn 
(Gp) _Z 

nj wPj (o (s) ds tn E J . 
1=0 

We then obtain what we shall refer to as a backward Euler type scheme, 
n-I 

(atUhn, X) + A(Uhn, X) = , N nB (tn , tj ; Uhj, X) + (f(tn) , %), 
(1.5) j=0 

X ESh, tn E J, 

Uho = UOh E Sh. 

A natural candidate for the quadrature formula is the rectangular rule, whose 
quadrature weights are cny = k. However, to then calculate Uhn, we must use, 
and thus store, all the previous values of the solution, Uh,o . . ., Uhn-'; hence, a 
vast amount of memory will be needed. More precisely, to compute Uhn, tn E 
J, the solution needs to be stored at Ltl/kJ time levels. This becomes a major 
obstacle in practical calculations. Another disadvantage of the rectangular rule is 
that it requires a large amount of computation. Thus the number of time levels 
used in the quadrature will be one of our key criteria in choosing quadrature 
rules in this work. One way to reduce the storage requirement significantly is to 
employ quadrature formulas with high-order truncation error, so that a larger 
stepsize, or fewer quadrature points, may be used, without losing the order 
of accuracy of the scheme. We will propose quadrature rules based on the 
trapezoidal rule and on Simpson's rule. We shall therefore focus our attention 
on a class of quadrature rules whose quadrature weights {con } are dominated 
by some weights {wj}, i.e., Iw, < (Di , 0 < j < n, tn E J, with EZn-I7 (0? < 
C, tn E J. This class contains not only the rectangular rule, but also other 
rules with some special features. 

A second way to approximate the solution of problem (1.1) is to apply higher- 
order discretization in time, so that fewer time steps are taken in the calculation 
for the same accuracy. As a first example of this, we consider a Crank-Nicolson 
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type scheme, 
n-I 

(atUhn, x) + A(Un, x) = Z OnjB(tn-1/2, tj; Uh , x) + (f(tn-1/2), x), 

(1.6) j=0 
X E Sh, tn E J, 

Uh = UOh E Sh, 

where Uh = (Uh + Uh1)/2 and tn-112 =(tn + tn-1)/2. 
Keeping these two schemes in mind, we move the discussion to a more general 

setting, in which we use time-discrete schemes based on Pade approximation of 
order p. We will establish a preliminary error estimate 

IIUh - u(tn)II < C(u){hr + kP + IIglobal quadrature errorll}, tn E J 

where the so-called global quadrature error is a term whose order of convergence 
is determined by that of the basic quadrature error q' (() = a(') - fo' co(s) d s, 
i = 1, ..., n. For schemes based on the backward Euler, Crank-Nicolson, and 
the third-order (1, 2) Pade approximation, we choose appropriate quadrature 
formulas so that the overall error bound reads 

II Uh- (tN) II < C(u){hr + kP}, tn E J . 
The error estimates we obtain, however, will demand high regularity of the 

solution of (1.1), particularly when using rules with high-order truncation error. 
For instance, Simpson's rule requires that fo I1UtHr ds and f 4 1D'ulI ds be finite. 
Since the regularity of the solution is of such importance for our numerical 
methods, and since some of the desired high regularity results with respect to 
both space and time are not available in the literature, we devote some effort to 
showing such regularity under appropriate conditions on the prescribed data. 

The first contribution to the numerical solution of integro-differential equa- 
tions of parabolic type known to the author was made by Douglas and Jones [6] 
in the 1960's, using the finite difference method. The analysis of finite element 
methods for partial integro-differential equations of parabolic type has become 
an active research area only recently. Yanik and Fairweather [16] studied fully 
discrete Galerkin finite element approximations to the solutions of a nonlin- 
ear partial integro-differential equation whose integral term contains at most 
first-order derivatives in space. 

Sloan and Thomee [10] considered the discretization in time of a general 
integro-differential equation in an abstract Hilbert space setting, where A is a 
selfadjoint positive definite operator and B(t, s) = K(t, s)B. Here, B is an 
operator satisfying IIA-lBqpll < C11 l, (o E D(B), independently of time, and 
K(t, s) is a scalar function. In order to reduce the memory and computational 
requirements of these methods, they first proposed the application of quadrature 
rules with relatively higher-order truncation error. The backward Euler type 
scheme with a quadrature formula based on the trapezoidal rule, and the Crank- 
Nicolson type scheme based on Simpson's rule were analyzed in detail. 

As we have mentioned before, time-continuous spatially semidiscrete Galer- 
kin approximations to problem (1.1) have been examined by Thomee and Zhang 
[14]; optimal-order error estimates (1.4) were given. (An alternative proof of 
this result by means of a nonconventional projection can also be found in Can- 
non and Lin [4] and in Lin, Thomre, and Wahlbin [8].) 
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Comprehensive surveys of the development of this subject are given by 
Thomee [12, 13]. 

The present work is based in an essential way on the ideas of Sloan and 
Thomee [ 10], and may be considered as an attempt to further develop the results 
obtained there, and to carry over the results obtained in [ 14] for the semidiscrete 
problem to completely discrete schemes. The rest of this paper is organized as 
follows. 

Section 2 is devoted to the existence, uniqueness, and regularity of solu- 
tions of integro-differential equations of parabolic type, with emphasis on re- 
sults needed in our analysis of numerical schemes. We show that the solution 
of the initial-boundary value problem (1.1) has any desired degree of regularity 
in both space and time, if the prescribed data satisfy the appropriate regularity 
and compatibility conditions. 

In ?3, as a preparation, we first introduce a concept called Ek-stability and 
present two sufficient conditions for this. We then give a preliminary error 
estimate for the fully discrete Galerkin approximation. Finally, we present a 
bound for the global quadrature error which appears in this estimate and will 
be recalled frequently afterwards. 

Based on these results, we study in the last three sections some concrete 
quadrature formulas. In ?4 we analyze backward Euler type schemes. We 
concentrate on quadrature rules with dominated weights. Several quadrature 
formulas are presented and analyzed, with emphasis on how to reduce the stor- 
age requirement. Section 5 contains our discussion of Crank-Nicolson type 
schemes. This time a class of quadrature rules using so-called persistent domi- 
nated weights is considered. Two quadrature rules are given as examples. Sec- 
tion 6 discusses the third-order subdiagonal Pade discretization. An overall error 
estimate with a third-order convergence rate in time is obtained for a scheme 
that employs a modified Simpson's rule to approximate the integral term and 
uses a starting procedure to calculate the first two time steps of the solution. 

2. EXISTENCE, UNIQUENESS, AND REGULARITY 

The purpose of this section is to show existence, uniqueness, and regularity 
of the solutions of integro-differential equations of parabolic type, primarily as 
groundwork for our analysis of numerical methods. A review of the references 
considering problem (1.1) can be found in [1]. 

2.1. Existence and uniqueness. Let us first define some notation and recall 
some results for the purely parabolic case (B 0_ ) of (1.1) (cf., e.g., Pazy [9]). 

Let X be a Banach space. We introduce the Banach space C(X) = {u: J -* 

XI u is continuous} with norm llullc(x) = supt.j IIu(t)IIx. For 6 E (0, 1), we 
let C3(X) = {u: J -* X I u is Holder continuous with exponent 6} with norm 

llullc(X) = llullc(x) + sup Ilu(t) - U(S)IHx 
t#s, s,tEJ 

We also let C' (X) = {u: J -* X I u is differentiable and Ut E C(X)} with norm 
ullCl(x) = llullc(x) + llutllc(x) 

In addition to Hs, we shall use the space Hs = Hs(Q) = {v E HslAiv = 0 
on aQ for j < s/2} with norm lvIs = IAs/2vll . We recall the fact that I Is 
and 11 * Ils are equivalent on Hs. 
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We know that the homogeneous (f 0 O) purely parabolic (B 0) case of 
(1.1) has a unique solution u(t) = E(t)uo for uo E L2. Furthermore, given 
s > 0, we know that, for all uo E Hs, we have E(t)uo E C(Hs) and 

(2.1) IE(t)uojs < Cluols, t > 0. 

The following lemma gives a standard existence and regularity result for the 
purely parabolic case of (1.1). 

Lemma 2.1. Let 0 < J < 1. Iff E C3(L2) and uo E H2, then the initial- 
boundary value problem (1.1) with B _ 0 has a unique solution 

rt 
u(t) = E(t)uo + j E(t - s) f(s) ds _ E(t)uo + Ef(t) 

such that u e C1 (L2) n C(H2) and 

(2.2) Ilut(t)1 + IU(t)2 < C(Qu012 + Ilf IIC5(L2)) , t E J. 

The proof follows ?4.3 of Pazy [9]. 
We now carry the above result over to the integro-differential equation (1.1). 

For problem (1. 1), by the well-known regularity result for elliptic problems that 

(2.3) kOIH2 ? CHA(OH V(o E jt2 

we have 

JIB(t, s)oll + IIB*(t, s)oll < CjjA(j VO E H2, 0 < s < t < t, 

where B* is the adjoint of B with respect to L2. A direct consequence is 
JIB(t, s)A-111 < C and IIA-IB(t, s)ll < C11oHl V( E H2, 0 < s < t < t?. The 
above is also true if we replace B(t, s) by its time derivatives. 

Theorem 2.2. If uo E H2 and f E C3(L2) for some ( E (0, 1), then the 
problem (1.1) has a unique solution u E C1 (L2) n C(H2). Furthermore, 

(2.4) IIUt(t)I| + 1u(t)12 < C(Iuo12 + If IIc,?(L2)) , t E J. 
Proof. By Duhamel's principle, we may write (1.1) formally as 

(2.5) u(t)= j E(t - s)Bu(s) ds + (E(t)uo + j E(t - s)f(s) ds) 

-=Ku(t) + F(t) . 

If we can prove that (2.5) has a solution u E C(H2), then Bu+f E C3(L2), and 
hence, by Lemma 2.1, u is the unique solution of a purely parabolic equation 
that has Bu + f as the right-hand side and u E C1 (L2) n C(H2). Hence, u is 
also the unique solution of (1.1). Thus, we shall prove that (2.5) has a unique 
solution u E C(H2) and that (2.4) holds. This will be verified by showing that 
(2.5) is a well-posed Volterra-type equation in the Banach space C(H2). 

First we notice that, by Lemma 2.1, we have F E C1(L2) n C(H2) and 

(2.6) IF(t)12 < C(Iuo02 + Ilf IIC,(L2))' t E J. 

Next we quote from Thomee and Zhang [14] that the operator K is bounded 
in C(H2) and 

IKu(t)l2 ?< c I u(s)I2 ds, t E J. 
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Therefore, by the standard argument for the existence of a unique solution 
of a Volterra integral equation, we conclude that (2.5) has a unique solution 
u E C(H2) and, in view of (2.6), that 

IU(t)12 < CIIFIIC(ft2) < C(IU012 + Ilf IIC5(L2))' t E 

Using the integro-differential equation (1.1), we obtain also that, for t E 

Ijut(t)jj < ||Au(t)jj + ||Bu(t)JI + I1f(t)JI < CIIUIIC(ft2) + Ilf IIC(L2) 

< C(IUOI2 + Ilf IIC5(L2)). E] 
2.2. Higher-order regularity. Later in the numerical analysis, we will need 
higher-order regularity results for the solution. If we assume that, for some 
m > 2, B(t, s): Hi+2 H'i, 0 < i < m - 2, is bounded together with a 
certain number of its derivatives, then by modifying the technique used in the 
proof of Theorem 2.2, we can conclude that u E C(Hi+2) provided that the 
data uo and f possess certain regularity properties. However, this condition is 
unnatural, since these spaces involve boundary conditions associated with A. 
In general, we can only expect B(t, s): Hi+2 -* Hi. Therefore, we shall derive 
a higher-order regularity result, which basically only requires the boundedness 
of B(t, s) in Sobolev spaces without boundary conditions associated with A. 

Theorem 2.3. Let u be the solution of the initial-boundary value problem of ( 1.1) 
and let n > 1 and O < J < 1. Assume that 

(2.7a) Di/u(O) E H2 n H2(n-j) 0 ?j?n-1, 

and 

(2.7b) Di/f E C3(L2) n C(H2(n-j-1)), 0 < j < n - 1. 

Then 
Dlu E C(H2 ), 0 < j < n, 

and 
DJu E C(H2), 0 < i < n - 1. 

Furthermore, 
n n-I 

EI lDtulC(H2(n-e)) < C E IIDiu(O)IIH2(n-j) 

(2.8) j =1 n- 

+ C | IlDtf II c (L2) + CjE | lDtf IIC(H2(n-J-I))l 
1=0 1=0 

Proof. We shall prove this theorem by induction on n. By Theorem 2.2, we 
know that the theorem holds for n = 1. We now assume that it holds for 
n = m, m > 1. We shall prove that the theorem is true for n = m + 1. Thus, 
we assume that 

(2.9a) D/u(O) E H2 n H2(m+1I-j) 0< < m, 

and 

(2.9b) Di'f E C3(L2) n C(H2(m-j)), 0 < j < m. 
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Differentiating equation (1.1) formally, we obtain 

(2.10) (ut)t + Aut = B(t, t)u + Btu + ft. 

We shall write this in the same form as equation (1.1), so that we may use the 
induction hypothesis. 

We easily obtain 

B(t, t)u(t) = f B(t, t)ut(s) ds + B(t, t)uo. 

Similarly, after changing the order of integration, we obtain 

Btu(t) = Bt(t, s)f ut(T) dz ds + Bt(t, s)uo ds 

= JJX Bt(t, T) dz ut(s) ds + Bt(t, s)uods. 

Using the above facts, we find 

(ut)t + Aut = j B (B(t, t) + f Bt(t, T) dT) ut(s) ds 

+ (B(t, t) + Bt(t, s) ds) uo + ft 

_Blut + B2uo + ft=- But + F. 

Let us thus consider the integro-differential equation 

(2.11) vtv+Av=B1v+F, te J, 

v(O) = ut(O) 

Since the operator B1 = B(t, t) + f Bt(t, T) dz is a second-order partial differ- 
ential operator, and since, by our assumption, ut(O) E H2 and F E C3(L2), we 
conclude by Theorem 2.2 that (2.11) has a unique solution v E C(H2)nC1(L2) . 
Let U(t) = ot v (s) ds - uo . We find by integrating (2.1 1) that U is the unique 
solution of (1.1). Thus, we obtain immediately that U = u and v = Ut, and 
hence, by (2.9), we have 

D/Jv(0) = Di+ 1u(0) E H2 n H2(m-j) 0 j< m -i. 

Moreover, by the definition of F and (2.9), we have 

IDJFIFIC5(L2) ? DB2uoc(L2) + Di+1fl I C(L2) 

<_ C||UOllft2 + IlD t IIC<(L<)m -- ?Cuoft2+HlDj+'fl IC1(L2), ?? -1 

and 

I|D/F IC(H2(m-J-I)) ? CIIUOIIH2(m-J) + CIIDit1fIIC(H2(m-J-I)) 0 < j < m- 1. 

Now by using the induction hypothesis, we obtain 

D/jV E C(H2(m-j)), 0 < j < m, DveC(H2), 0 < j < m-1, 
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and further 
m m 

? IIDtjUIIC(H2(m-J)) - j IlDVIIC(H2m-ij 

j=0 j=O 

< j C IDjv(O)H2(m-j) + C E IIDtF IC5(L2) 

j=O j=O 

m-1 

(2.12) + C E IDtjFjIC(H2(m-J-1)) 
j=O 

m m 
<C IIDju(O)IIH2(m-J) + CZ IlDtf IIC5(L2) 

j=O j=l 

m 
+ C E IID f1IC(H2(m-J)). 

j=l 

It remains to show that u E C(H2(m+l)) and to estimate IIUIJC(H2(m+1)). We 
shall accomplish this by showing that u is the solution of a Volterra equation 
that is well-posed on C(H2(mr+l)). We write the original equation as 

(2.13) u = A-lBu +A-'(f-ut). 

By the regularity result for elliptic problems, we know that A:- H2m - H2(m+ 1) 

is bounded. Thus A-IB(t, s) is an operator bounded in H2(r+l), uniformly 
for 0 < s < t < t?. Hence the operator A-1B defined by A-lBu(t) = 

t A-IB(t, s)u(s) ds is a Volterra operator in C(H2(mr+l)). 
By (2.12), we have ut E C(H2mr) and by (2.9), f E C(H2m), and hence 

A-lut E C(H2(m+l)) and A-If E C(H2(m+l)). Therefore, (2.13) is a Volterra 
equation in C(H2(m+l)) and hence 

IIUIIC(H2(m?+)) < CIA1 (Ut- f)IIC(H2(m+1)) < C11UtlC(H2m) + ClIf IIC(H2m). 

In view of (2.12), this implies that (2.8) holds for n = m + 1 . El 

From equation (1.1) we obtain Dtu(0) = -Auo + f(O) . Differentiating (1.1), 
we obtain (2.10), and hence 

D2u(0) = -ADtu(0) + B(O, O)uo + ft(O) - A2uo - Af(O) + B(0, O)uo + ft(0). 

Repeating this process, we can express Diu(O) in terms of the prescribed data. 
In doing so, we see that the conditions required by Theorem 2.3 also implicitly 
contain certain compatibility conditions for the given data at t = 0. 

3. TIME DISCRETIZATION, STABILITY, AND PRELIMINARY ERROR ESTIMATE 

This section is devoted to time discretization of integro-differential equations 
of parabolic type. Since we are primarily interested in the discretization of the 
time variable, we first discuss an abstract parabolic integro-differential equation 
in a Hilbert space, and then turn to the concrete situation of a partial integro- 
differential equation of parabolic type in space and time. 
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3.1. Discretization in time. Let Ah and Bh (t, s): Sh -* Sh be defined by 

(Ahu, x) = A(u, x) and (Bh(t, S)u, X) = B(t, s; u, X), , % E S h 

We can thus rewrite the spatially discrete problem (1.2) as 

(3.1) Uh, t +AhUh = Bh(tS)Uh(S) ds + fhBhUh(t) + fh, tE, 

Uh(O) = UOh , 

where fh = Phf with Ph: L2 -* Sh being the L2-projector. 
In regard to both (1.1) and (3.1), we shall thus consider the time discretization 

of the following problem on a Hilbert space H: 
rt 

(3.2) Ut + Au = jB(t, s)u(s) ds + f(t) -Bu(t) + f(t), t E J, 

u(O) = uo, 

where A is a selfadjoint, positive definite linear (unbounded) operator in H 
with dense domain D(A) c H. We shall assume that A has a compact inverse. 
It follows that -A generates an analytic semigroup E(t) = e-At. 

For our later discussion, it is convenient to introduce the following concept: 
we say that the doubly parametrized operator B(t, s) is dominated by the oper- 
ator A if D(A) c D(B(t, s)) = D(B*(t, s)) c H for all 0 < s < t < to, and if 
there exists a constant C such that 

(3.3) IIB(t, s)(oll + IIB*(t, s)oIll < CIIA(pII V(o E D(A), 0 < s < t < to, 
where B*(t, s) is the adjoint operator of B(t, s) with respect to the inner 
product of H. If B(t, s) is dominated by A, one can easily show that 

IIB(t, s)A-'l ?C, O < s < t < to, 

and 
IIA-'B(t, s)oll < CII(pII V(p E D(B(t, s)), O < s < t < to. 

We shall assume that B(t, s) in (3.2) is dominated by A, together with some 
of its derivatives with respect to t and s. 

For problem (1. 1), we have already shown that the partial differential operator 
B(t, s) and its derivatives with respect to t and s are dominated by A. For 
the spatially discrete equation (3.1), we have families of operators {Ah} and 
{Bh(t, s)}l. We thus say that a family of operators {Bh(t, s)} is dominated by 
{Ah} if there exists a constant C independent of h such that 

IIBh(t, S)xII + IHB*(t, s)xII < CIIAhx VX E Sh, 0 < S < t < to 
and similarly for time derivatives of Bh . This implies 

IIBh(t,s)Ah-l <?C and IIAh-Bh(t,s)H?<C, O<s<t<to. 
When B(t, s) = y(t, s)A, where y(t, s) is a bounded scalar function, we 

have that Bh (t, s) = y(t, s)Ah ; trivially, {Bh } is dominated by {Ah } . Further, 
when B = B(t, s) is a first-order partial differential operator, then since 

llxH12 < CA(X, X) = C(AhX, X) < CIIAhXH1 IIXHII, 

we have 
(Bhx, A) = B(Z, Ai) < CXH IIIIlll < CIIAhx 
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and hence 
|lBhXll < CIIAhxI1, x E Sh. 

Similarly, 
||B*Xll < CIIAhx, X E Sh. 

It is now obvious that a family of operators of the form 

Bh(t, s) = y(t, s)Ah + a discrete first-order operator 

is dominated by {Ah}. 
When B is a general second-order partial differential operator, it is more 

difficult to verify that {Bh} is dominated by {Ah}. However, we claim that 
this is so as long as the standard inverse inequality 

(3.4) HIXHiI < Ch 111HxH, x E Sh, 

holds for the finite element space Sh . To show this, we first recall a lemma of 
Thomee and Zhang [14, Lemma 2.1]. 

Lemma 3.1. Let B(t, s; , * ) be a bilinearform on Ho' x Ho' corresponding to 
a second-order partial differential operator B(t, s) . Then 

JIB(t, s; g, Ah1f)JI < C{HlgHl + hlglll}lf 

for O < s < t < J, Vf E L2, g E Ho. 

With ,, X E Sh, the above lemma and (3.4) yield 

(BhX, A) = B(X, A) < C(Qjuj + hjjjjjl)jjAhX11 < Clljll IlAhXll 

Since the same argument works for Bh, we conclude that {Bh} is dominated 
by {Ah}. 

Let us recall a time discretization procedure for the corresponding purely 
parabolic problem of (3.2), i.e., with B 0_ . More details can be found in [2, 
3, 11]. Let r(z) be a rational function approximating the exponential e-z to 
order p > 1 , i.e., such that 

(3.5) r(z)= e-z + O(zP+l) for z - 0, 

and such that 

(3.6) r(z)I < 1 for z > 0. 

Let ri = t'n, E [0, tn, i = 1, ..., m, be distinct real numbers, and let 
{gi (z) I In= {gn, i(z)} I7I be rational functions which are bounded on z > 0 . 

We consider a scheme of the form 
m 

u(n = r(kA)Un-I + k gi(kA)f(tn - Tik), tn E J, 

U0 = uo. 

By defining Ek = r(kA) and Gkf(tn) = EZ l gi(kA)f(tn - ik), we write (3.7) 
in short form as 

(3.8) Un =EkU + kGkf(tn), tn E J, 
U = u0. 
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We shall apply the above time discretization to the integro-differential equa- 
tion and use various quadrature formulas to approximate the integral term. Let 

n- r1k and let 0l'T be a quadrature rule with weights {wt) } such that, 
for ' E C([0, t?]) and with (p' = (0(tj), 

n-I t,k 

(3.9) n l (q7) _ f(n() = E n(j (p(s) ds. 
j=O 

We shall consider the time-discrete scheme 

(3.10) Un -EkUn-I + kGkan(BU) + kGkf(tn), tn e J, 

where 
m n-I 

Gkan (B U) -Gkan (B(tn, *)U) = gi(kA) w) B(ti , tj) Uj . 
i=l j=O 

Note that (3.10) is explicit with respect to the quadrature term. 
Now we finally turn to our main consideration, the full discretization of 

problem (1.1). Applying discretization (3.10) to the semidiscrete equation (3.1), 
we obtain the following fully discrete Galerkin scheme: 

(3.11) Uhn EkhUh +kGkh an(BhU)+kGkhPhf(tn), tn E J, 

where Ekh and Gkh are defined by replacing A by Ah in the definitions of 
Ek and Gk, respectively, and &an(BhU) is defined by replacing B by Bh in 
en (B U). 

In this paper, we shall assume that gi(z), i = 1, ..., m, are real fractions. 
The backward Euler discretization (1.5) is of this form with 

m=1, r=0, r(z)= 1 and g(z) 1 

which has order p = 1. If we choose 

m= 1, r 2 r(z) = 
I - 

/2 and g(z) 1 2 1 +z/2' 1 + z/2' 

we obtain the Crank-Nicolson discretization (1.6), for which p = 2. 

3.2. Stability and Ek-stability. To study the stability of (3.1 1), we introduce 
a concept which we will call Ek-stability. Let {Vi }n-7I, t, E J, be a sequence 
in D(A) and define Wn = Fkn(V) iteratively by 

Wn =EkWn-I +kGk an(BV), tn E J, 

W? = O . 
- 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - 

A quadrature formula is called Ek-stable if there exist nonnegative {IN }jJ>.-, 

t, E J, such that EjOI wj < C and, for any {V'} c D(A), 

n-I 

IFIn(V)ll < CEZolVjll, t E J. 
j=O 
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Moreover, we define Fknh- and Ekh-stability, respectively, when problem (3.1 1) 
is under consideration, with constant C independent of h. The following 
theorem shows the importance of Ek-stability. 

Theorem 3.2. If the quadrature formula defined by (3.9) is Ek-stable, then scheme 
(3. 10) is stable; that is, 

m n 

IIUn II ClluoIl + Ck EEIIf(ti5)IIX tn E J. 
i=l j=l 

In the proof we need the known discrete version of Gronwall's Lemma. 

Lemma 3.3. Let {6n} be a sequence of nonnegative real numbers satisfying 
n-I 

(3.12) lln?<fn+ZWjjt1j for n>O 
j=0 

where wj > 0 and {/3in} is a nondecreasing sequence of nonnegative numbers. 
Then 

?In < fin exp CO for n >1. 

We give a proof here for the reader's convenience. 

Proof of Lemma 3.3. Let Sn = En 
- g I ,. It is sufficient to show that 

(3.13) Sn (in (exp(o )i ) n >1. 

We shall use induction to prove this. Since tjo < f80, we have 

SI = Woo?lo < ooflo < fio(ewo - 1) < fli(ewo - 1) 

for n = 1. Assume now that (3.13) holds for Si, 1 < i < n. To complete the 
proof we shall prove that it holds for Sn+I . By definition of Sn and (3.12), we 
have 

Sn+1 -Sn = nllnrn < WJn(tin + Sn) 
and hence 

Sn+I ? (On/3n + (1 + WJn)Sn - 

By our induction assumption and the monotonicity of fin we then obtain 

Sn+I ?fn Jn{W+(1 +n (Oexp( I1wi) 
{ ( ( ~~~~i=O))} 

=fin {( +Wn)OeXp ( oij~ - 

{ ( ~~~i=O)} 

fign {e 'n exp j 1} tin+1 (exp (z - 1) 
and hn terf i=O i=O 

and hence the proof is complete. O1 
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Proof of Theorem 3.2. The proof is quite straightforward. Let Un = U1n + Un, 
where we define Uln, U2n ED(A) by 

Un = EkUl H+ kG,k(BU), tn E J, subject to U = O, 

and 
U2n =EkU2n 1 + kGkf(tn), tn E J, subject to U2= U? . 

By (3.6) and some spectral analysis, we have IIEkll = IIr(kA)II = supA>,O Ir(kA)I < 
1, and similarly, 11Gkf(tn) 1 < CEji1I Ilf(ti) 1; hence, 

m m n 
IU2njf < IIU2n-1 1 +CkYZlf(ti) 1 < ?< 1Uo1 +CkZ jf(t5) , tn E J. 

i=l i=l j=l 

Therefore, by Ujn = Fn(U) and the Ek-stability of this scheme, we obtain 

11 Un 11 < 11 Uln 11 + 11 Un 11 
m n n-I 

< 11 Uo0 + CkZYI f(ty)H + CZ )j11UjU , tn E J, 
i=1 j=1 j=0 

which leads to the conclusion by using Lemma 3.3. El 

3.3. Some sufficient conditions for Ek-stability. The Ek-stability of a scheme 
is important not only to prove the stability of the time discretization, but also to 
obtain error estimates. We now give some sufficient conditions for a quadrature 
formula to be Ek-stable. 

We say that a quadrature rule has dominated quadrature weights {wO1j} if 
there are weights {1oi} such that w1ojil < 1oi, 0 < ti < tj < t?, and En-I oi< 
C, tn E J. If the time-stepping is based on the subdiagonal Pade approxima- 
tion, i.e., r(z) = p(z)/q(z), where both p(z) and q(z) are real polynomials 
with degp < deg q, then our first theorem shows that the domination of the 
quadrature weights is sufficient for Ek-stability. 

Theorem 3.4. Let the time-stepping be based on the subdiagonal Pade approxi- 
mation and accurate of order p = 1. Assume that B(t, s) is an operator such 
that the DiB, i = 0, 1, are dominated by A. If the quadrature rule defined by 
(3.9) has dominated weights {wOni}, then the quadrature rule is Ek-stable. 

For subdiagonal Pade approximation, we shall assume throughout this paper 
that Ir(z)I < 1 for z > 0. A fact that we shall use in the proof is that, in this 
case, the generated time-stepping procedure is known to have the smoothing 
property [1 1], i.e., 

(3.14) IAEnll < Ct-I, tn E J. 

Proof of Theorem 3.4. Without loss of generality, we assume m = 1. Denote 
g(kA) by Gk and tj - rk by tj for short. To estimate Fkn(V), we split it as 

n j-1 
F= k Ekn-jGk , 1j, i(B(tj, ti) - B(t, t )) V' 

j=1 i=o 
n j-1 

+ k E, EknjGkAZj)j,jA-1B(t', ti)V' 
j=1 i=O 

I+11. 
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Since Bt is dominated by A, we have 

IIA-1(B(tj, ti) - B(t' , ti))q|1 < C(tn - tj)11q01, q' E D(A), 

and hence, by the smoothing property (3.14) of Ek, we obtain 

n j-1 

III < Ck 1I(tn -tj)1 ciI A A-1(B(tj, ti) - B(t' , ti)) V'i 
j=I i=0 
n j-1 n-i 

< Ck (tn- tj)-1(tn-ti) E Ct) ill V'l < C ctWi ll Vill . 
j=1 i=0 i=0 

It remains to estimate II. Changing the order of summation, we have 

n-I n 
II = E k E O)j, iGkEknA A-B(tn, tn ) 

(3.15) i=1 \i=i+ I 
n 

ZGniA- 1 B(ti, ti) Vi. 

i=1 

By spectral analysis, we obtain 

IGni ll < 
Cwtijsupj:kIr(kA)In-]Ig(kA)I 

< Cwisup I ( ()l I~GniH ? >o j=0 A>o1- 

Set s(A) = A Ig() /(1 - Ir(A) I) . Since Ir(A) I < 1 for A > 0, we need only bound 
s(A) as A -- 0 and A -- +oo. By (3.5), it easily follows that Is(A)l < C as 
A- +oo. Furthermore, since deg(p) < deg(q) and lAg(A)l is bounded, we 
obtain ls(A)I < C as A -O 0. Altogether, we obtain IIGni I < Coi , and so 

n-I n-I 

IIII < CE oijIA-1B(tn, ti)V'II < CE ,ojIIV'II. E 
i=O i=O 

Besides what has been discussed above, there are other time-stepping proce- 
dures that do not have the smoothing property, for instance, the Crank-Nicolson 
discretization. Let us consider the class of time discretizations that are strictly 
accurate of order p = 1, i.e., 

m 
(3.16) r(z) - 1 = -z gi(z). 

i=l1 

For more discussion on this, we refer to Thomee [1 1, Chaps. 7 and 8] and the 
references therein. For simplicity, we shall restrict ourselves to the case m = 1 . 

For a quadrature formula with dominated weights {woi}, if the dominated 
weights satisfy 

n-I 

(3.17) E I ,Ojj+I,i- wijj? < Cwi, O< i<fn- 1, tnE J, 
j=i+I 

we say that the quadrature rule has persistent dominated quadrature weights. 
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Theorem 3.5. Let the time discretization be strictly accurate of order p = 1 and 
m = 1. Assume that B and Bt are dominated by A. If the quadrature rule 
defined by (3.9) has persistent dominated weights {,o,j}, then the quadrature 
rule is Ek-stable. 
Proof. In this proof, let us denote ae, T by ai, and tj - zk by t' for short. 

Since the time discretization is strictly of order 1, we have Gk = g(kA) = 
-(Ek - I)A-Il/k, and therefore, by summation by parts, we obtain 

n n 

Fkn(V) = kEEkn-j'GkUj'(BV) =-(Ekn-i+1 - Ekn-j)A-luj'(BV) 
j=1 = 

n 
= -EEn<j(&j+' -ai )(A-lBV) + (Eknan'(A-lBV) - l'(A-lBV)) 

j=I 
+ II. 

By the stability of Ekn, since B is dominated by A, and since the quadrature 
formula has dominated weights, we obtain immediately 

n-i n-I 

gIIIII < jjtIIgA-1B(tnx ti)vil < CECt)iIIViII. 
i=o i=o 

It remains to estimate I. We split I into three terms as follows: 
n-I j-1 

I -EiEk A E O)j+, b,)V - Z w1B(tS, t1)V ) 
j= 1 i=o i=o 
n-I 

= EEn- A- 1ctj+I, jB(t'+I , tj) V 
j=1 

n-I 

_Ekn-jA-1 E((tj+ I, i - 0ji)B(tjS+1 ti)Vi) 
j=I i=o 
n-I I- 
-Ekn-jA- 1 o6ji (B (tjl+, ti) - B(tj ti))Vi) 
j=I i=O 

-=II + I2 + I3 - 
In a manner similar to the estimate of II, we obtain 

n-I 
hII II < c E Zw IIv II . 

j=I 
Since Bt is also dominated by A, we have 

IIA-1(B(tj+l , ti) - B(t>, ti))q11 = J A-'Bt(r t) dTr| 

< Ckll(oll 5 tj5 t'+, E J ti E J 

for (0 E D(A), and hence 
n-I j-I n-2 

1I311 < CkZEZ oI V1l< C? cZ illV'hl. 
j=I i=O i=O 
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Changing the order of summation, and using our assumption that the quadrature 
rule has persistent dominated weights, and that B is dominated by A, we have 

n-2 n-I 

III211 = E E Eknwj(Oj+1,i- ji)A 1B(t+l, ti)V, 
i=O j=i+1 

n-2 t n-I n-2 

< c (E E IO j+l,i- ()jil IIVill < cZEwtiIVill. 
i=O ij=i+l ,i=O 

These estimates lead to 
n-I 

IIIII < CZi wi VI. E 
i=O 

Clearly, the above results hold also for Ekh-stability. 

3.4. A preliminary error estimate. This subsection will prepare us for our later 
discussion of the error estimate for fully discrete Galerkin approximations. Let 
us introduce an auxiliary approximate solution Uhn E Sh obtained by applying 
the discretization method (3.8) to a purely parabolic equation with right-hand 
side (Bu + f ) (t), i.e., 

Uhn = EkhUhn/1 + kGkhPh(Bu+ f )(tn), tn E J, 

Uh? = UOh. 

We shall denote the basic time-stepping error by 

(3.18) en = Uhn-U(tN) X 

which has been well studied in the literature (see Thomee [ 1 ] and the references 
therein). 

Denote by qnlX i((f) the basic quadrature error, i.e., 

rti 

qn(,o)=qn T,(?)=qn T((o)=cnf T,(f) j(o (s)ds. 

We define the local quadrature error 

oti 

qn(Bh(P) = q l(Bh (p) 
= anT(Bh ) - Bh(tn, s)(o(s) ds 

and the global quadrature error 
n 

Qkh (P) = k E Ekn -Gkh q] (Bh) 

(3.19) j=n 
= k , Ekn-i E gi(kA)qj T(Bh) 

j=1 i=1 

We shall frequently make use of the elliptic projector Rh: Ho ' Sh defined by 

A(Rh(o,X ) = A(p, % X) p E Ho, X E Sh, 
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which has the well-known approximation property 

(3.20) II(Rh - I)uJI + hII(Rh - I)uIIi < ChsIlulls, 1 < s < r. 

For f j}Jn=0 we write II1onlll = maxo<j<n llojll . 
We shall now give a preliminary error estimate, in which only the basic time- 

stepping error and the global quadrature error remain to be specified. 

Theorem 3.6. Let u be the solution of the initial-boundary value problem in 
(1. 1), and let Uhn be the approximate solution given by the scheme (3.1 1) using 
a time-stepping strictly accurate of order p = 1 and a quadrature formula defined 
by (3.9). Let en be the basic time-stepping error and Qnh the global quadra- 
ture error defined by (3.18) and (3.19), respectively. Assume Bh and Bh t are 
dominated by Ah . If the quadrature rule is Ekh-stable, and if 

lUoh - uoII < Chrlluo llr, 

then, for tn E J, 

IUhn - U(tN)ll < Chr {lluollr + j Iut(s)lrds} + Cllenll + CIIIQnh(RhU)II 

Proof. We write 

(3.21) en = (U, - Uh )+(Uhn -U(tn)) Z en 

where Zn E Sh is the only term that needs to be estimated. Following Wheeler 
[15], let oPn = Uhn- RhU(tn) . Then, by definition, we have 

Zn = Ek Zn-1 + kGkhan(BhU) - kGkhPhBu(tn) 

= EkhZnlI + kGkhan(BhO) + kGkh(rn(BhRhU) - BhRhU(tn)) 

+ kGkh(BhRhu(tn) - PhBU(tn)) 
3 

= EkhZnl+ZIj tn E J, 
1=1 

z? = o . 

We now split Zn further into Zn = Zn + Z2n + Z3n, where Z11 = EkhZn- 1 + I, 
tn E J, and Z- = 0. By the E h-stability of the quadrature rule, we have 

n-I 

(3.22) kh = 1F,(Q)H < CZW 1iHLH1, tn E J. 
i=O 

By the definition of the global quadrature error, we have 

Z2 =Qkh(RhU), tn E J. 

Assuming for a moment that 

(3.23) lZHnll < Chr {Huollr + Iutllrds} , tn E J, 

we obtain 

Ilznll < Chr {Iuollr + J Utllrds} + Qnh (Rhu)I + C n- iM10|, 
j=o 
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and hence, for t, E J, 

lnll < Chr {IIUOlr + j lUt(S)lr} 

n-I 

+ Illenlll + IllQnh(Rhu)I + CZ jIIO'II 
j=0 

The proof will be completed by applying the discrete Gronwall Lemma 3.3. 
It remains to prove (3.23). Denote En I gi(kA,) by Gkh . We further split 

Z3n into Z3n = Zn + Zn such that 

Zn = Ekh Zn + kGkh(BhRhu(tn)-PhBu(tn)), 

32 = EkhZ + k(Gkh - Gkh)(BhRhU(tn) - PhBu(tn)), 

z3? = z3? = O. 

Let us first estimate Z3nj . By iteration we have 

n 

31= k E EkGkh(BhRhU(ti) - PhBU(tj)) - 
j=1 

Let B((p (t) , Vy) = fot B(t, s; (o(s), Vy) ds . For X E Sh, we then have 

n 
(Z3n, ) = k Z(BhRhu(t) - Bu(tj), Ekn7jGkhX) 

j=1 
n 

- k J B(p(tj), Ek7h Gkhx) . 
j=1 

Since the discretization is strictly accurate of order p = 1, we have Gkh = 

k A - 1 (Ekh - I); hence, summation by parts yields 

n 

(nZ x X t) = ZB(p(tj), (Ekn 
j+l 

-Eknhj)A 1X) 
j=1 

B(p(tn) , A- 1) + hB(p(tj), A-lEknhx) 
n-I 

+ B( p(tj+l) - p(tj) , Ah-Ekn-xj) . 
j=2 

By Lemma 3.1 and (3.20), we obtain 

lB(p(tn) , A 1X)j + jB(p(tj), Ah-EknhX)l 

< cj (IlPll + hllpll)dslIX < Chr {HUollr + lUtllrds} IIXII 
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Similarly, we obtain 

n-I 

Z B(p(tj+l) - p(tj), A 1E nhx) 
j=2 

n-I ftj+ d 
< E | dB(s) A- Ek %)ds 

n-I ( +l < E t B (s , s; p (s ), Ah,. 
- 

'En-ji) d s 

+ 
B(p(s) 

A71E j7'x) 

ds } 

? C E { J ( 11(p(r)I1 + h11p(r)I11) drIlEkn7JxI1 
j=l t 

t,+l s 

+ J J(1P()II + hIIp(r)jI 1) d dsIIEknJxl } 

?Ch r, IIUIIrdtIIXII < Ch {rIIUOllr + j lUtllrds} lxii 

Therefore, we obtain 

(3.24) I(Zn , X)I < Chr {IIUOIlr + j IlUtllrds} IIxIlI 

which leads to the required bound for Z3n1. 
We now bound Zn . By our definitions, we have 

m t 

(Gkh - Gkh)(P(tj) =-, gi(kAh) Ds(q(s) ds, 
i=l tj 

and hence, since kIIAhgi(kAh)II < C and denoting Th = A 

m t, 

II(Gkh -Gkh)(O(tj)II < Ck-1 Y 1 IIThDso(s)I ds 
i=1 j 

< C max IIThDsop(s)IL . 

By the stability of Ekh and using the above inequality with (0 = BhRh U -PhBu, 
we obtain 

(3.25) Ilz:n211 < C max IIThDs(BIRhu(s)-PhBu(s))II. 

For any X E Sh, we have 

(AhDs(BhRhu(s) - PhBu(s)), X) 

= B(s, s; p(s), A-1%) + Bt(p(s), A-1%), 
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which yields, by Lemma 3.1 and (3.20), that 

I(ThDs(BhRh U(S) - PhBu(s)), x)I 

< C {IIP(s)II + hIIp(s) II + (IIPIhIIpII) d} IlI 

< Chr {IIUOIlr + j IIutIIrdr} lxii. 

This and (3.25) lead to the desired bound for Zn. E 

3.5. A bound for the global quadrature error. To estimate the global quadrature 
error, we could use the fact that, by the stability of EkhX 

m 

khll < I I qf li(BhRhU) III 
i=1 

and then estimate the local quadrature error instead. For instance, for the 
rectangular rule, llqn(p ) l < Ck ftn I I Ds v (s) I I ds . This implies, since Rh = A1 A 
and Bh is dominated by Ah, that 

rtn 

kQhll < CkJ (I|Aull + I|Autll) ds. 

However, the regularity of the solution with respect to space required by the 
above error bound is unnecessarily high. In the following lemma we present a 
bound for the global quadrature error which leads to an error estimate demand- 
ing less regularity of the solution. 

Let Fh(t, s) = A-1BhPh . If Bh is dominated by Ah, then HDhH < C. We 
shall frequently use the boundedness of this operator and its derivatives. 

Lemma 3.7. Let the time-stepping be strictly accurate of order p = 1 and m = 1, 
and let Qnkh ((0) be the global quadrature error defined by (3.19). Assume Bh and 
Bh, t are dominated by Ah . If the quadrature formula is Ekh-stable, then, for 
tn E J, 

( ,~tn n-I 
khQ(Rhu)II < Chr {lUollr + IlUtllrds + CZE I(qj+lT - qi )(sDu)II 

1=0 

where qj is the basic quadrature error and q? T = 0. 

Proof. By the definition of Qnkh ((O) X after changing the order of summation, we 
obtain 

n 

Qkh() = k E E 'Gkhq'(Bh) 

n i-1 

(3.26) = k Z E _iGkh E(qj qJ - (B 
i=1 j=O 

n-I ( n \ 

=, k , Ek 
n- 

GkhAh |(qj'I 
T 

_qJ 
' 

T) (Dh 9), 
j=0 i=i+1 I 
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where, for convenience, we have defined qO,T = 0. Since the discretization is 
strictly accurate of order 1, we have 

n n 
k E Ekh7GkhAh = (Ekn-i = I-kh 

and hence 
n-I 

(3.27) ||Qnh(1 ) ? CQn |qJ+ T T) 

j=0 

It therefore suffices to show 

(3.28) HI Q~kh((Rh -Ph)U)II < Ch r +dS , tn E J . 

Denote (Rh - Ph)u(t) by e(t); we have 

118(t)II ? Ch' {rHUOllr + j lUt(S)lrds} 

Note that by our definitions, we have 
n 

(3.29) Qnh Fk(c)-k E Ek7djGkhBh8(ti)- 
j=1 

Since the quadrature rule is Ekh-stable, we obtain 

(3.30) IIFknh(8)II < CZW i|jI(ti)II < Ch {r|UOHlr + jl Ut(S)HlrdS} 

i=0 

Similarly to the proof of (3.27), denoting tj - -uk by ti, we have 

n n-I 

(3.31) k EEkn iGkBh e (ti) <- C 16h 1(tj+ )4h 1( W)II 
j=1 1=0 

Since 
{~~~~~~~~~~~~~~ty+ 

(Dh 1( + I- (D (tl) = J Dh ((t1+I, s)e(s) ds 

(3.32) 

+ j (h (tj+1 , S) - (Dh(tJ, s))e(s) ds, 

we obtain immediately 

h e (tj + ) - h l(te)H ? C Ji 11(s) I ds + Ck j 1e(s) I ds, 

and hence, by (3.31) and (3.32), 

3kZ Ekj'GkhBhe(tj) ? Cj ;|(s) II ds 

(3.33) ~~j=1 

< Chr {HlUOHlr + l UtllrdS} 

Taking (3.29), (3.30), and (3.33) together completes the proof. 5 
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4. BACKWARD EULER TYPE SCHEMES 

The purpose of this section is to analyze the backward Euler type scheme 
(1.5) in detail. Various quadrature formulas are presented, with the emphasis 
on reducing the memory storage requirement. 

Let S(n) be the number of nonzero quadrature weights {w10ni}in-I used in the 
quadrature rule an((o) . For each rule discussed, we shall give an upper bound 
of S(n) for 0 < tn < t?, denoted by Smax. This is also the upper bound for 
the number of the levels at which the solution needs to be stored in calculating 
the numerical solution Uhn on the whole interval [0, to]. 

The backward Euler time discretization is strictly accurate of order p = 1, 
and the basic time-stepping error is bounded by (see Thomee [ 1]) 

(4.1) Ilenll < Ch' {HUOHlr + j IUt(s)Irds} + Ck Ilutt(s)I ds, tn E J. 

In this section, we shall refer to BE-stability when we mean Ek-stability for 
the backward Euler type scheme. Thus, we have: 

Theorem 4.1. Let u be the solution of (1.1) and Uhn the solution of the back- 
ward Euler type scheme (1.5). Assume that the quadrature rule is BE-stable. If 
lUOh - uoI < ChrIIuoII r, then, for tn E J, 

1Un- u(tN)ll < Chr {HuOHlr + j 1 HUtllr ds} 

rtn 

+ Ck Iluttll ds + Ci lQnkh(Rhu)liI 

Since the smoothing property holds, by Theorem 3.4, we shall give quadrature 
formulas with dominated weights in order to keep the BE-stability. 

4.1. The rectangular rule. The simplest quadrature rule that we shall discuss 
is the rectangular rule, i.e, 

n-I 

(4.2) in(ep)= kepJ. 
1=0 

Obviously, this rule has dominated weights, and hence is BE-stable. 

Theorem 4.2. Let u be the solution of ( 1.1) and Uhn the solution of the backward 
Euler type scheme (1.5) using the rectangular rule (4.2). Assume Bh, B(1) 5 B(1) h ,t' h,s' 

and B 2)t are dominated by Ah. If luoh - uoH ? Ch'HuoHl, then, for tn E J, 
h ts~~~~~~~~~~~~~~~~~t 

1 -u(tN) 1 < Chr {HuoHlr + j I utllrds} 

+ Ck {luoll + j (HutI + uttIDds} 
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Proof. By Theorem 4.1 and Lemma 3.7, we need only estimate the quadrature- 
related term Ezn- 1 V(q'l - qj) (DhU) . We have 

(qj+' - qj)((Dhu) = (q+l -qj)((Dh(tj+l, ,)U(*)) 

(4.3) + qj(((Dh(tj+l, ) )-Dh(tj, ))u(*)) 

I1 + 12 - 

Since 

(qj+' - qi)(qp) = 
J 

(t+ - s)Dso(s) ds 

and Bh and B(1) are dominated by Ah, we obtain h,s 

{tJ+' 1U I+C rt,+1 
II 11 < Ck (Iu(s)II + Ilut(s)II) ds < Ck lCk J ut(s)II ds. 

Similarly, since B(') and B (2) are dominated by Ah, we obtain h,t h ,tsh 

1 12 1 < Ck2 j (Iju(s)II + Ilut(s)II) ds < Ck2HuoH + Ck2 X Ut(S)H ds. 

Therefore, we get 

E II(q+ - qj)(DhU)II < Ck {IlUOl + Ilut(s)I ds} 
j=O 

4.2. Modified trapezoidal rule. As we have mentioned before, we may reduce 
the memory requirement by using a trapezoidal rule based on longer subinter- 
vals. We shall discuss a modified trapezoidal rule which is similar to a quadra- 
ture formula introduced by Sloan and Thomee [10]. 

Let ml = Lk- 1/2J , where Lxj denotes the largest integer less than or equal 
to x, and set k1 = mIk and 7j = jk1 . We define in to be the largest integer 
such that 71n < tn. We apply the trapezoidal rule with stepsize k1 on [0, jin] 
and then the rectangular rule with stepsize k on the remaining part [tjn l tn]. 
More precisely, we introduce the following modified trapezoidal rule: 

(4.4) nl((,) = k2 - + O(+j)) +k k (p(tj)=2n + (6P 2 ZGO(t) 
+ 

((t1Pi +0) + fz(o) 
j=1 j=jnmi 

An upper bound of the storage for this rule is given by Smax = tl/mlk + mln. 
Since ml = O(k-1/2), we have Smax = 0(k-1/2). 

Let wo - k and 

2 ki , j-=0 (mod ml), 
J0 = 

, otherwise. 

We define woj1= wo- + wlo, and find easily that EZi Oj ? t? and 
n-I in 

Z <2<Zki?<2b-+? t0 , 
co2 < l < 

tin+l < Ct. 
1=o j=1 

Therefore, the w1 are dominating weights, and hence this rule is BE-stable. 
We now give an error estimate for the backward Euler type scheme using the 

trapezoidal rule. The regularity requirement of this scheme is the same as that 
for the purely parabolic problem. 
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Theorem 4.3. Let u be the solution of ( 1.1) and Uhn the solution of the backward 
Euler type scheme (1.5) using the trapezoidal rule defined by (4.4). Assume Bh, t 
and B(')sh, < i < 2, are dominated by Ah. If luoh -Uo ?1 Ch1uollr, then, 
for tn E J, 

11 Un-U(tn) 11 < Ch {r HuoHlr + j I utllr ds} 

+ Ck {Iluol + j (I|utI + HuttI)ds} 

Proof. We know that rule (4.4) is BE-stable. By the preliminary error estimate 
in Theorem 3.6 and Lemma 3.7, we need only prove 

n-I r tn 

(4.5) E II(q+' - qj)(DhU)II < Ck {luoll + j (HutI + IuttD) ds} 
j=O 

We consider (4.3) again. Since the step length of the trapezoidal part is bounded 
by Ck1, we easily obtain 

rtn 

llqn((,)(l < Ckj (IIDs2(p(s)II + IDs(p(s)II)ds, tn E J . 

Thus, 12 of (4.3) is bounded by 

rt 

1 1211 < Ck2 J(IIu(s)Ij + Ilut(s)II + IIutt(s)II) ds. 

We further define 

qn((q)= (cn(9) j; (p(s)ds) + n( tin (p) ds 

-qjn(() + qn(9). 

Let 
Y2(5) _ f (s-j- 1)(s -j- 1/2), s E [tj-1, tj-1/2], > 1 

S - - 
7jt) (S - 7j- 1/2), 5 E [7j-1/2, t5] ji > 1, 

and 
V/I(s) = -(s - t+I), s E (t1, t1+1], 1?0; 

we have 

{tJ n {tn 

qn(Go) = j ig2(s)Dp f(s)ds and q( o) = J yi(s)Ds p(s)ds. 
O t, ~~~~~~~~~~~~~~~~n 

Since 
+1 qn+l-)(() ( ) 2 (s (s) ds 

t,n 

and 

(qn+l - 

qn)(( ) = | 1(s)Ds p (s) ds - J 
yI (s)Ds p (s) ds, 

tn t,n 
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we obtain 
{ty 

HII 11 <? Ck (11 u(s) 11 + IlDsu(s) 11) ds 

+ Ck j 
(IHu(s)II + IIDsu(s)II + IlDs2u(s) II) ds. 

Now (4.5) is a direct consequence of the bounds for I1 and 12. ? 

4.3. A modified Simpson's rule. In the previous subsection, in order to re- 
duce the storage requirement without the loss of overall accuracy, we used the 
trapezoidal rule with a larger meshsize to approximate the main part of the in- 
tegral term. Pursuing this idea one step further, we now propose a quadrature 
formula based on Simpson's rule in order to reduce the number of quadrature 
nodes even further. 

This will be done by first using Simpson's rule on subintervals of length 
0(k1/4). The number of such subintervals of [0, t4] is 0(k-1/4). The length of 
the remaining subinterval is at most 0(k1/4). On this remainder, we apply the 
trapezoidal rules with meshsizes first 0(k1/2) and then 0(k314). The remaining 
subinterval is now of length 0(k314), and here we use the rectangular rule with 
meshsize k. The quadrature error of this combined rule is then 0(k) and the 
storage requirement is O(k-114). 

We now make the above precise. Let mo = Lk-1/4J and define ki = m-71k, 
1 < i < 4. We shall now describe the choice of the quadrature points {tn,j } in 
[0, t, ]. We shall often denote these by {i t,} for short, since the dependence on 
n will be clear. First define tj = jk4, 0 <_ < P4n, where P4n is the largest 
even integer such that tP4n < tn . Next, on the remaining subinterval [tP4n 5 tn] , 
whose length is at most 2k4, we use quadrature points with meshsize k3, and 
thus define tj = tP4n + (i - P4n)k3 , P4n < i < P3n, where P3n is the largest 
integer such that tp3n < tn . We then define the remaining quadrature points in 
[0, tn] by using meshsizes k2 and k, in turn. In this way, we can write the 
quadrature points by 

* jk4, O<? <P4n 
J p4n+(j-p4 )k3, P4n<I<P3n, 

tP3n + (]-P3n)k2, P3n < J <P2n: 
tP2n + (-P2n)kI 5 P2n < <_ Pin 5 

where P2n and Pin are the largest integers such that tP2n < tn and tPln < tn- 
Thus, we divide [0, tn] as 

P4n IP3n 

[0 tn] = [tJ-1 U tj] |U u [tj_l I tj] 
ij=l / j=P4n+ I 

P2n Pin 

U u [tj_ I tj U u [tjO - I ti 
J=P3n + I J =P2n + I 

- I4 U I3 U I2 U II 

We shall use Simpson's rule with stepsize k4 on I4, and the trapezoidal rule 
with stepsize k3 on I3 and with stepsize k2 on I2. On I, , we shall use the 
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rectangular rule with stepsize k, = k. Thus, the modified Simpson's rule is 
defined by 

n k4 
P4n-1 

j )+4t j of (ep) = f3 Z {p(i(1) + 4e(P(1) + l(t,+i)} 
j=1 

j is odd 

(4.6) + Z {(tjl) + (P(t)} 
J=P4n +1 

k P2n PinI 

+ 2 {0(-tj + O(p j) I+ k E (tj) 
J=P3n+1 J=P2n 

-4n (o) + n ((o) + i2n ((o) + an (0O) 

To give an upper bound of the number of levels that need to be stored, we 
first notice that the number of quadrature points in I4 is bounded by t0/k4. 

Since the length of 13 is less than k4, the number of quadrature points in I3 

is bounded by k4/k3, etc. Thus, we have 

Smax = t-/k4 + k4/k3 + k3/k2 + k2/k1 = t-lk4 + 3mo = 0(k-1/4) 

The analysis of Simpson's rule is similar to that of the rectangular and trape- 
zoidal rules. We first note that this rule is BE-stable by showing that it has 
dominated quadrature weights. For 1 < i < 4, we define 

1e =f ki, j _ o (mod m-71), 
J' 0 otherwise. 

Since we have 
n-I t 

i < k 
n 

< k- t Z JWS?ki ikk=t 
j=0i m-I ki 

and 
4 

vOnj~ N' (Oj 
i=l1 

we can choose the woj thus defined as the dominating weights. 
Moreover, since the difference of qJ+l (ep) and qj(ep) occurs only on 

4 

U , tp, ?+I, 
i=l 

we obtain 

1(qi _ q'j) (q') I? < Ck E ]J IlDiep(s) II ds. 
i=l tpl J 

On the other hand, we easily obtain 

IIqi(q)I < Ck2 j E IDu(s)II ds. 
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Therefore, similarly to the proof of Theorem 4.2, we obtain 

n- I'tn 4 

E II(qj+' - qj)(DhU)II < Ck J E IlDsu(s) I ds 
j=O ?=o 

i= < Ck {Iluoll + 1;EIlDsu(s) II ds} 

Hence, by Theorem 3.6 and Lemma 3.7, we obtain: 

Theorem 4.4. Let u be the solution of (1.1) and Uhn the solution of the back- 
ward Euler type scheme (1.5) using the modified Simpson's rule defined by (4.6). 
Assume Bh,t and B(h,s' < i < 4, are dominated by Ah. If IIuoh - UoII < 

ChrIIuOIIr , then, for tn E J, 

- u(tn)(1 < Chr {HUOHlr + llutHlrds} 

+ Ck {IuoHl + j Z IDsu(s) II ds} 

Note that the application of Simpson's rule requires higher regularity with 
respect to time than the last two quadrature formulas. 

5. CRANK-NICOLSON TYPE SCHEMES 

In this section we discuss the fully discrete Crank-Nicolson type schemes of 
(1.6). By Thomee [11], for tn E J, the basic time-stepping error is bounded by 

IIlenlI ? Chr {IIuoIIr + J IlUtIIlrds} + Ck 2 (Ilutttll + IIAuttllI) ds. 

This time, we shall use the term CN-stability to refer to Ek-stability. Since 
the Crank-Nicolson time discretization is strictly accurate of order p = 2, we 
obtain immediately from Theorem 3.6 the following result. 

Theorem 5.1. Let u be the solution of the initial-boundary value problem in 
(1.1), and let Uhn be the Crank-Nicolson approximate solution defined by (1.6). 
Let Qnkh(p) be defined by (3.19). Assume that Bh and Bh,t are dominated by 
Ah . If the quadrature rule is CN-stable, and if 11 Uoh - Uo 11 < Chr 11 uo llr, then we 
have 

IIUn - U(tn) 1 < Chr {IIuoIlr + 1 Ilutllrds} 

+ Ck2 J + IlAuttll) ds + CIIIQkh(RhU)III, tn E J . 

We shall give two quadrature formulas below; both of them have persistent 
dominated quadrature weights and hence are CN-stable. 

5.1. A modified trapezoidal rule. The simplest second-order quadrature for- 
mula is the trapezoidal rule. We shall apply the standard trapezoidal rule with 
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meshsize k on [0, t,-,] and the rectangular rule on [tN1, tn-112] to define a 
modified trapezoidal rule: 

(5.1) 2 ) (qP(tj) + o(tj>1)) + 2 (P(tn-1) (() + ( o) 
J=1 

Obviously, the storage requirement for this rule is Smax < t?/k = O(k-1). In 
the previous section we have seen that the storage requirement of the backward 
Euler type scheme using the trapezoidal rule is O(k-1/2). We shall prove that 
the Crank-Nicolson type scheme using the trapezoidal rule (5.1) is second-order 
with respect to time, so that a larger time stepsize may be used for the same 
overall accuracy. Hence, in this respect the storage requirements for these two 
schemes are of the same order. 

We find immediately that this rule has dominating weights wj = k and 

n-I 

E I c0j+I, i - c0jil = , O < i < n - I , tn E J.- 

Hence, the quadrature rule (5.1) has persistent dominated weights, which shows 
the CN-stability of this rule by Theorem 3.5. 

We now give the error estimate for the fully discrete Crank-Nicolson type 
scheme using the modified trapezoidal rule. 

Theorem 5.2. Let u be the solution of (1.1) and Uhn the solution of the Crank- 
Nicolson type scheme (1.6), using the modified trapezoidal rule (5.1). Assume that 

Bh, Bh,t and ihs' i= 1, 2, are dominated by Ah. IfUlluoh-uoI ? Chluolr 
then, for tn E J, 

IIUn - u(tN)II < Chr {IIuoIlr + I Ilutllrds} 

+ Ck2 {IIuoII + j (lutil + IIutttII + IIAuttII)ds} 

Proof. By Theorem 5.1 and Lemma 3.7 we need only prove that 

n-I tn 

Z II(qj, 1/2 - qj -l/2)(IDu)(I < Ck2 j (IIu(s)II + IIut(s)II + lutt(s)II) ds. 
j=0 

We shall start from (4.3). Since this time 

jq, 1/2 _ j, - l/2) ((p) = k(ptj) - tj 1/2 )ds 

we obtain 

II(qj,1/2 _ qj -1/2)(q) II < Ck2 tJ+ ,2 II D2o(s)jI ds 
-J i/2 

and hence 

III 11 < Ck2 / 11 ' u(s) lh + IIDsu(s)II + IlDs u(s)(() ds. 
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We easily obtain 

1I2H ? Ck3 X/ (Iu(s)II + IIDsu(s)II + IIDs2u(s)I) ds 

ftj? 1/2 

+ Ck2] (HJu(s)HI + lDsu(s) I) ds. 

These bounds for I1 and 12 lead to the desired conclusion. o 

5.2. A modified Simpson's rule. The storage requirement for the modified 
trapezoidal rule defined by (5.1) is O(k-1 ) . As we did before for the backward 
Euler type scheme, we may use a quadrature rule with higher-order truncation 
error on fewer quadrature points to reduce the memory requirement without 
sacrificing the accuracy. We now present such a quadrature formula based on 
Simpson's rule. 

Let m1 = Lk-1/21 and k1 = m1k. Define jn to be the largest even integer 
such that inki < tn . We introduce the quadrature points 

t -t _ k1, ? 0<_ <_ in, 
ti nJ- { ink,+(JU-n)k, In< <n, 

where tln = tn-I . We now apply Simpson's rule with stepsize k1 on [0, tjj, 
the trapezoidal rule with stepsize k on [tjn, tn- -J, and the rectangular rule with 
stepsize k/2 on [tn-I , tn-112], i.e., we set 

j.n - I 

,fn((q) = y Z {(ltj_li) + 49(1tj) + o(tj+1)} 
j odd 

(5.2) k In"-l k 
+ 2 (Go(tj) + (P(tj+ )) + 2 (tin 

j=jn 

n n((O) + .2n (() + . n() 

The storage requirement for this rule is 

Smax < to/k1 + ki/k < tl/mik + ml = 0(k-112). 

We now show that this quadrature formula has persistent dominated weights, 
and therefore is CN-stable. It is easy to see that the quadrature rule has domi- 
nating weights of the form 

[Ck1, j--(mod ml), 
ojj Ck, otherwise. 

We thus need only prove the validity of (3.17). Consider a fixed i = 21mI + io 
where 0 < io < 2ml. By the definition of wj1, when j o 0 (mod2ml), 
we have w1j+1,i - w,jji = 0 for j > i. Now let I = 0 (mod2ml). If j > 
2(1 + 1)ml, both 1)j+,1 , and oiji are quadrature weights corresponding to 
the part of an (ep) determined by Simpson's rule, and hence wjj+1 i - oj i = 0 . 
Since the only remaining j > i is j = jo = 2(1+ ) m1 , and since the quadrature 
weights are dominated by wi, we obtain 

n-2 

E I(Zi+l,I - wjiEl= 10-o+l,i - ioJijj< 2wi. 
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Following the outline of the proofs of Theorems 4.3 and 4.4, we may conclude 
that 

XII(qj' - q )'12)(1Du)II < Ck2 {IIuoII + j E IID;u IIds} 

and therefore we obtain: 

Theorem 5.3. Let u be the solution of (1.1) and Uhn the solution of the Crank- 
Nicolson type scheme (1.6) using the modified Simpson 's rule (5.2). Assume that 
Bh, Bh t, and B*)h, i = 1, ..., 4, are dominated by Ah. If IlUoh -UoII < 

Chriluollr, then, for tn E J, 

11 Uhn- u(tn) 11 < Chr {IIuollr + j I Iutllr ds} 

+ Ck2 {IIUoII + f 
IIDiull + IIAuttll) ds}. 

6. A THIRD-ORDER PADE APPROXIMATION 

In this section, we consider higher-order Pade approximations; in particular, 
a third-order case. 

6.1. Higher-order Pade type scheme. Following common practice, we shall 
call a time discretization accurate of order p if, in addition to (3.5), we have, 
for =O,...,p-1, 

5E,lii(,.= (j;l/+1 (e ~ (i) ?OLP) j! )4 

Setting 

=iA r(;i+ - E 'IJ - g() 

(6.1) 0 p 

Yp(i= ()AP+) (r(A) - ( 

we shall say that it is strictly accurate of order p if 

(6.2) y{(A) =0, 0=0 , ... p -, 

Yp(A) = 00) A p0. 

For instance, the backward Euler and Crank-Nicolson discretizations are strictly 
accurate of order p = 1 and p = 2, respectively. 

Let us consider the subdiagonal Pade discretization that is strictly accurate 
of order p, p > 1. By Brenner, Crouzeix, and Thomee [3], if Iluoh - UoII < 
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ChrIlUoIIr, then we have the error estimate 

Ilenl1 < Chr {IIUOIIlr + tn sup IIUt(S)IIr} 
0<5< 

tn~~~~~t 

+ CkP {tnIIU'P)(0)112 + (1 + tn) jU IIu'p+)(S)1(II2 ds} 

Therefore, for a scheme using an Ekh-stable quadrature formula, we have by 
Theorem 3.6 that 

IIU n _ U(tN)A < C(u){hr + kP} + CIIIQnh(Rhu)III. 

6.2. Third-order (1, 2) Pade approximation. For simplicity, we shall only give 
a scheme based on the third-order (1, 2) Pade approximation 

2z - 6 
r(z) Z2+ 

- 
z2 + 4z + 6 

When n < 2, we shall chose Ti = 0, T2 = 1/2, and T3 = 1, and further 

1 _ 4 A + 
gl(A ) 2+4= +6 92 - 932+4+6 g3 A2+4+6 

When n > 3 weset Ti= i, 1 < i< 3, andlet 

gi (A) = A + 23/2 92(A) = -8 93 5/2 

Thus, we obtain a time-stepping procedure strictly accurate of order 3. 
Since the subdiagonal Pade approximation has the smoothing property, quad- 

rature formulas with dominated weights are Ek-stable with respect to the above 
time discretization. Now we shall construct a third-order quadrature formula 
by means of Simpson's rule. More specifically, denote the largest even integer 
less than or equal to n by in. When n < 3, we use the rectangular rule on 
[?,5tn-Tl, i.e., 

(6.3a) fn,lT(,,) = k(n - Ti)k(O). 

When n > 3, we apply Simpson's rule on [0, t1n-i] and the trapezoidal rule on 
Itj n- l,tn-A, 5i.e., 

k in- 
-2 

an, i (rp) = _ ((o(tj) + 4o9(tj+1) + O(tj+2)) 

(6.3b) j even 

+ 
k (n in)((O(t1n) + (O(tn-i)) . 

Since, clearly, the quadrature weights of (6.3) are dominated by Ck, the quadra- 
ture formula is Ek-stable. Furthermore, we have 

fC((o)k2, n <2, 
{ C(p9)k3 n > 3, 

and, by the stability of Ekh, we have 

IIQkh ( C ) i< l ? m.asxIn { k B + max IX I q7 (Bho)+i}. 
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By Rh = A-,7 'A, and since Bh and its derivatives are dominated by Ah, we 
further obtain 

IlQn h(RhU)II < C(u)k3 , tn E J. 
This leads to the following theorem. 

Theorem 6.1. Let u be the solution of the initial-boundary value problem in (I1.1) 
and Uhn the approximate solution generated by the third-order ( 1, 2) subdiag- 
onal Pade-type scheme described above using the modified Simpson's rule given 
by (6.3). Assume that Bh,t and DiBh (t, s), 0 < i < 3, are dominated by Ah. 

If Iluoh - uoII < Chriluollr, then 

11 Uhn -U(tn) 11 < C(u)fhr +k3},5 tn E J. 
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