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ADAPTIVE STREAMLINE DIFFUSION FINITE ELEMENT METHODS 
FOR STATIONARY CONVECTION-DIFFUSION PROBLEMS 

KENNETH ERIKSSON AND CLAES JOHNSON 

ABSTRACT. Adaptive finite element methods for stationary convection- diffusion 
problems are designed and analyzed. The underlying discretization scheme is 
the Shock-capturing Streamline Diffusion method. The adaptive algorithms 
proposed are based on a posteriori error estimates for this method leading to 
reliable methods in the sense that the desired error control is guaranteed. A 
priori error estimates are used to show that the algorithms are efficient in a 
certain sense. 

0. INTRODUCTION 

The Streamline Diffusion method (SD-method for short) is a general finite 
element method for hyperbolic problems developed during the 1980s with appli- 
cations in particular to convection-diffusion and compressible and incompress- 
ible flow problems (see [5-14, 18-19]). The SD-method is a generalization of 
the Standard Galerkin method obtained by two modifications. First, the test 
functions are modified by adding a multiple of a linearized form of the hy- 
perbolic operator involved, which gives a weighted least squares control of the 
residual of the finite element solution (where the residual, roughly speaking, is 
the deviation from equality when the computed finite element solution is in- 
serted into the given differential equation), and secondly, artificial viscosity of 
a particular form is added with the viscosity coefficient depending on the local 
mesh size and the absolute value of the local residual of the finite element solu- 
tion. We refer to the first and second modification as streamline diffusion and 
shock-capturing artificial viscosity, respectively. The SD-method combines good 
stability with high accuracy, so that, e.g., shocks are resolved within few mesh 
points without under- or overshoots, and the precision in regions of smoothness 
of the exact solution is high. Extensive theoretical results are available, rang- 
ing from local error estimates for scalar linear convection problems to global 
error estimates for the incompressible Euler or Navier-Stokes equations with 
no lower bound on the viscosity. Further, convergence results for scalar con- 
servation laws in several space dimensions and entropy consistency results for 
systems of conservation laws like the compressible Euler equations have been 
derived. Numerical results for a wide range of problems, including compressible 
and incompressible flow, are also available. 
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In recent years we have developed adaptive finite element methods for elliptic 
and parabolic problems based on a posteriori error estimates (see [1-3]). In 
each of these cases we consider the following problem (P): Given a problem 
with exact solution u and a norm II * II, design an efficient adaptive algorithm 
(A) for constructing a finite element mesh T such that 

(0.1) Ilu - Ull< TOL, 

where U is the finite element solution on the mesh T and TOL > 0 is the 
error tolerance. Clearly, our problem (P) has two ingredients: First, we want the 
adaptive algorithm (A) to be reliable in the sense that the error control (0.1) is 
guaranteed by the construction. Secondly, we want (A) to be efficient in the sense 
that, ideally, the constructed mesh T is nowhere overly refined, as compared to 
an optimal mesh T which is a mesh with minimal degrees of freedom such that 
Ilu -ll < TOL, where ii is a standard nodal interpolant on T of u. In [1-3] 
we have demonstrated theoretically and in numerical experiments that problem 
(P) may be solved (with varying degree of precision concerning the efficiency) 
in the case of linear model problems of elliptic and parabolic type. For such 
problems the adaptive algorithms are based on a posteriori error estimates of 
the form 

(0.2) Ilu - Ull < F(U, h, data), 

where the error bound F depends on the computed solution U, the mesh size 
parameter h (which is here a function of space (and time)) and the data of the 
problem. The typical form of the a posteriori error bound (0.2) is as follows 
for an elliptic problem with piecewise linear basis functions and with I, e.g., 
the L2-norm: 

(0.3) Ilu - Ull < Cllh2R(U) II, 
where R(U) is the residual of U properly evaluated. The adaptive algorithm 
based on (0.2) seeks to construct a mesh T with mesh size h and corresponding 
discrete solution U such that F(U, h, data) < TOL, usually by constructing a 
sequence of meshes Tj of mesh size hj with corresponding solutions Uj, where 
T1+I is constructed from Uj by equidistribution of the element contributions to 
F(Uj, hj+1, data) such that F(Uj, hj+1, data) < TOL. Clearly, an adaptive 
algorithm based on an a posteriori error estimate of the form (0.2) will be reli- 
able in the sense that if (U, h, data) < TOL, then (0.1) will be satisfied. To 
prove efficiency we have used a priori error estimates to bound F(U, h, data) 
by quantities measuring relevant interpolation errors. Note that in order to 
demonstrate the efficiency of the adaptive algorithm, both the a posteriori error 
estimate (0.2) and the a priori error estimates used to bound F(U, h, data) 
need to be (reasonably) sharp. 

The main purpose of the present work is to extend our results on adaptive 
finite element methods for linear elliptic and parabolic problems to the SD- 
method for linear convection-diffusion problems in model form. In this case 
our adaptive algorithms will not be fully efficient in the above sense, compared 
to interpolation, but may be viewed as being reasonably efficient in the sense that 
in typical cases the meshes generated by the algorithms may be only mildly over- 
refined. As far as we know, the present work is the first to show that reliable and 
reasonably efficient adaptive error control based on a posteriori error estimates 
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is indeed possible also for hyperbolic problems. Previous adaptive techniques 
(see, e.g., [16, 17]) for hyperbolic problems such as convection-diffusion prob- 
lems have been based either on ad hoc criteria suggested by interpolation error 
estimates, refining the mesh locally according to the size of the gradient or a 
difference quotient of the computed solution, or on simple a posteriori error 
estimates of the form 

(0.4) Ilu - Ull < CIIR(U)II, 

where II * is the L2-norm and R(U), again, the residual of the finite element 
solution U. In the first case the reliability, in particular, can be questioned since 
the relation between the mesh refinement criteria and the actual error is unclear, 
and in the second case the efficiency may be very low since in the interesting 
cases of a nonsmooth exact solution, IIR(U)II may tend to infinity as h tends 
to zero because R(U) may be large (typically of order O(h-1/2) or O(h-1)) in 
regions of nonsmoothness. Comparing (0.4) and (0.3), one notes the presence 
of the factor h2 in (0.3), which reflects the ellipticity of the underlying problem 
in that case. 

The a posteriori error estimate for the SD-method to be presented in this 
paper may be formulated roughly as follows: 

(0.5) Ilu - Ull < CII min(I , R(U))Il, 

where now the right-hand side may tend to zero (at close to optimal rate) as h 
tends to zero, leading to reliable and efficient adaptive methods. In the proofs 
of the a posteriori error estimates for the SD-method and the reliability and 
efficiency of the associated adaptive methods, we use in an essential way the 
special features of the SD-method, both the streamline diffusion modification 
and the shock-capturing modification. Both modifications were originally de- 
signed from stability and accuracy considerations without having adaptivity in 
mind, but this paper shows that the SD-method in fact has the basic features 
required to make reliable and efficient adaptive error control possible (which is 
not the case, e.g., for the Standard Galerkin method for convection-diffusion 
problems). In particular, we note that the residual plays a fundamental role in 
both the design of the SD-method and in the a posteriori error estimates. 

The proofs of the a posteriori error estimates follow the same general pattern 
in both the elliptic and parabolic cases, and also in the present hyperbolic case: 
An error representation formula involving the computed discrete solution and 
the exact solution of an associated dual problem is established, and the error 
is estimated in terms of the residual of the finite element solution and the lo- 
cal discretization parameter h, using the orthogonality present in the discrete 
equations and elliptic regularity of the dual problem. Note that the improved 
estimate (0.5), as compared to the standard estimate (0.4), results from using 
the elliptic regularization built into the SD-method through the shock-capturing 
artificial viscosity (and not simply by cutoff and localization, cf. below), which 
gives a new way of viewing the advantages (and necessity) of elliptic regulariza- 
tion through artificial viscosity in hyperbolic problems. 

Our long-term goal is to design adaptive algorithms with some degree of 
reliability and efficiency for complex hyperbolic problems such as the Navier- 
Stokes equations for compressible or incompressible flow. Formally, we may 
extend our techniques for proving a posteriori error estimates also to these 
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complex problems, by linearization and introducing again a certain continuous 
dual problem. The main technical problem is now to quantitatively estimate 
the stability of the dual solution, which in a certain sense reflects the stability 
of a linearized version of the given equations. In general (e.g., for systems 
in several dimensions), it seems impossible to establish the required stability 
estimates including certain solution-dependent constants by theoretical analysis, 
but it may still be possible to obtain the desired estimates by solving the dual 
problem numerically. Extensions of the results of this note to time-dependent 
linear convection-diffusion problems are given in [4]. Further extensions to 
adaptivity, including mesh orientation and stretching, will be presented in future 
work. 

For numerical experiments based on the adaptive methods presented in this 
note we refer to [13]. 

The remaining part of this paper is organized as follows: In ? 1 we introduce 
the two stationary convection-diffusion type model problems to be considered 
and derive stability estimates for their solutions in terms of data. In ??2 and 
3 we introduce the SD-method for the approximate solution of these problems 
and derive the a posteriori error estimates to be used in the final ?4, where we 
formulate corresponding adaptive algorithms and discuss their reliability and 
efficiency. 

1. Two MODEL PROBLEMS 

We shall consider, in parallel, the two model problems 

(I.lIa) UX - div(gVu) = f in Q, 
(I.lb) u=O onruFro, 

(I.lIc) (9 u=0 on I+, 

and 

(1.2a) uX - div(eVu) = f in Q, 
(1.2b) u = O on F, 

where Q is a bounded, convex polygonal domain in R2 with boundary F = 

Fr uFOuF+, u, = au/ox, &u/&n = Vu*n, n = (nl, n2) istheexteriorunit 
normal to F, and f and e > 0 are given data. The pieces IF, FO and F+ 
denote the parts of F where the x-component n1 of n is negative, zero, and 
positive, respectively. 

We shall mainly be concerned with the case when e is small, in which 
case (1.1a) and (1.2a) models a stationary, convection-dominated, convection- 
diffusion type process with flow velocity (1, 0). Note that we are seeking es- 
timates valid for arbitrary e > 0 with, in particular, all constants appearing 
being independent of e. For convenience, we shall assume that e < 2 in 
Q, which, if not already satisfied, can be achieved by the change of variables 
x' =sx,y' =ssy with s= 1/(2t) and g=maxge. 

It is well known that the solutions of problems (1.1) and (1.2) may have 
singular layers of width 0(+/E) along characteristics {(x, y) : y = yo} of the 
corresponding reduced equation with e = 0. This will be the case, e.g., if f 
has a jump discontinuity along such a characteristic or, in a more general class 
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of problems, if there is a jump discontinuity in the boundary data along the 
'inflow' part F of IF. Moreover, the solution of problem (1.2), with Dirichlet 
boundary conditions all around the domain, will in general also have an 'outflow' 
singular layer of width 0(e) along ]F+. 

Stability estimates. Below we shall use the following basic stability estimate for 
the problem (1.1), where the control of u, and eD2u is of particular interest: 

Lemma 1.1. Assume there is a constant c such that 

(1.3a) -c < gx < cmin(l, e) in Q, 
(I1 .3b) I-eyl < C min(l1, .61/2) in Q, 

and let u be the solution of (1.1) . Then there is a constant C = C(c, Q) such 
that 

11e1/2VuII + Ilull + lluxll + lleD2ull + (f u2n1dF) 

(1.4) 1/2 

+ (JeVuI2In, IdF) < Clifli, 

where liv 11 = (fn v2d) 1/2 and D2u = (u2x + 2u2y + u2y) 1/2 

Proof. We first multiply (1.1a) by u and integrate over Q to obtain, after 
integration by parts using (1. Ib, c), 

( 1.5) 2 / u2nidF + llel/2Vu112 = (f, u) < llfll IIUII, 

where (, *) denotes the L2(Q) inner product. 
We then multiply (1. la) by ux and integrate to obtain 

IIuXI12 + (eVU, VuX) -4 e ,)uxddF = (f, ux). 

On F_ , where u is constant (= 0), we have that uxn2 = uynI and, conse- 
quently, 

au ux = (uxni + u n2)uX = IVu12ni. 

After integration by parts in the term (eVu, Vux) = 2 ned lVu12dQ we thus 
have 

IIuXI12 + 2 jeIVUI2In1Idr = (f, ux) + 2(exVu, Vu). 

We now use our assumption (1.3a) together with (1.5) and the fact that Ilull < 
CIIuxII (since u = 0 on part of the boundary) to conclude that 

(1.6) lIuxll2 + 
I j evuI2 In1IdF < llfll(lluxll + Cllull) < Cllfll Iluxll. 

The desired estimate for le 1/2Vull, Ilull, lluxll, and the boundary integrals in 
(1.4) now follows at once. 
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In order to estimate the term jjeD2uIj in (1.4) we first note that after inte- 
gration by parts twice we have 

e2uxyuxydQ = J e2(uxyn2 - uyynl )uxdF + 2 j e(cxuyy - uxy)uxdQ 

+ J 2uyyuxxdQ = I + II + III. 

Here, by our assumptions (1.3ab), IIII < CIIeD2ull llull. We shall now estimate 
the boundary integral I. On Fo, the integral vanishes, since ux = 0. On F+, 
we have that ux = -uyn2/nl and consequently (Uxyn2 - uyyni)ux = I a -9 U2 

where = a n2 a + n 1 -a denotes the tangential derivative along F. For each 

(straight) line segment Fr' of F+, we thus get 

I e(uxyn2 - uynl )u ]2 n 0 uydr= - n, |e 0 TY 

Here we have used the fact that Vu vanishes at the endpoints of IF(), or n2 = 0 

on rF(). Similarly, on F we have ux = u nj1n2 and, consequently, for each 
line segment rF() of F_ , 

J 
2 (uXyn2 - uyynl)uxdl = 

l 
2nj | 2 

0 
u2dl- = nj | aa 1-u2dF. 

In the special case n2 = 0 the integrand vanishes. Using our assumption 
(1 .3ab), we now conclude that {II ? C f V U 1VuI2Ini dv. Putting things together, 
we find that 

lleD2UI2 = f e2(u2x + 2U2 + u2y)dxdy 

= j 62(u2x + 2uxxu + Y)dxdy + 21 + 2II 

< j6A^U112 + C | IVu12fld + 2 leD2ull2 + CqJuXI12. 

Now using the differential equation ( 1. la) and the assumptions ( 1. 3a, b) together 
with our previous estimates (1.5) and (1.6), we conclude that 

11eD 2uI < C (llfll + IIuxII + JlVe . VuII + (f VU12fldF) 1) Clfl. 

This completes the proof of Lemma 1.1. O 

For problem (1.2) with Dirichlet data also along F+, we have the following 
counterpart of Lemma 1.1: 

Lemma 1.2. Assume (1.3), let u be the solution of (1.2), and let p be a 'cutoff' 
function such that 0 < p < 1 in Q, p = 0 on F+ and 

(1.7a) ? < -x < max?c 1, e /) in Q, 

( 1 .7b) I (y I < max(I 1, (p/ VE) in Q, 
(1.7c) f9ex < c- in Q. 
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Then there is a constant C depending only on Q and c such that 

(1.8) jjujj + jjVujje + jjuxljjX + (fe<IVuI2InlIdF) 1 Cljfjj, 

where lIV lIv = (f 1/v2d )1I2. 
Proof. Multiplication of (1.2) by u now gives IIVU112 = (f, u) < llf II jIUjj. 

Given a positive lower bound c for e, we would have jlull < CjjVujj6, and 
it would follow that 

(1.9) ljull + lIVulle ' CljfjI, 

with C = C(c) . By considering the corresponding equation for the transformed 
dependent variable v = e-xu (with 0 < e < I as above) it is easy to see that, 
in fact, (1.9) holds with C independent of e. 

We now multiply (1.2a) by (ux and integrate to obtain 

II I ,__112 _ -__U_ _r_a u 
+ (eVu, q'VUX) + (eVU, VpUX)- j - ux dF 

= (f, qiux) < ClIfII2 + Iu12Il. 

Here, 

III IV v 

(eVu, oVux)= ogeIVuI2ni dr+ IIlVUl1(12x) -j(exqVu, Vu). 

Consequently, using (1.7a,b), we obtain 

I + IV = 7luxIl (-Px) + (euy, (oyux) +2 lluylle(_,x) - IIuxII2-Gl Vull8. 

Finally, as in the proof of Lemma 1.1 we deduce that 

II + III Jje (pItVul2n a u) dF = 
I 

X eoU1Vu12in, I dl > O. 

Together, our estimates now show that 
~~~~ ~~~1/2 

(1.10) Ijuxjj'P + (jI(U1Vu12in,ldF) < C(jjfj + jIVUjjg) 

if we also take into account the boundary condition on ( . The desired estimate 
(1.8) now follows from (1.9) and (1. 10). 0 

2. THE STREAMLINE DIFFUSION METHOD 

We now formulate the SD-method for the discretization of (1.1) and (1.2). 
Let T = {K} be a partition of Q into 'edge-to-edge' triangular elements K 
such that 

(2.1) ch2 < |dQ VKe T, 
K 
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where hK is the diameter of K and c is a positive constant. Depending on 
the problem under consideration, (1.1) or (1.2), we define V by 

(2.2a) V = {v E C(Q): VIK is linear in (x, y), VK E T, vir urF = O}, 

or 

(2.2b) V = {v E C(Q): VIK is linear in (x, y), VK E T, vlr = O}, 

and seek U E V such that 

(2.3) B(U, v) = L(v), Vv E V, 

where 

B(w, v) = (wx, v + Jvx) + (gVw, Vv) - (div(9Vw), 15Vx)T, 

L(v) = (f, v + Jvx), (W, V)T= E JwvdQ 
KET 

(2.4) a = cl max(O, h - e), 
(2.5) t(U, h) = max(e, C2h2f -X) 

h being the mesh function defined by hIK = hK, and cl and c2 positive 
constants. (Concerning the definition of t , cf. Remark 1.2 below.) 

Note that in general, since e depends on U (unless e = e ), the discrete 
problem (2.3) is nonlinear, even though the continuous problems ( 1.1) and (1.2) 
are linear. In practice, when iterative methods are used to solve the discrete 
equations, the additional complication due to the nonlinearity introduced by e 
is small (cf. below). 

For technical reasons we shall assume that the modified diffusion coefficient 
e does not vary too abruptly from one element to another. In particular, we 
shall assume that for some constant C independent of K, 

(2.6) maxe < Cmin , 
K N(K) 

where N(K) denotes the neighborhood of K consisting of the elements K' 
sharing at least one node with K. Note that by smoothing of e by local aver- 
aging we may guarantee that (2.6) holds. Below we shall make further regular- 
ity assumptions on t , which may require additional smoothing. For simplicity 
we shall assume that e already as defined by (2.5) has the desired regularity 
properties and leave the analysis of the general case to future work. Note that 
smoothing of e also improves the convergence properties of iterative methods 
when solving the nonlinear discrete problem (2.3). 

3. A POSTERIORI ERROR ESTIMATES 

In this section we shall derive a posteriori error estimates for the discretiza- 
tion method (2.3) for the problems (1.1) and (1.2). It is then natural to split the 
error u- U into two parts, p = u - i and 0 = ui- U, where iu is the solution 
of the problem obtained by replacing e by e in (1.1) and (1.2), respectively, 
so that iu satisfies 

(3.1) ix - div(tVfi) = f in Q, i = on F u rF, = 0 on IF, an 
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or 

(3.2) iX - div(Vi) = f in Q, u = 0 on F. 

Note that p = u - u4 is the difference between the solutions of two continuous 
problems with different diffusion coefficients, and that 0 = u - U is the error 
in an SD-approximation of (3.1) or (3.2) in a case when the shock-capturing 
viscosity is equal to the given viscosity, and thus the discrete problem may be 
viewed as being linear. We remark that we may view it as a regularization of 
the exact solution u such that the current mesh is sufficiently fine to resolve all 
details of u4, whereas if it $ u (i.e., if e > e ), then some details of u may be 
left unresolved. Since the mesh fits with the regularity of iu we can prove almost 
optimal a posteriori estimates for 0 = u - U, using the elliptic regularization 
built in through the artificial viscosity t, whereas for p = u - it we will obtain 
somewhat less precise results. In the next section, we shall formulate different 
adaptive methods based on controlling each of the error bounds for p and 0 
on, say, the tolerance level TOL/2. Alternatively, we shall force p to be zero 
by refining until e = e, in which case ui = u. Clearly, in the second case there 
is no need to estimate p and it suffices to estimate 0 . 

Below we shall denote by Dh U the piecewise constant function defined by 

(3.3) D2UIK = (2 Z(IVUkI/hT)2) 2 K E T, 

where hT is the length of edge T of K and []T denotes the jump across T. 
Note that DMU may be viewed as a discrete counterpart of D2u. Below we 
shall also be using the notation 

min*( s f 1 in K ifOKnF_ $0, 

min*(1, s) = t1 min(I , s) otherwise. 

We now first consider the case of Neumann data along the outflow boundary. 
For the 0-part of the error we then have the following estimate: 

Lemma 3.1. Assume (cf: Remark 3.1 below) that 1VUI < cmin(l, e) and IVyI < 

cmin(l, 1/2) in Q. Let ui be the solution of (3.1) and let U E V with V 
defined as in (2.2a) be the corresponding discrete solution determined by (2.3). 
Then there is a constant C such that 

(3.4) 111i- Ull < 980(U h,5 f), 

where 

8F(U, h, f) = C (i min*(l, h2g-1)R(U)II + max el/211flI) 

R(U) = r(U) + ? D2U and r(U) = If - U, + Vt * VUl. 

Proof. With 0 = u- U, let z be the solution of the associated continuous 
'dual' problem 

(3.5) -z, - div(eVz) = 0 in Q, z = 0 on F+ UFO, ,- = o on . 
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Then 
f Oz 

116112 = (6, -z) - div((Vz)) (Ox, z) + (?VU, Vz) - | 0 ndF 

= (fI z) + | 3-zdF- (Ux, z) - (VU, Vz) - |t dr. 

Using (2.3), we get for any interpolant 2 E V of z, 

110112 = (f _ UX, Z Z - _ 
- (tVU, V(z - z)) - (Vt *VU, 052x) 

+ | 0 zdr - to a dF 
an a~~n 

=(f-Ux + Vt * VU, z-z -5x) + E (z -2)d 
K TEaK 

n 
IK 

+ | Oazdr - | ?t9a dF = I + 1I + III + IV, 

where nK denotes the exterior unit normal to AK, K E T. 
Let us first estimate the term I. We note that on one hand, 

IZ - z - J2xl < IZl + Izl + 6lZxl, 

and on the other hand, 

lz - - J3XI < Ch2e-7 (h-2elz - 21 + h-lel2x - zxl + lzxl). 
Here we have used the fact that 3 < Cmin(h, h2e-1), since 3 = 0 whenever 
e > h. We recall that the interpolant z of z may be defined so that 

(3.6a) 1iz IlK < CIIZIIN(K), 

(3.6b) i|Z - ZIIK < ChK JID'ZIIN(K), i= 1, 2, 

(3.6c) |IV(z - 2)IIK < ChKIlD 2zIIN(K), 

(3.6d) |I 2xIIK < ChK II 211K, 
where D1 = V and N(K) is defined as above. Note that in order to be able 
to estimate the interpolant in terms of the function values as in (3.6a), z is 
defined from local averages of z around each nodal point. This explains why 
the norms on the right-hand side in the estimates (3.6a-c) have to be taken over 
a small neighborhood of K and not just over K. Note also that (2.1) gives an 
upper bound (depending on c) on the number of elements in N(K) for any 
K. The last inequality (3.6d) is an 'inverse' estimate based on the fact that z 
is a polynomial on each K. 

From the above properties of 2 and our assumptions on e which, in partic- 
ular, imply (2.6), and the obvious counterpart of the regularity estimate (1.4) 
for the dual problem (3.5), we now get 

III < Cil min*(l, h2e-1)r(U)ll (llzll + lll2 + IIl2xII + llh-2e(z - 2)ll 

+ llh-le(zx - JI)ll + llzxll) 

< ClI min*(l, h2e-1)r(U)ll (llzll + IleD2zIl + llZ 11) 

< ClI min*(1, h2g-1)r(U)ll 11011. 
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Here we have taken into account the fact that the estimates (3.6b, c) are not 
valid on the elements along r71, since z, as a function in V, has to vanish 
there, and this is not the case with z in general. 

Further, as in the proof of Lemma 4.3 of [3], we have 

EJ-r [ J T 

< E(U) ( Z max* (1, Mh2 )hT(Z - z)2dT) 

< CE(U)II max*(l, h-2)(Iz - 21 + hlVz - V21)11 
< CE(U)(IIzII + II?D2zII) < CE(U)IIOII, 

where max* (1, s) is the obvious counterpart of min* (1, s) and 

E(U) = ( Jmin* (1, h? )h-1 e?[ dT) 

Here the sum is taken over all edges which are not part of FO u IF+ (where 
z - z = 0 ), and for the edges along r- we set [] = O u . As in [3, Remark 
2.3], the sum E(U) may be estimated in terms of D 2U defined by (3.3), and 
we have that 

E( U) < CIImin*( 1, h 2?-1 )gD^2 UI. 

It now remains to estimate the boundary integrals III and IV. From Lemma 1.1 
we have 

11111< Cmax~1/2 ~ I2 di)1/2 znid)1/2 
I II I (J C(an) In d1F ) (JdI1F 

< Cmax?1/211flI 11011, 

where C may depend on Q, for instance, on the upper bound for -nl on 
r-. 

In order to estimate IV, we first note that by the triangle inequality, 

02dF? (-2 + U2)nidF, 

where again C = C(Q) . From Lemma 1.1 we know that fr u2nldF < CllfI12. 
By putting v = U in (2.3) we find similarly, using our assumptions on e', that 

2 XU2nd+ IIVUII? + IIU'112 < (f, U + 3Ux) + (V?. VU, 3Ux) 

< IlfII (11 Ull + 11I Ux 11) + c max jl/211VUllll UX 1H3. 
Q 

Since 3 is small, we may here use a standard kick-back argument to conclude 
that 

U2n1dF < C(IIfII(IIUII + 113UxII)) < CllfIl lUll 
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where we have also used a counterpart of (3.6d) for U. Since U = u- 0, 
and ui may be estimated in terms of f using Lemma 1. 1, we have that Ul < 

C(IIfII + 11011) . By Lemma 1.1, we further have that 

4; 
d C11012. 

We may thus conclude that 

lIVI ? Crmax 1/2(IIfII2 + llfll 11011)1/211011 < 
1 

11012 + CmaxgIfII2, 

where C = C(Q). 
Putting all these estimates together, we find that 

ui - UI < C (l min*(1 2, 2- )r(U)II 

+11 min*(1, h2g- )gD^2UhI + max ?1/21IflI) 

Clearly, by estimating the two terms I and II simultaneously, we can derive the 
somewhat more precise estimate (3.4). This completes the proof of Lemma 
3.1. 0 

We now turn to the case of problem (1.2) with Dirichlet outflow boundary 
data. The counterpart of the estimate (3.4) for the 0-part of the error then 
reads: 

Lemma 3.2. Assume dist(JJ, F+) > 0; let ui be the solution of (3.2) and let 
U E V be the corresponding discrete solution determined by (2.3) with V as 
in (2.2b). Then, under the assumptions on e of Lemma 3.1 (cf. Remark 3.1 
below), there is a constant C such that 

(3.7) IIii- Ull :5 F(U, h, f), 
where F(U, h, f) = C(II min*(1, h2g-1)R(U) I + maxr' ?/2112flI). 
Proof. The proof is essentially the same as that of Lemma 3.1. The only differ- 
ences are that now the boundary integral IV vanishes, so that the 'max' is taken 
over r_ only, and that in order to be able to estimate a fi/ln on r_ we now 
need to assume that r_ and F+ are separated so as to be able to find a cutoff 
function (0 as in Lemma 1.2 with fo = 1, say, on F_ . 

Remark 3.1. The assumptions in Lemmas 3.1 and 3.2 on ? may be consider- 
ably relaxed. For instance, it suffices to assume, in addition to (1.3b), that the 
inequality ?x < c? (which we cannot expect to hold near an outflow singular 
layer) holds in a neighborhood of F_ , since this condition is used only to bound 
(aulan)r- , and that -cmin(1, ?) < ?x < C in Q. Note that in a typical ap- 
plication with an outflow boundary layer (of width 0(h)) we expect to have 
? = 0(h3) outside the layer and ? = O(h) in the layer, which is consistent with 
the stated requirements on ?. 

Remark 3.2. Note that in a singular layer where If - U I is large, we expect to 
have If - UI R(U), and consequently, with ? = ch2lf - U 

min(1 , h2g- lI)R(U) = min(R(U), R(U)/(clf - Ux I)) < Cmin(R(U), 1). 
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The term involving R(U) in the error bound F may therefore be small also 
in the presence of characteristic and outflow singular layers (of width 0(91/2) 

and O(?), respectively) in which R(U) is big, cf. (0.4), (0.5). Note that 
it is natural to use instead of (2.5) the following slightly different (implicit) 
definition of ?: ? = max(e, c2h2R(U)), involving the full residual R(U) and 
not just the part If - U, as in (2.5). With this choice of ? , we clearly have 
min( 1, h2?- l1)R(U) < Cmin(R(U), 1). 

We shall now proceed by deriving error bounds also for the p = u - ui part of 
the error. We shall then first consider the case of Neumann outflow boundary 
data as in problem (1.1) and the problem of characteristic singular layers. In 
the following two lemmas we first derive a preliminary estimate for p in terms 
of ui, ? and data, and then complete this via an estimate for VO to a full a 
posteriori estimate for p. The proofs of these two lemmas can be found in the 
Supplement section. 

Lemma 3.3. Assume f E Ho (Q) and (for simplicity) that e is constant in Q . 
Let u and ui be the solutions of (1.1) and (3.1), respectively. Then there is a 
constant C such that 

(3.8) IIu - fill < Fp(, ?, data), 

where 
Fp(u, ?, data) = C(IlaVfilli + IkoVfIli), 

= -2(? - c)2 and a = max(3l-3/2cV?l + 1 + ((o)x, 0). 

Lemma 3.4. Let ui be the solution of (3.1), and let U be determined by (2.3) 
with V as in (2.2a). Then, under the assumption (2.6) there is a constant C 
such that for 0 = u - U 

(3-9) JIVOlle < Cllmin*(I, ht- 1/2 )R(U)II. 
We may now put the estimates of Lemmas 3.1, 3.3 and 3.4 together to obtain 

a full a posteriori estimate for u - U in the case of Neumann outflow boundary 
data: 

Theorem 3.1. Assume f E Ho (Q) and that e is constant in LI, and let u and 
U be the solutions of (1.1) and (2.3), respectively, with V defined as in (2.2a). 
Then, under the assumptions of Lemma 3.1 on ?, there are constants C such 
that 

(3.10) Ilu - Ull < Fo(U, h, f) + Fp(U, h, f), 
where 

Fp(U, h, f) = C(Ilmin*(1, h- 1/2)R(U)II + IIVUIIi + lloVfll), 

p = g-2(? _ g)2, and o is defined as in Lemma 3. 1. 
Proof. Under the assumptions of Lemma 3.1, the function a defined in Lemma 
3.3 is bounded uniformly in Q, so that by the triangle inequality, 

IiaVuIIi < C(IIV0Isi + llVUIIe), 

and consequently, by Lemmas 3.3 and 3.4, 

(3.11) lIu-fll <p(U, h,f) 
= C(Ilmin*(l , h- 1/2)R(U)II + llVUIIi + llkVflli). 
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The a posteriori error bound for the 0 = u- U part of the error is given directly 
by Lemma 3.1. This completes the proof. [1 

It is possible to extend Theorem 3.1 to the case f ? Hoj(Q) by simply 
replacing f by an appropriate approximation f E Hoj(Q2) and using the L2 
stability in problem (1.1) to get the result: 

Theorem 3.2. Let u be the solution of (1.1) and let U E V be determined by 
(2.3), with V as in (2.2a) and f replaced by any f E Ho' (I) . Then there is a 
constant C such that 

(3.12) llu - Ull < Fo(U, h, f) + tp(U, h, f, f), 
where 

Fp(U, h, f, f) = C(llmin*(1, h -1/2)R(U)ll + IIpVfll + Ilf - fll + llVUll?), 

R(U) = If - U, +W Ve VUI + ?DMU and ?max(,e, ch2l - j). 

Proof. Let iu be the solution of (1.1) with f replaced by f . Then by Lemma 
1.1, 

iiu - all < Clif - f Ill, 
and from Theorem 3.1 we get the desired estimate for ui - U. [1 

We now turn our attention to problem (1.2) with Dirichlet data along 1+ and 
the additional problem of an outflow singular layer. We note at once that in this 
case the estimate of Lemma 3.3 is not sharp, since we expect to have lVuil = 
0(?-') in an outflow layer and thus in this case jlaVzulli = Q(- 1/2). One 
possible way of deriving analogues of Theorems 3.1 and 3.2 for problem (1.2) 
would then be to replace the L2-norm estimate of Lemma 3.3 by an estimate in 
a weighted L2 norm, using 0(h) cutoff at the outflow boundary, together with 
a separate estimate for the boundary layer error using maximum-norm error 
control of ui and U. Although probably feasible, such a procedure has the 
disadvantage of not being 'automatic', requiring, in particular, the specification 
of an appropriate (problem-dependent) cutoff procedure and a special treatment 
of the outflow layer. We shall therefore consider another possibility of replacing 
Lemma 3.3 by a sharper estimate in terms of ui , where, however, the step 
replacing ui by U leading to an adequate full a posteriori error estimate is 
technically more complex and therefore will be omitted in the present paper. 
We shall thus derive a sharp estimate for p in terms of iu, ? and data, as 
before, and base an adaptive method for p directly on this estimate by simply 
replacing the unknown argument ui by the computed solution U, leaving the 
problem of deriving a full a posteriori error estimate for p for future work. 
We note that since the finite element mesh for U fits with the regularity of ui, 
it is natural to expect that replacing ui by U in this way is possible, whereas a 
direct replacement of u by U in an a priori error estimate involving u may 
be more difficult to justify. 

Alternatively, as we shall see below, it is possible to derive an adaptive algo- 
rithm for full error control simply by adding ? = e as an additional control, in 
which case, of course, p = 0. 

The sharper estimate replacing Lemma 3.3 reads as follows: 
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Lemma 3.5. Assume dist(J-, r+) > 0 and that (for simplicity) e is constant, 
< ct /2 and &?I < c? in Q (cf. Remark 3.1), and let u and ui be the 

solutions of (1.2) and (3.2), respectively. Then there is a constant C such that 

(3.13) IIu - fill < , data), 

where 

7(u ?, data) = C (I(?- e)ui,Il + lld+((?-ce)uiy)yllm +max 1/2IIfII) 

and d+ is the distance to the outflow boundary F+ in the direction (1, 0). 
Proof. As in the proof of Lemma 3.3 (see the Supplement section), we have 
that 

p, - div(eVp)= in Q, 
where q = -div((? - c)Vi) . Let z be the solution of 

Oz 
(3.14) -z,-div(eVz)=pin Q, z=0on F+ U rO, =o on rI. 

an 
We then find that 

IIPII2 = (p, -zx - div(gVz)) = (Px -div(eVp), z) + I 
= (-div((? - c)Vi), z) + I = ((? - e)&x, zx) 

-(((?- Ofly)y' z) + I +II, 
where 

Jr aj nd II= - j(- e)i'xznj dF. 

Since z vanishes along IF+, we have that 

z(x, Y) = -Jzx(s y)ds, 

where (x+, y) is a point on IF+. From the boundedness in L2 of the Hilbert 
transform F(x) = I 

fo f(s)ds, we easily get that IId-1 zII < 2 1zxI. We now 
need to estimate I and II. Using Lemma 1.2, we have that 

I1+II1? Crnax11/2 (g (cIVu12 + ?IVi,12)Ini dE) (J z2Ini dE) 

II+II< C maxel2ll In, z2dnld- z nl 

where C = C(L) . Putting things together, we now obtain 

IIpII2 < C 11(e - c)uixIl + lld+((- c)uiy)yll + max 1/2IIfll) 

X (llZ 11+ (i z2Inh Id) /) 

If we now use the counterpart of (1.4) for the solution z of the dual problem 
(3.14), we obtain the desired estimate at once. This completes the proof. [1 

Let us now put the estimates of Lemmas 3.2 and 3.5 together to obtain the 
following result: 
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Theorem 3.3. Under the assumptions of Lemmas 3.2 and 3.5 there is a constant 
C such that 

(3.15) Ilu - Ull < I o(U, h, f) + ,p(u, ?, data). 

Note that this is not a full a posteriori estimate, since ui is unknown. As 
indicated above, we shall design an adaptive algorithm for the SD-method for 
(1.2) based simply on replacing - by U in (3.15). To prove that this is pos- 
sible, leading to a reliable algorithm, would require a counterpart of Lemma 
3.4 in certain weighted norms, the technicalities of which we leave to future 
investigations. Thus, in this paper we do not prove that the adaptive algorithm 
based on (3.15) to be presented below is fully reliable. 

Remark 3.3. As indicated in the introduction, it is easy to prove a posteriori 
error estimates of the form 

(3.16) IIu -Ull < CIIR(U)II, 

for various Galerkin methods for convection-diffusion problems, including the 
SD-method and also standard Galerkin methods, by using only the L2-stability 
of the continuous (dual) problem (i.e., lull < Cllfli for problem (1.1) or (1.2)). 
However, an a posteriori error estimate of the form (3.16) cannot be used as a 
basis for an adaptive algorithm for controlling Iu - UII in general, since in the 
presence of characteristic or outflow layers we will have that IIR(U) II = 0(h-a) 
with a = 1/8 or a = 1/2 unless h = 0(c2/3) or h = 0(e), respectively (cf. 
the discussion in ?4.1 below). In particular, (3.16) is useless in the initial stages 
of an adaptive procedure when the mesh is not yet properly refined. 

4. ADAPTIVE PROCEDURES 

We shall now design adaptive algorithms for the SD-method for the problems 
(1.1) and (1.2) based on the error estimates of the previous section, seeking 
procedures for which we can demonstrate reliability and efficiency as discussed 
in the introduction. In each case our basic computational goal is to solve the 
following (optimization) problem (0): With TOL a given error tolerance, find, 
using the SD-method, an approximate solution U of problem (1.1) or (1.2) on 
a mesh T such that 

(4.1) llu-Ull<TOL, 

at minimal computational 'cost' (here measured simply in terms of the total 
number of nodes of the mesh T). We recall that a mesh T with minimal 
number of nodes such that llu - fill < TOL, where ui is an interpolant of u 
on T, is referred to as an optimal mesh. When discussing the efficiency of 
our adaptive procedures, we shall compare the constructed mesh T with the 
optimal mesh T. 

4.1. Neumann outflow boundary data. We first consider the case of problem 
(1.1) without the singular outflow layer complication. Clearly, the adaptive 
method suggested by the a posteriori error estimates (3.10) and (3.12) is to seek 
a mesh T with (nearly) minimal number of nodes such that 

(4.2) Fo(U, h, f) + Fp(U, h, f) < TOL 
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or 

(4.3) 9'(U, h, f) + X_p(U, h, f, f) < TOL. 

For the purpose of our discussion below we label this adaptive method (or 
strategy) (MI). An algorithm designed for the search of the mesh T with min- 
imal number of nodes satisfying (4.2) and the associated U could be designed 
roughly as follows: 

10. Start with a (coarse) quasi-uniform mesh To. 
20. Given a mesh Tj with mesh size hj, compute the corresponding approx- 

imate solution Uj E Vj determined by (2.3), where Vj is the space of piecewise 
linear functions defined by (2.2a) based on Tj. 

30. If (4.2) or (4.3) holds with U = U1 and h = hj, then stop and accept U1 
and T1 as an (approximate) solution of (0) . Otherwise, construct a new mesh 
T1+1 with corresponding mesh size hj+l with (approximately) as few nodes as 
possible such that 

(4.4) Fo(Uj, hj+,, f) + F,o(Uj , hj+, If) < TOL, 

and then go back to 20 . 
In practice, to construct a mesh Tj+1 with (approximately) as few degrees 

of freedom as possible, we seek an equidistributed mesh T1+1 in the sense that 
all element contributions in the integrals in the L2-norms in Fq and Fp 
are approximately equal (see [3] for details). 

As we shall see below, the a posteriori error estimate of Theorem 3.2 does 
not appear to be quite sharp, and as a consequence the adaptive method (MI) 
will possibly not be fully efficient. As an alternative we may therefore consider 
the following method based on the 'quasi' a posteriori error estimate obtained 
by combining the estimates of Lemmas 3.1 and 3.3. This gives us the following 
method (M2): Seek a mesh T with (nearly) minimal number of nodes such 
that for the corresponding U, 

(4.5) Xo(U, h, f) + F,p(U, t, data) < TOL. 

Note that this method is based on heuristically replacing the unknown argument 
ui in Fp by the known computed solution U. 

As a third possibility, changing the computational goal somewhat, we con- 
sider the following method (M3): Seek a mesh T with (nearly) minimal num- 
ber of nodes such that for the corresponding U, 

(4.6) F(U, h, f) < TOL and ? = ?(U, h) =ce. 

We note that once ? = c, then p = 0, and thus (4.2) will be guaranteed if only 
o (U, h, f) < TOL. As we will indicate below, it appears that the requirement 

? = e in (4.6) will force the refinement to continue until all details of the flow 
have been resolved to their true scale, in particular, the mesh size will be smaller 
than O(ve) in a characteristic layer. This is not necessarily the case with the 
methods (MI) and (M2) where, depending on the tolerance chosen and the 
given diffusion coefficient c, characteristic layers may be left unresolved. 

Remark. In the implementation of the adaptive algorithm 10 - 30 above one 
faces, in particular, the problem of assigning appropriate values to the constants 
C appearing in the definitions of X9 and Fp . Clearly, for efficiency reasons one 
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would like to choose these constants as small as possible. Consider for instance 
the constant C in the definition of F in Lemma 3.1. Tracing the origin of 
this constant, one realizes, first of all, that one should actually have different 
weighting constants associated with the different terms in Fo and write 

9(U, h, f) = Ilmin*( 1, h2'')(CIr(U) + C29D2U)II + C3 max ?1/2II fI. 

Secondly, the constants Cl and C2 associated with the two most important 
terms basically are of the form CsCi, where Ci is an interpolation error con- 
stant which can be determined rather easily (cf. the discussion in [3]) and 
C5 is the stability constant in Lemma 1.1. In the case of the simple model 
problems under consideration here, the stability constant Cs could easily be 
evaluated theoretically simply by following the proof of Lemma 1.1. For more 
complicated problems, however, it seems more realistic to seek an appropriate 
computational replacement for such a procedure and estimate Cs from a nu- 
merical solution of the dual problem (3.5). The latter problem is the subject of 
ongoing research. Note here that in Lemma 1.1, too, one should actually use 
individual stability constants for the individual terms ( c16 1/2Vu I, u U, 
IIeD2uII, ...) in the estimate. 

In the discussions below, we shall always assume that the problem of finding 
suitable values for the constants C has been appropriately solved. 

Reliability and efficiency. Let us now discuss the reliability and efficiency of the 
adaptive methods (MI), (M2), and (M3). The methods (Ml) and (M3), of 
course, will be reliable in the sense that if the corresponding algorithm reaches 
its stopping criterion, by finding a mesh T and the corresponding U such that 
(4.2), (4.3), or (4.6) holds, then we know from the corresponding a posteriori 
estimates that (4.2) will be guaranteed. For the method (M2), on the other 
hand, our analysis does not guarantee full reliability in the above sense, since 
the stopping criterion (4.3) is based on replacing ui by U in Lemma 3.3, which 
has not been justified. Nevertheless, replacing ui by U seems to be a reasonable 
thing to do, since ui is sufficiently regular and the finite element mesh for U 
fits with the regularity of ui so as to admit error estimates for ii - U, e.g., as 
in Lemma 3.1 (cf. also the discussion preceding Lemma 3.5). 

Concerning the efficiency, we would like to know that a mesh generated by 
the adaptive algorithm corresponding to the method (Ml), (M2), or (MA3) 
under consideration is (reasonably) close to an optimal mesh and not excessively 
overrefined for the computational goal (4.1). As the weakest possible demand 
on efficiency, we would like to know that the method is operational in the sense 
that (4.2) may be realized by refining the mesh. 

For the purpose of a brief discussion of these matters in a simple model 
situation, we consider the case of an interior singular layer due to a jump dis- 
continuity in f across a characteristic y = const. With our interest focused 
on the case when e is very small, we shall assume for simplicity that e < Ch3 
everywhere in Q, and further that e is constant. As we shall see below, we 
then expect to have that ? = O(ha) with a > 1 everywhere in Q, so that, in 
particular, we may control the terms depending directly on the data f in (3.4), 
(3.7), (3. 10) etc. We may thus concentrate on the terms involving the computed 
solution U and its residual R(U) . In order to be able to estimate these terms, 
we shall first derive a preliminary estimate for f - U, in the different parts of 
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the computational domain. To this end, we shall use the fact that 

(4.7) f - Ux = ix - Ux - div(tVf4) 

and estimate separately ix - Ux and div(Vui). We recall (see [8]) that one 
can derive a priori error estimates for the SD-method of the form 

(4.8a) l' - Ull,, < C(1h3/2D2ilIK + lh2fl) 

and 

(4.8b) llux - Uxll C( IhD2ufiII + llh+fll), 

where q is a cutoff function subject to certain conditions similar to those in 
(1.7) with e replaced by h. Strictly speaking, existing proofs of these esti- 
mates require additional assumptions, such as a constant ? and certain quasi- 
uniformity of the mesh, but it seems reasonable to believe that the results of 
[8] should be extendable to the case of a variable ? subject to the conditions 
of Lemma 1.1 and for a fairly general class of locally refined meshes such as in 
[3]. The estimates (4.8a, b) indicate that in the parts of Q where ui is smooth 
we should have ui - U = O(h3/2) and fx - Ux = O(h). In order to estimate 
the div(?Vui)-term in (4.7), we first note that div(?Vui) = V * Vui + ?Afi. Here, 
? is of order O(h2If - UxI)), and under reasonable mesh assumptions as in [3] 
it follows that V? = O(h If - UxI) . We may therefore conclude that, in regions 
of smoothness of iui, we have If - Ux = O(h) and consequently ? = O(h3), 
gl/2VU = O(h3/2), R(U) = O(h) and min(1, h2?- l )R(U) = R(U) = O(h). 

We now note that for all three methods, (MI), (M2) and (M3), owing to 
the presence of the term 11min(1, h2t- 1)R(U)II in Fo, the a posteriori error 
estimates do not seem to be fully sharp in the smooth parts of the domain. 
In particular, it seems as if we have lost a factor of h1/2 compared to (4.8a), 
according to which ui - U = O(h3/2) in the parts of the domain where ui is 
smooth (and a factor h as compared to the interpolation error of order O(h2) 
in smooth regions). This indicates that the method will overrefine slightly in 
smooth regions. However, as we shall soon see, in the case of a characteristic 
singular layer, the majority of the elements will be located in the characteristic 
layer, so that the total number of elements is not much affected by a moderate 
overrefinement in the smooth region. 

In the characteristic layer we expect to have f - Ux = O(h- 1/2) and ? = 

O(h3/2). This is based on the following heuristic argument. We recall the a 
priori error estimate (4.8b). Since this estimate is more or less local, we expect to 
have a corresponding pointwise estimate under reasonable assumptions. Since 
D2ii = 0(?-') and IV?I = O(1-1/2) in the layer, and since we know that 
? = O(h) just by applying an inverse estimate, we are led to believe, neglecting 
the f-term in (4.8b) and under appropriate assumptions on V?, that 

If- UxI < Ifx - Uxl + Idiv(9Vfi)I < C(hg-7 + 1) < C(h-'If - Uxl-l + 1). 

From this we conclude that If - Uxl = 0(h-1/2) ? = 0(h312) and R(U) = 

O(h -1/2) in the layer. Further, we expect the width of the numerical singu- 
lar layer to be O(max(91/2, h3/4)) = O(h3/4) (cf. [10]), and V? VU and 
Ds2U should both be of order 0(1). From this we conclude that e1/2VU = 
0(1), min(1, h2?- I )R(U) = h 2?- 1R(U) = 0(1) and min(1, h?- 1/2)R(U) = 
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H- 1/2-R(U) = O(h-'14) in the layer. If we square all these quantities, multi- 
ply by the width of the layer and then take the square root, we find that the 
contribution to F, p, and tp coming from the layer should be of order 
0(h318), O(hI18), and 0(h318), respectively. (Note that by defining an I such 
that IVf I = O(h -1/4) in the layer and with d = f in the smooth region, and 
using (3.12) rather than (3.1 1), we may include also the contributions from the 
data terms in these estimates.) We see that we have lost a factor of h1/4 in the 

h-and hp-terms, since O(h 12) is optimal according to interpolation theory. 
The reason is, of course, that we have not been able to derive an error bound 
of second order in h for p, since we have been using (3.9). The estimates 
for the F-and Fp-terms, on the other hand, appear to be close to the optimal 
interpolation error O(h 1/2) . 

4.2. Dirichlet outflow boundary data. Let us now turn our attention to the 
case of problem (1.2) and the additional complication due to the presence of 
an outflow singular layer. Now we base our adaptive method on the estimate of 
Theorem 3.1 and consider the following method (M4): Seek a mesh T with 
(nearly) minimal number of nodes such that for the corresponding U 

(4.9) Fo(U, h, f) + Fp(U, e, data) < TOL, 

where 

Fp(U, ?, data) = C (eI(?-ce)U11 + lld+(e-ce)DyUyll +maxe1/2Ilfil) 

and (with notation as in the definition of D ) 

DhVIK = (v(P')-v(P))(P'-P)2 

3K'EN(K) 
p - P12 

Clearly, this method is based on replacing ui by U in the hp-term in the 'quasi' 
a posteriori error estimate (3.15). 

Alternatively, we consider here also (M3), which applies to the outflow sin- 
gular layer problem as well, with to defined as in Lemma 3.2. 

Reliability and efficiency. Method (M3), of course, is reliable as before, whereas 
the method (M4) based partly on a heuristic step is not fully reliable (cf. the 
discussion preceding Lemma 3.5). Concerning the efficiency, let us first consider 
method (M4). Again, the term min(l, h2e- )R(U) will be of order O(h) in 
the parts of the domain where ui is smooth. In a characteristric layer we will 
have min( 1, h2e- I)R( U) = h2e- 1 R( U) = 0( 1) . The width of the characteristic 
layer is expected to be O(h3/4), which would give an error contribution to O 
of order 0(h318), which is close to optimal. In the outflow singular layer we 
expect to have If - U, = O(h-1), simply by applying an inverse estimate, and 
consequently e = O(h) and R(U) = 0(h-1), so that 

min(1, h2e- )R(U) = 0(1). 

The width of the outflow singular layer is known to be O(h), so that the con- 
tribution to the F-term will be O(h 1/2), which is optimal. 
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In smooth parts, the first two terms in Fp seem to be of order 0(h2) and 
the f-term of order 0(h3/2), which is optimal compared to (4.8a). In a char- 
acteristic layer, the second term in Fp determines the order and appears to 
be 0(h318), since fyy = 0(?-') and the width of the layer is 0(h314). In 
the outflow layer, finally, ui = O(9-1) and iyy = Q(g-2) or better, so that 

d+((?- e)uy)y = 0(1) and consequently Fp = 0(h1/2), which again is optimal. 
Concerning the efficiency of method (M3) we have already seen that o 

appears to be a sharp bound for the 0-part of the error. We now would like to 
analyze the additional effect of the control ? = e. We shall give an argument 
which indicates that the additional control ?(U, h) = e in (4.6) will lead to 
resolution of both outflow layers and characteristic layers. To see this, note that 
in an outflow layer, in order to have e = , we must have that 

c =- > ch2If-Uxl>ch, 

since If - UxI > ch-I in the layer, so that the outflow layer of width 0(?) will 
be resolved. In a characteristic layer we expect to have h < cc213, since 

chf - ch 3D2el -_ ch3g-1, 

which states that 
e > ch3/2 or h314 < C_1/2 

if ? = , which again indicates resolution, since the width of the characteristic 
layer is 0(e1/2) and the width of the corresponding numerical layer (according 
to recent but yet preliminary results, see also [10]) is 0(h314). Note that the 
adaptive method (M4) may or may not, depending on the tolerance TOL, lead 
to resolution of characteristic and outflow singular layers. Roughly speaking, if 
the tolerance is set greater than 0(c114), then neither an outflow singular layer 
nor characteristic singular layers will be resolved. If the tolerance is between 
0(c1/2) and 0(61/4), then characteristic layers will be resolved, but not an 
outflow singular layer. Finally, if TOL is of order 0(c 1/2), then all layers will 
be resolved. Thus, imposing ? = e corresponding to resolution of all layers, 
may lead to an overrefinement. On the other hand, resolution of the layers 
may be a computational goal as well, in addition to (4.1). Observe that the 
condition ? = e in (4.6) corresponds to continuing the refinement until no 
shock-capturing artificial viscosity is effectively added. Even in this case, the 
shock-capturing artificial viscosity plays an important role during the adaptive 
refinement process when the mesh is not fine enough to resolve all details of the 
flow, but "disappears" on the final mesh where ? = e and all details are resolved. 
Note that in a natural adaptive process we start with a coarse mesh and refine 
locally (e.g., until ? = e, i.e., h < e in outflow layers) instead of starting with 
an extremely fine quasi-uniform mesh (satisfying h < e everywhere) and then 
unrefine locally, which clearly would be an inefficient procedure. 
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