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SPHERICAL DESIGNS, DISCREPANCY 
AND NUMERICAL INTEGRATION 

PETER J. GRABNER AND ROBERT F. TICHY 

ABSTRACT. A spherical design is a point configuration on the sphere, which 
yields exact equal-weight quadrature formulae for polynomials up to a given de- 
gree. Until now only very specific constructions for spherical designs are known. 
We establish connections to spherical cap discrepancy and show some general 
discrepancy bounds. Furthermore, we reformulate the problem of construct- 
ing designs as an optimization problem and develop an algorithm for finding 
'practical designs'. 

1. INTRODUCTION 

Numerical integration is an important problem in applied mathematics. 
There are several possibilities for measuring the quality of an approximate in- 
tegration method. As an example, let us first consider the case of the interval 
U = [-1, 1] with quadrature points xl, ... , XN. Chebyshev computed the 
set of quadrature points such that for all polynomials p(x) of degree t < 7 the 
equality 

(1.1) 1 EP(Xn) p(x)dx 
t Z2~)= Jk , 

holds. Radau computed the quadrature points for t = 9 and found that for 
t = 8 some quadrature points are complex. Bernstein proved the surprising 
result, that for t > 9 there is no such formula with t real quadrature points 
(cf. [14]). Note that all weights are equal, otherwise by Gauss integration it is 
possible to integrate polynomials of degree 2t - 1 by t points. The following 
natural question arises: How many distinct quadrature points are necessary to 
integrate all polynomials of degree < t ? In the recent paper [19], G. Wagner 
proved the upper bound N < t22 for the number of quadrature points; note 
that Bernstein proved that N,> ft . (We use Vinogradov's notation f < g for 
If I < CIgI for a suitable positive constant C.) For a more detailed survey we 
refer to [5]. 

Seymour and Zaslavsky [17] have shown in a much more general situation 
that for any degree t there exist finitely many quadrature points which yield 
an exact equal-weight quadrature formula. (More precisely, they considered 

Received by the editor July 16, 1991 and, in revised form, February 3, 1992. 
1991 Mathematics Subject Classification. Primary 1 1K45, 65CO5. 
The authors were supported by the Austrian Science Foundation (Project Nr. P8274PHY). 

(? 1993 American Mathematical Society 
0025-5718/93 $1.00 + $.25 per page 

327 



328 P. J. GRABNER AND R. F. TICHY 

functions on topological spaces and arbitrary probability measures.) However, 
no effective bound for the number of these quadrature points is given. The 
one-dimensional result of [19], on the other hand, can be applied to construct 
quadrature points on the d-sphere which yield exact integration of harmonic 
polynomials up to a prescribed order. 

A second method for classifying numerical integration methods is based on 
Koksma's inequality (cf. [9, p. 143]): 

(1.2) N +Z f(xn)- f(x)dx < V(f)DN(XI , .., XN), 
n=I 

where V(f) is the total variation of f and 

(1.3) DN (XI, ,XN) = SUP - 
E XJ (Xk)-( J) 

is the discrepancy of the finite point sequence {xn } (XJ denotes the character- 
istic function of the interval J of length A(J)). It can easily be seen that the 
discrepancy is minimal for equidistant points. 

Of course, the estimate (1.2) is of no interest for numerical integration, but 
the concept of discrepancy is very fruitful for numerical applications in higher 
dimensions (cf. [10, 9]). The aim of this paper is to deal with numerical in- 
tegration problems on the d-dimensional sphere equipped with the normalized 
surface measure a. As an approximation to the surface integral 

J f(x)da(x) 
Sd 

we consider the arithmetic mean 
N 

(1.4) 1N f(Xn)- 
n=I 

The quality of approximation depends on the smoothness of the function f 
and on the distribution of the points on the sphere. As a measure for this 
distribution we will use the spherical cap discrepancy 

( 1.5 ) D (XI , ... ., XN ) = SUP XC (Xk )- ( C) I 

where the supremum is extended over all spherical caps C; a cap is defined as 
intersection of the sphere and a halfspace. In a series of papers [8], E. Hlawka 
investigated several different notions of discrepancy, for instance the so-called 
Lipschitz discrepancy and a concept of discrepancy based on Green's function. 
In the following we will only use the spherical cap discrepancy, because it seems 
to be the most natural concept. From the theory of irregularities of distribution 
(cf. [1]) the following general lower bound is known: 

(1.6) DN(xI . , XN) ? I 
I 

and this estimate is optimal up to a possible logarithmic factor. 
Generalizing point sets satisfying (1.1) to the case of the d-dimensional 

sphere leads to the concept of spherical design. 
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Definition 1. A point set xI, ..., XN E Sd is called a spherical t-design of 
order N if 

(1.7) kZ P(Xn) = dP(X)du(x) 

for all polynomials (in d + 1 variables restricted to Sd) of degree < t. 

Remark 1. Obviously, this definition is equivalent to 

lN 

(1.8) 1: Km, k(Xn) = 
n=I 

for all spherical harmonics Kmik, m = 1, ..., t and k = 1,... Z(d, m), 
where Z(d, m) is the number of linearly independent spherical harmonics of 
order m (cf. [ 1 3]). 

For applications in numerical analysis it is necessary to know effective con- 
structions of spherical t-designs of order N with small N and large t. Sey- 
mour and Zaslavsky [17] proved the existence of t-designs for any positive 
integer t and gave a first rough bound for N in terms of t. G. Wagner [19] 
used the investigation of the one-dimensional case to give an explicit construc- 
tion for a t-design with N < t8d3 for infinitely many t. Furthermore, he 
showed that for arbitrary t and all N >1 t2d4 there exists a spherical t-design 
of N points. These bounds are of little use for practical applications and seem 
to be far away from reality. MacLaren [12] used finite subgroups of the rota- 
tion group to construct designs for special values of t. Seidel et al. [16, 3] 
considered refinements of this method, and recently Godsil [6] extended this 
group-theoretical approach to a more general situation. Since there are only 
finitely many polyhedral groups it seems to be impossible to construct spherical 
t-designs for arbitrarily large t by this method. 

The aim of this paper is to establish a connection between discrepancy and 
spherical designs. We will give effective constructions for low-discrepancy point 
sets on the d-dimensional sphere. Furthermore the construction problem of 
spherical designs is reformulated as an optimization problem which can be 
solved by computational methods. 

2. NUMERICAL INTEGRATION AND DISCREPANCY 

Generalizing the well-known Erdos-Turan inequality, one of us [7] proved 
the following bound for the spherical cap discrepancy: Let xn , n = 1, . .. , N, 
be a finite point sequence in sd; then for an arbitrary positive integer M the 
following inequality holds 

Dc(xl -, XN) 

(2.1) c (d ) +M ( d C3 (d) KZ(dk) iN l 

M+l I'k=i k M+l Z=1 kzKk=I( ) 
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where the constants can be taken to be 

ci(d) = max (1, c I +c 
Cd ~Cd 

c2 (d ) = 1 (d 2 ) 2d+1ed 

C2(d) = VOd 12d3 2 (d + 1) 

with Cd = r(d+l) 2Od rK2 
Now suppose that there exists a t-design with N = CtL points xl, ..., XN. 

Inserting these points in (2.1) and setting M = t, we immediately obtain by 
the definition of a t-design that 

(2.2) Dc(x, ..,XN) < 

The way in which (2.2) follows from (2.1) mirrors a similar phenomenon in 
the theory of good lattice points (cf. [9, Chapter 4]). From [3] we know that 
L > d. Thus, our bound (2.2) is not optimal (cf. (1.6)). However, it should 
be remarked that Beck's approach (cf. [1, Theorem 24D, p.182]) makes use of 
probabilistic arguments and yields the existence (without effective construction) 
of spherical sequences {x, } with discrepancy 

Dc(xl, *-- XN) << Nlog, N 

In the case of the two-dimensional sphere, Lubotzky, Phillips, and Sarnak 
[ 1 ] established a group-theoretical construction of a point set xl, ... , XN sat- 
isfying Dc(xl, ... , XN) < N-3 . The main ingredient of their proof is the deep 
fact that the group generated by the rotations A, B, C with angle arccos(- 3) 
around the coordinate axes is free. The approach is essentially restricted to 
d = 2. 

By (2.1), the spherical cap discrepancy can be estimated in terms of spherical 
harmonics. In the following we will establish a bound for the approximation 
error in terms of spherical harmonics. 

Theorem 1. Let f be a continuous function on Sd satisfying 

If(x) - f(y)I < Cf arccos((x, y)), 
and let V(f) = supx, y If(x) - f(y)I . Then for all positive integers M, 

I N d 2M Z(d,m) 1 N 

I N f(xn) f(x)du(x) < 6Cf + V(f) , , - EKm,I(xn). 
n1 Sd m=1 1=1 n=1 

Proof. Let 

(pd t )2 Km (t) = am 
M t 

where Pd+1 is the ultraspherical polynomial with parameter A = dy2 of degree 
M + 1, VM+1 is the largest zero of PM+1 and aM is chosen such that 

KM((X, y))dI(x) = 1, y E Sd. 
Sd 
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This approximation kernel is due to Newman and Shapiro [ 15]. Let furthermore 

fM(x) = J f(y)KM((x, y))da(y). 
Sd 

Then by using the hypotheses on f we obtain 

If(x) - fM(x)I < I f(y) - f(x)IKM((x, y))du(y) 
Sd 

< Cf j arccos(x, y)KM((x, y))da(y) 

< 2Cf jd 1 -(x, y)KM((x, y))du(y) 

< 2Cf (L (1 - (x, y))KM((x, Y))d(y)) 

( 2Cg -f0cos(pKm(cosi)(sin(p)d)1d() 
/2 

The quotient of integrals in the last line equals VM+1; by results in Szego [18, 
?6.21] and Newman and Shapiro [15], VM+1 1- 5 d2. Therefore, the estimate 

If(x) - fM(x)l < 6Cf 
d 

holds. 
We now use this approximation to estimate the error of our numerical inte- 

gration method: 

N E f (Xn ) -f(x)d + (x) | 

< N : Eft(X) )-fM(X ) I + N | fM (Xn)- f (x )da(x ) 

d 2M Z(d,m) N 

< 6Cf- + Z If(m, 1)1 Z1 Km,,(Xn) 

m=1 1=1 n=1 

where f(m, I1) = fSd f(X)Km,I(x)dC(x). For establishing the last inequality, 
we note that the kernel KM is positive and hence all coefficients in its spherical 
harmonic expansion are < 1. Now we use 

f(x) - I f(x)du(x) < V(f) 
Sd 

and Bessel's inequality to obtain the upper bound 

d 2M Z(d,m) N 

6Cf - + V(f) E E -ZKm,l(Xn) . 0 
m=1 1= n=1 

Remark 2. Inserting a spherical t-design with N = CtL leads to the error bound 
(2.3) |-N f(xn) | f(x)d(x)| << N-g 

(2.3) yjZf(XnV] f(x)du(x) N1 
n=1 Sd ~ 
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Remark 3. A proof similar to that above yields 

I N~~IS 
N E f(xn) f f(x)da(x) 

(d n 2M Z(d,m) N 
< 7co (M) +V(f) E N Km,k(Xn) 

m=1 k=1 n=I 

where co(u) is a function satisfying 

If(x) - f(y)I < wo(arccos(x, y)). 

3. CONSTRUCTION OF DESIGNS BY OPTIMIZATION 

In [19] the first explicit construction of spherical t-designs for arbitrary t 
is given. The construction works by projection into the coordinate axes and 
applying the solution of the one-dimensional problem as mentioned in the in- 
troduction. Furthermore, Wagner shows that for arbitrary t and all N > cdtl2d4 
there exists a spherical t-design of N points. The paper [19] contains some 
computational errors which, however, do not affect the correctness of the re- 
sult. A detailed analysis of the proof shows that the bounds can be improved 
to some extent by the same methods. G. Wagner himself announced such im- 
proved bounds before he died in March 1990 in an avalanche in the Alps. For 
instance, in the one-dimensional case he announced the existence of a set of N 
quadrature points satisfying ( 1.1) with N > t7. We hope that these results will 
be published soon. 

Clearly, it is desirable to find spherical t-designs of N points with N close to 
td. For this purpose we suggest to reformulate the problem as an optimization 
problem. By summing up the squares of (1.8) for all k = 1, ... ., Z(d, m) and 
using the addition theorem for spherical harmonics (cf. [13, p. 9]), we obtain 

N 
(3.1) E Pmd((X, Xk)) = O 

j,k=i 

for m = 1, ... , t as a condition for a t-design. Taking into account that every 
antipodal set (these are sets which contain with every point also its antipodal 
point) yields exact integration for all odd m, we first look for point sets with 

N 
ZKm,k(Xn) = 0 
n=1 

for even m < t. Then the set x, ...,XN, -X1, ..., -XN is a spherical t- 
design; the order of magnitude of N(t) is not affected by this construction. 

By summing up (3.1) we obtain 
N 

(3.2) F(x1, .* XN) = E Q2M ((Xj, Xk)) = 0, 
j,k=i 

where 
M 

Q2M(X) P2dm (X), 
m=l 
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as a condition for the points xl, .. . , XN to be part of such a (2M + 1)-design. 
We note that this value is also the absolute minimum of the sum on the right- 
hand side for N large enough. From [17] it follows that this minimum is 
attained for sufficiently large N. 

In the following we assume that F attains the global minimum CM, N . In 
order to derive a discrepancy bound, we make use of the following 

Lemma 1. There holds 

(3.3) Dc(xI ,.*. XN) < M + I + c1(d) sN)) 
m=1 r,s=l 

where c1 (d) is the same constant as in (2. 1) and c2 (d) is some positive constant. 
Proof. The proof of this inequality can be easily derived from ?3 in [7, pp. 
133-134]. Now let C = {y e Sd: (X, y) > cos(p}; then 

N 

#{1 < n < N: Xn E C} = ZX[cosp,,1]((X, Xn))- 
n=O 

By [7, p. 133-134] we have 

I N 

-N Z X[cosq', 1((x , xn)) -(C) 
n=O 

cl c(d) M 1 (2 2C(d +2) 27rC(d) 
M+ 1l CdM K dm M + I ) 

Z(d,m) 1 N 
x 1 Km,j(X)- E Km,j(Xn) 

j=1 n=1 

where C(d) = F(d)2 2 e 2 /v/ and the other constants are defined after (2.1). 
Applying the Cauchy-Schwarz inequality for estimating the summation over j, 
and using the addition theorem for spherical harmonics (cf. [13, p. 9]) yields 
Lemma 1. 

Inserting the minimal value CM, N in (3.3), summing up the powers of m 
and using the antipodal construction, yields 

(3.4) DC (+xl, +XN) < 2( + c2 (d)M C 2NkX .. -2M +1 

with some new constant c"(d) > 0. 

Theorem 2. Let xl, ..., XN be a point set such that 

IN 
F(xj, ... , XN) = 2 z Q2M((Xr, Xs)) 

r,s=l 

defined in (3.2) attains its minimum value at this point set. Then the discrepancy 
of the antipodal set +x1, ... , +XN is bounded by 

(3.5) Dc (?xl, ?XN) <Y - 
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Proof. An easy computation shows 

JF(xl, .,XN)da(xl) d?(XN) = N 

Thus the minimal value CM, N is less than Inserting this in (3.4) and 
setting M = [Nd+2 ] yields the estimate (3.5). 

4. COMPUTATIONAL RESULTS 

In this final section we discuss computational methods for constructing spher- 
ical point distributions in the case of the 2-sphere. The naive method for 
constructing a spherical design is to find an explicit solution for the system of 
equations (1.8). These are polynomial equations of high order and in many 
variables. Thus, the standard methods of computational algebra (cf. [2]) seem 
to be overtaxed. 

McLaren [12] suggested the following method for constructing uniformly 
distributed point sets: Start with an icosahedron with center M and fix one 
vertex point P. Consider the five edges through P and fix their midpoints 
P, , P5. Then the icosahedron is rotated around the axes MP,, i = 
1, 5, with angle 2. Thus, five new icosahedra are generated, and this 
procedure can be iterated. In this way a spherical point distribution is gener- 
ated (points occurring repeatedly are taken only once). This algorithm can be 
easily implemented on computers and a MODULA-2 code is available from the 
authors. Our program also produces a graphical representation (two normal pro- 
jections) of the point distribution. In the case of five iterations (46860 points), 
Figure 1 shows the result. In the following we discuss some computations for 
the construction of designs on the 2-sphere by optimization. As in ?3, one can 
show that the antipodal set ?xl, ?XN generates a (2M + 1)-design if the 
function 

N 

G(x1 ,...,XN) = S (Xi, Xk)2A1 

,k= I 

attains its minimum in the point set x. XN and the value of the mini- 
mum is 2M+. Note that x2AI is a positive linear combination of Legendre 
polynomials. 

t_- s>v - b, <St , , < 

FIGURE 1 
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TABLE 1 

M N computed value 2M + 1 

2 6 7.2003 7.2000 
3 11 17.3125 17.2857 
3 12 20.6250 20.5714 
4 15 25.2124 25.0000 
4 16 28.4768 28.4444 
5 21 40.2600 40.0909 
5 22 44.0767 44.0000 
6 33 83.8443 83.7692 
6 34 88.9990 88.9230 
7 41 112.1665 112.0666 
7 42 117.6981 117.6000 
8 54 171.6177 171.5294 
8 55 178.0389 177.9411 
9 77 312.2648 312.0526 
12 130 676.1551 676.0000 
14 180 1118.6311 1117.2413 
14 189 1232.7401 1231.7586 

In Table 1 we present a numerical computation of the minimum with the 
help of a combined stochastic and analytic procedure. The basic idea of this 
procedure is to determine suitable initial values by a Monte Carlo method and 
then improving these values by a gradient method. For more details concerning 
the implementation of this procedure we refer to [4]. Note that for the values 
M = 12 and M = 14 the difference between the computed value and the 
exact value of the minimum is within the rounding error. For smaller values 
of M exact designs are known. We call these point configurations 'practical 
designs', because numerically they behave like designs but until now it is not 
clear whether they are t-designs or not. Since the computations were done on 
a simple PC, this method would yield practical designs of higher order by using 
better hardware. 
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